Impedance-Based Criterion Design for Grid-Following/Grid-Forming Switching Control of Wind Generation System
Abstract
1. Introduction
- A switching criterion design methodology ensuring small-signal stability across wide SCR variations, based on impedance stability analysis;
- Dynamic triggered switching mechanism via Extended Kalman Filter (EKF)-based impedance tracking, enabling real-time response to grid condition changes.
2. Wind Turbine System Under GFL/GFM Switching Scheme
2.1. Circuit Topology
2.2. Switching Control Scheme
3. Derivation of the Wind Turbine’s Sequence Impedance Model
3.1. Sequential Impedance Modeling for GFL-Controlled Turbines
3.2. Sequential Impedance Modeling for GFM-Controlled Turbines
4. Small-Signal Stability Analysis and Switching Criterion Derivation
5. Switching Boundary Identification Based on EKF
Algorithm 1: Recursive estimation algorithm for EKF |
6. Simulation Verification
7. Experimental Validation Plan
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bose, B.K. Global Energy Scenario and Impact of Power Electronics in 21st Century. IEEE Trans. Ind. Electron. 2013, 60, 2638–2651. [Google Scholar] [CrossRef]
- Peng, Q.; Jiang, Q.; Yang, Y.; Liu, T.; Wang, H.; Blaabjerg, F. On the Stability of Power Electronics-Dominated Systems: Challenges and Potential Solutions. IEEE Trans. Ind. Appl. 2019, 55, 7657–7670. [Google Scholar] [CrossRef]
- Fang, J.; Li, H.; Tang, Y.; Blaabjerg, F. On the Inertia of Future More-Electronics Power Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 7, 2130–2146. [Google Scholar] [CrossRef]
- Lin, J.; Su, M.; Sun, Y.; Yang, D.; Xie, S.; Xiong, W.; Zhang, G. Frequency Coupling Suppression Control Strategy for Single-Phase Grid-Tied Inverters in Weak Grid. IEEE Trans. Ind. Electron. 2022, 69, 8926–8938. [Google Scholar] [CrossRef]
- Lin, X.; Yu, J.; Yu, R.; Zhang, J.; Yan, Z.; Wen, H. Improving Small-Signal Stability of Grid-Connected Inverter Under Weak Grid by Decoupling Phase-Lock Loop and Grid Impedance. IEEE Trans. Ind. Electron. 2022, 69, 7040–7053. [Google Scholar] [CrossRef]
- Li, M.; Zhang, X.; Guo, Z.; Wang, J.; Li, F. The Dual-Mode Combined Control Strategy for Centralized Photovoltaic Grid-Connected Inverters Based on Double-Split Transformers. IEEE Trans. Ind. Electron. 2021, 68, 12322–12330. [Google Scholar] [CrossRef]
- Tu, C.; Gao, J.; Xiao, F.; Guo, Q.; Jiang, F. Stability Analysis of the Grid-Connected Inverter Considering the Asymmetric Positive-Feedback Loops Introduced by the PLL in Weak Grids. IEEE Trans. Ind. Electron. 2022, 69, 5793–5802. [Google Scholar] [CrossRef]
- IEEE Std 1204-1997; IEEE Guide for Planning DC Links Terminating at AC Locations Having Low Short-Circuit Capacities. IEEE: New York, NY, USA, 1997; pp. 1–216.
- Han, Y.; Ha, J. Droop Control Using Impedance of Grid-Integrated DFIG within Microgrid. IEEE Trans. Energy Convers. 2019, 34, 88–97. [Google Scholar] [CrossRef]
- Arasteh, A.; Jain, A.; Göksu, Ö.; Zeni, L.; Cutululis, N.A. Fault Ride Through Capability of Grid Forming Wind Turbines: A Comparison of Control Schemes. In Proceedings of the 9th Renewable Power Generation Conference (RPG Dublin Online 2021), Online, 1–3 March 2021; pp. 37–41. [Google Scholar]
- Nian, H.; Yang, J.; Hu, B.; Jiao, Y.; Xu, Y.; Li, M. Stability Analysis and Impedance Reshaping Method for DC Resonance in VSCs-based Power System. IEEE Trans. Energy Convers. 2021, 36, 3344–3354. [Google Scholar] [CrossRef]
- Chen, L.; Du, X.; Hu, B.; Blaabjerg, F. Drivetrain Oscillation Analysis of Grid Forming Type-IV Wind Turbine. IEEE Trans. Energy Convers. 2022, 37, 2321–2337. [Google Scholar] [CrossRef]
- Zhou, J.Z.; Ding, H.; Fan, S.; Zhang, Y.; Gole, A.M. Impact of Short-Circuit Ratio and Phase-Locked-Loop Parameters on the Small-Signal Behavior of a VSC-HVDC Converter. IEEE Trans. Power Del. 2014, 29, 2287–2296. [Google Scholar] [CrossRef]
- Zhong, Q.; Weiss, G. Synchronverters: Inverters That Mimic Synchronous Generators. IEEE Trans. Ind. Electron. 2011, 58, 1259–1267. [Google Scholar] [CrossRef]
- Zhang, L.; Harnefors, L.; Nee, H. Power-Synchronization Control of Grid-Connected Voltage-Source Converters. IEEE Trans. Power Syst. 2010, 25, 809–820. [Google Scholar] [CrossRef]
- Li, Z.; Xie, Z.; Zhang, X. An Improved Strategy of Grid-Forming DFIG Based on Disturbance Rejection Stator Flux Control. IEEE Trans. Ind. Electron. 2024, 71, 2498–2509. [Google Scholar] [CrossRef]
- Khazaei, J.; Miao, Z.; Piyasinghe, L. Impedance-model-based MIMO analysis of power synchronization control. Electr. Power Syst. Res. 2018, 154, 341–351. [Google Scholar] [CrossRef]
- Wu, W.; Zhou, L.; Chen, Y.; Luo, A.; Dong, Y.; Zhou, X.; Xu, Q.; Yang, L.; Guerrero, J.M. Sequence-Impedance-Based Stability Comparison Between VSGs and Traditional Grid-Connected Inverters. IEEE Trans. Power Electron. 2019, 34, 46–52. [Google Scholar] [CrossRef]
- Li, M.; Zhang, X.; Guo, Z.; Pan, H.; Ma, M.; Zhao, W. Impedance Adaptive Dual-Mode Control of Grid-Connected Inverters with Large Fluctuation of SCR and Its Stability Analysis Based on D-Partition Method. IEEE Trans. Power Electron. 2021, 36, 14420–14435. [Google Scholar] [CrossRef]
- Wu, W.; Chen, Y.; Zhou, L.; Luo, A.; Zhou, X.; He, Z.; Yang, L.; Xie, Z.; Liu, J.; Zhang, M. Sequence Impedance Modeling and Stability Comparative Analysis of Voltage-Controlled VSGs and Current-Controlled VSGs. IEEE Trans. Ind. Electron. 2019, 66, 6460–6472. [Google Scholar] [CrossRef]
- Han, F.; Zhang, X.; Li, M.; Li, F.; Zhao, W. Stability Control for Grid-Connected Inverters Based on Hybrid-Mode of Grid-Following and Grid-Forming. IEEE Trans. Ind. Electron. 2024, 71, 10750–10760. [Google Scholar] [CrossRef]
- Li, M.; Zhang, X.; Yang, Y.; Cao, P. The Grid Impedance Adaptation Dual Mode Control Strategy in Weak Grid. In Proceedings of the 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), Niigata, Japan, 20–24 May 2018. [Google Scholar]
- Wu, J.; Jia, H.; Zhao, Z.; Li, H.; Song, J.; Liu, H. Research on Smooth Switching Method of PMSG Control Strategies between Grid Following Control and Grid Forming Control. In Proceedings of the 2024 China International Conference on Electricity Distribution (CICED), Hangzhou, China, 12–13 September 2024. [Google Scholar]
- Gao, X.; Zhou, D.; Anvari-Moghaddam, A.; Blaabjerg, F. Seamless Switching Method Between Grid-Following and Grid-Forming Control for Renewable Energy Conversion Systems. IEEE Trans. Ind. Appl. 2025, 61, 597–606. [Google Scholar] [CrossRef]
- Xi, J.; Geng, H. Decoupling Control Scheme for VSG-WPPs to Participate in Grid Frequency Response. IEEE Trans. Ind. Appl. 2019, 55, 6368–6375. [Google Scholar] [CrossRef]
- Yan, W.; Cheng, L.; Yan, S.; Gao, W.; Gao, D.W. Enabling and Evaluation of Inertial Control for PMSG-WTG Using Synchronverter with Multiple Virtual Rotating Masses in Microgrid. IEEE Trans. Sustain. Energy 2020, 11, 1078–1088. [Google Scholar] [CrossRef]
- Kochenburger, R.J. A Frequency Response Method for Analyzing and Synthesizing Contactor Servomechanisms. Trans. Amer. Inst. Elect. Eng. 1950, 69, 270–284. [Google Scholar] [CrossRef]
- Cespedes, M.; Sun, J. Impedance Modeling and Analysis of Grid-Connected Voltage-Source Converters. IEEE Trans. Power Electron. 2014, 29, 1254–1261. [Google Scholar] [CrossRef]
- Sun, J.; Liu, H. Sequence Impedance Modeling of Modular Multilevel Converters. IEEE J. Emerg. Sel. Topics Power Electron. 2017, 5, 1427–1443. [Google Scholar] [CrossRef]
- Sun, J. Impedance-Based Stability Criterion for Grid-Connected Inverters. IEEE Trans. Power Electron. 2011, 26, 3075–3078. [Google Scholar] [CrossRef]
- Hoffmann, N.; Fuchs, F.W. Minimal Invasive Equivalent Grid Impedance Estimation in Inductive-Resistive Power Networks Using Extended Kalman Filter. IEEE Trans. Power Electron. 2014, 29, 631–641. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
1200 V | 1 MW | ||
V | 0 Var | ||
0.15 mH | 0.3 | ||
0.4 mF | 322 | ||
0.2 | 1 | ||
50 s | 200 | ||
rad/s | 0.1 | ||
rad/s | 4.2 | ||
rad/s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Zhang, Z.; Chen, Z.; Huang, H.; Li, Z. Impedance-Based Criterion Design for Grid-Following/Grid-Forming Switching Control of Wind Generation System. Energies 2025, 18, 4875. https://doi.org/10.3390/en18184875
Huang S, Zhang Z, Chen Z, Huang H, Li Z. Impedance-Based Criterion Design for Grid-Following/Grid-Forming Switching Control of Wind Generation System. Energies. 2025; 18(18):4875. https://doi.org/10.3390/en18184875
Chicago/Turabian StyleHuang, Sijia, Zhenbin Zhang, Zhihao Chen, Huimin Huang, and Zhen Li. 2025. "Impedance-Based Criterion Design for Grid-Following/Grid-Forming Switching Control of Wind Generation System" Energies 18, no. 18: 4875. https://doi.org/10.3390/en18184875
APA StyleHuang, S., Zhang, Z., Chen, Z., Huang, H., & Li, Z. (2025). Impedance-Based Criterion Design for Grid-Following/Grid-Forming Switching Control of Wind Generation System. Energies, 18(18), 4875. https://doi.org/10.3390/en18184875