Operational Study of a Solar Thermal Installation with Recirculation for Industrial Applications
Abstract
1. Introduction
2. Methodology
2.1. Base Case. Operation of the Solar Collector Network–Storage System Without Water Recirculation (SCN-TES Without Recirculation)
2.2. Proposed Case: Solar Collector Network–Hot Water Recirculation Storage System (SCN-TES with Recirculation)
2.3. Determination of the Optimal Mass Flow Rate of Feed to the Solar Collector Network
2.4. Case Study: Pasteurization Process for the Production of Powdered Milk
2.5. Sizing of the Thermal Storage Tank
2.6. Assessment of the Four Seasons of the Year 2023
2.7. Evaluation of Economic and Environmental Indicators
2.7.1. Levelized Cost of Energy (LCOE)
2.7.2. Net Present Value (NPV)
2.7.3. Internal Rate of Return (IRR)
2.7.4. Payback Period (PBP)
2.7.5. Greenhouse Gases (GHGs)
2.7.6. Life Cycle Assessment
3. Results and Discussion
3.1. Base Case: Operation of the Solar Collector Network–Storage System Without Water Recirculation (SCN-TES Without Recirculation)
Selection of the Optimal Mass Flow Rate Circulating Through the Solar Collector Network
3.2. Scenario 1: Solar Collector Network–Storage System with Water Recirculation (SCN-TES with Recirculation)
3.2.1. Optimal Mass Flow Rate Circulating Through the Solar Collector Network–Storage System with Water Recirculation (SCN-TES with Recirculation)
3.2.2. Reduction in the Installation Area of Solar Collectors Due to the Increase in Operating Time of the Solar Thermal System
3.2.3. Performance of the SNC-TES System (With Recirculation) During Spring, Summer, and Autumn
3.3. Scenario 2: Solar Collector Network–Storage System with Water Recirculation (SCN-TES with Recirculation) and Heat Exchanger
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
B | Billion | SWHS | Solar water heating systems |
FPSC | Flat-plate solar collectors | TES | Thermal energy storage |
LCOE | Levelized cost of energy | TRL | Technology Readiness Levels |
M | Million | USD | US Dollar |
NREL | National Renewable Energy Laboratory | ||
SHIP | Solar heat for industrial processes |
References
- Renewable Energy for Industry—From Green Energy to Green Materials and Fuels; International Energy Agency: Paris, France, 2017; Available online: https://solarthermalworld.org/wp-content/uploads/2017/11/iea_renewable_energy_for_industry.pdf/ (accessed on 1 February 2025).
- Solar Energy Industries Association. Solar Energy Industries Association Home Page. Available online: https://seia.org/ (accessed on 1 February 2025).
- Renewables 2023—Analysis and Forecast to 2028; International Energy Agency: Paris, France, 2023. Available online: https://www.iea.org/reports/renewables-2023/heat (accessed on 1 February 2025).
- Tasmin, N.; Farjana, S.H.; Hossain, M.R.; Golder, S.; Mahmud, M.A.P. Integration of Solar Process Heat in Industries: A Review. Clean Technol. 2022, 4, 97–131. [Google Scholar] [CrossRef]
- Epp, B. The Netherlands and Spain Drive SHIP Market 2023. Solarthermalworl.org. 28 March 2024. Available online: https://solarthermalworld.org/news/the-netherlands-and-spain-drive-ship-market-2023/ (accessed on 1 February 2025).
- Solar Heat World Wide 2024; International Enegy Agency, Solar Heating & Cooling Programme: Kingston, Canada, 2024. [CrossRef]
- Solar Heat World Wide 2025; International Enegy Agency, Solar Heating & Cooling Programme: Kingston, Canada, 2025. [CrossRef]
- Epp, B. Global Expansion of Solar Industrial Heat: Key Insights from the Latest Outlook. Solarthermalworld.org. 1 April 2025. Available online: https://solarthermalworld.org/news/global-expansion-of-solar-industrial-heat-key-insights-from-the-latest-outlook/ (accessed on 1 February 2025).
- Quiñones, G.; Felbol, C.; Valenzuela, C.; Cardemil, J.M.; Escobar, R.A. Analyzing the Potential for Solar Thermal Energy Utilization in the Chilean Copper Mining Industry. Sol. Energy 2020, 197, 292–310. [Google Scholar] [CrossRef]
- Lactalis Group’s Milk Powder Facility. Solar Heat Europe Home Page. Available online: https://solarheateurope.eu/casestudy/lactalis-group%E2%80%B2s-milk-powder-facility/ (accessed on 1 February 2025).
- Araya, R.; Bustos, F.; Contreras, J.; Fuentes, A. Life-Cycle Savings for a Flat-Plate Solar Water Collector Plant in Chile. Renew. Energy 2017, 112, 365–377. [Google Scholar] [CrossRef]
- Martínez-Rodríguez, G.; Baltazar, J.C.; Fuentes-Silva, A.L. Heat and Electric Power Production Using Heat Pumps Assisted with Solar Thermal Energy for Industrial Applications. Energy 2023, 282, 128379. [Google Scholar] [CrossRef]
- Raja Sekhar, Y.; Chilambarasan, L.; Sharma, K.V.; Kanti, P.K.; Sharma, P.; Paramsivam, P.; Dhanasekaran, S. Solar Flat Plate Collectors with Internally Grooved Absorber Tubes for Enhanced Efficiency: Application of EXplainable Artificial Intelligence Using Cooperative Game Theory-Based Shapley Values. Case Stud. Therm. Eng. 2025, 68, 105912. [Google Scholar] [CrossRef]
- Prabhu, B.; Vengadesan, E.; Senthil, S.; Arunkumar, T. Comprehensive Energy and Enviro-Economic Performance Analysis of a Flat Plate Solar Water Heater with a Modified Absorber. Therm. Sci. Eng. Prog. 2024, 54, 102848. [Google Scholar] [CrossRef]
- Alkhafaji, M.H.; Alhamdo, M.H.; Freegah, B.; Saleh, Q. Enhancing Thermal Performance of Solar Water Heater System Through Collector Area Optimization. Heat Transfer. 2025, 54, 3392–3404. [Google Scholar] [CrossRef]
- Liu, B.; Gao, W.; Li, Q.; Chen, H.; Zhang, Y.; Ding, X. Quantification of Thermal Stratification and Its Impact on Energy Efficiency in Solar Hot Water Storage Tanks. Energy 2025, 326, 136243. [Google Scholar] [CrossRef]
- Kalogirou, S.A. Solar Energy Engineering: Processes and Systems; Academic Press: Cambridge, MA, USA, 2024. [Google Scholar] [CrossRef]
- Abrell, J.; Rausch, S.; Streitberger, C. Buffering Volatility: Storage Investments and Technology-Specific Renewable Energy Support. Energy Econ. 2019, 84, 104463. [Google Scholar] [CrossRef]
- ElCheikh, A.; Mansour, M.B.; Ramadan, M.; Elkhoury, M. An Experimental Investigation of a Novel PCM-Embedded Solar Water Heater. J. Energy Storage 2024, 104, 114516. [Google Scholar] [CrossRef]
- Zaphar, S.; Chandrashekara, M.; Verma, G. Enhancing the Thermal Efficiency and Optimum Temperature of a Modified Evacuated Tube Solar Air Collector by Using the Reflector. Evergreen 2023, 10, 2265–2276. [Google Scholar] [CrossRef]
- Vipin; Singh, N.K.; Yadav, A. Fabrication and Experimental Investigation of a Novel Sensible Heat Storage System for Indoor Solar Cooking. J. Energy Storage 2025, 117, 116201. [Google Scholar] [CrossRef]
- Odoi-Yorke, F.; Davis, J.E.; Nyarkoh, R.; Abbey, A.A.; Agyekum, E.B.; Lamptey, F.P.; Otoo, G.S.; Kaburi, S.A.; Darko, R.O.; Atepor, L. A Review of Research Trends, Innovations, and Future Directions in Phase Change Materials for Energy Storage in Solar Drying Systems: A Bibliometric Approach. J. Energy Storage 2025, 118, 116233. [Google Scholar] [CrossRef]
- Khatod, K.J.; Katekar, V.P.; Deshmukh, S.S. An Evaluation for the Optimal Sensible Heat Storage Material for Maximizing Solar Still Productivity: A State-of-the-Art Review. J. Energy Storage 2022, 50, 104622. [Google Scholar] [CrossRef]
- Saini, D.K.; Muniyappa, C.; Yadav, A. Experimental Investigation of a Novel Photovoltaic Based Solar Geyser with Sensible Heat Storage. J. Energy Storage 2025, 121, 116570. [Google Scholar] [CrossRef]
- Abdullah, M.; Obayedullah, M.; Musfika, S.A. Recent Advances in Phase Change Energy Storage Materials: Developments and Applications. Int. J. Energy Res. 2025, 2025, 1–19. [Google Scholar] [CrossRef]
- Barrasso, M.; Langella, G.; Amoresano, A.; Iodice, P. Latest Advances in Thermal Energy Storage for Solar Plants. Processes 2023, 11, 1832. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, C.; Wen, T.; Markides, C.N. High Temperature Sensible Storage—Industrial Applications. In Encyclopedia of Energy Storage; Cabeza, L.F., Palombo, V., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 1, pp. 424–432. [Google Scholar] [CrossRef]
- Thermal Energy Storage; European Association for Storage of Energy: Brussels, Belgium, 2023; Available online: https://ease-storage.eu/wp-content/uploads/2023/09/2023.09.26-Thermal-Energy-Storage_for-distribution.pdf (accessed on 20 February 2025).
- Khan, M.I.; Asfand, F.; Al-Ghamdi, S.G. Progress in Research and Technological Advancements of Thermal Energy Storage Systems for Concentrated Solar Power. J. Energy Storage 2022, 55, 105860. [Google Scholar] [CrossRef]
- Pompei, L.; Nardecchia, F.; Miliozzi, A. Current, Projected Performance and Costs of Thermal Energy Storage. Processes 2023, 11, 729. [Google Scholar] [CrossRef]
- Thermal Energy Storage Market Size & Share Analysis—Growth Trends & Forecasts (2025–2030). Mordor Intelligence. 28 November 2024. Available online: https://www.mordorintelligence.com/industry-reports/global-thermal-energy-storage-market-industry (accessed on 12 February 2025).
- Koçak, B.; Fernandez, A.I.; Paksoy, H. Review on Sensible Thermal Energy Storage for Industrial Solar Applications and Sustainability Aspects. Sol. Energy 2020, 209, 135–169. [Google Scholar] [CrossRef]
- Vallese, L.; Javadi, H.; Badenes, B.; Urchueguia, J.F.; Lombardo, G.; Menegazzo, D.; Ure, Z.; Cesari, S.; Bottarelli, M.; Baccega, E.; et al. A Comprehensive Review of Thermal Energy Storage Technologies and Their Applications: Creation of a Database. Renew. Sustain. Energy Rev. 2026, 225, 116133. [Google Scholar] [CrossRef]
- Al-Mamun, M.R.; Roy, H.; Islam, M.S.; Ali, M.R.; Hossain, M.I.; Saad Aly, M.A.; Hossain Khan, M.Z.; Marwani, H.M.; Islam, A.; Haque, E.; et al. State-of-the-Art in Solar Water Heating (SWH) Systems for Sustainable Solar Energy Utilization: A Comprehensive Review. Sol. Energy 2023, 264, 111998. [Google Scholar] [CrossRef]
- Ortiz-Rodríguez, N.M.; García-Valladares, O.; Pilatowsky-Figueroa, I.; Menchaca-Valdez, A.C. Solar-LP Gas Hybrid Plant for Dehydration of Food. Appl. Therm. Eng. 2020, 177, 115496. [Google Scholar] [CrossRef]
- Kalogirou, S. The Potential of Solar Industrial Process Heat Applications. Appl. Energy 2003, 76, 337–361. [Google Scholar] [CrossRef]
- Becq, A.; Chèze, D. Influence of Mixing Valve Dynamics and Recirculation Loop Connection to Solar Tank on Large Hot Water System Performances. Sol. Energy 2021, 218, 211–225. [Google Scholar] [CrossRef]
- Anacreonte, A.V.; Vitobello, R.; Musto, M. Impact of Inlet Fluctuations on the Stratification of a Sensible Thermal Energy Storage. Renew. Energy 2025, 252, 123484. [Google Scholar] [CrossRef]
- Shivarkar, A. Molten Salt Thermal Energy Storage Market Size, Share, and Trends 2025 to 2034. Precedence Research. 14 January 2025. Available online: https://www.precedenceresearch.com/molten-salt-thermal-energy-storage-market (accessed on 20 February 2025).
- Çomakli, K.; Çakir, U.; Kaya, M.; Bakirci, K. The Relation of Collector and Storage Tank Size in Solar Heating Systems. In Energy Conversion and Management; Elsevier: Amsterdam, The Netherlands, 2012; Volume 63, pp. 112–117. [Google Scholar] [CrossRef]
- Polo, P. Solar Thermal Energy in Industrial Processes. Solar Thermal Industry Association. 8 June 2021. Available online: https://www.asit-solar.com/wp-content/uploads/2021/06/ASIT-AAE-ST-Industria-8-jun-21.pdf (accessed on 20 February 2025).
- Rohani, S.; Zhou, X.; Bern, G. Solar Process Heat for German Industry Yield and Economic Efficiency Compared to Conventional Heat Supply; Federal Association of the Solar Industry: Berlin, Germany, 2025; Available online: https://www.solarwirtschaft.de/wp-content/uploads/2025/05/Studie-Solare-Prozesswaerme.pdf (accessed on 1 July 2025).
- Martínez-Rodríguez, G.; Fuentes-Silva, A.L.; Lizárraga-Morazán, J.R.; Picón-Núñez, M. Incorporating the Concept of Flexible Operation in the Design of Solar Collector Fields for Industrial Applications. Energies 2019, 12, 570. [Google Scholar] [CrossRef]
- Martínez-Rodríguez, G.; Silviano-Mendoza, H.H.; Fuentes-Silva, A.L.; Baltazar, J.C. Continuous Solar Thermal Energy Production Based on Critical Irradiance Levels for Industrial Applications. Energies 2024, 17, 1087. [Google Scholar] [CrossRef]
- Bühler, F.; Zühlsdorf, B.; Nguyen, T.-V.; Elmegaard, B. A Comparative Assessment of Electrification Strategies for Industrial Sites: Case of Milk Powder Production. Appl. Energy 2019, 250, 1383–1401. [Google Scholar] [CrossRef]
- Yang, P.; Liu, L.; Du, J.; Li, J.; Meng, Q. Heat Exchanger Network Synthesis for Batch Processes by Involving Heat Storages with Cost Targets. Appl. Therm. Eng. 2014, 70, 1276–1282. [Google Scholar] [CrossRef]
- NMX-ES-001-NORMEX-2018; Solar Energy-Thermal Performance and Functionality of Solar Collectors for Heating Liquids—Testing and Labeling Methods. Official Journal of the Federation: Mexico City, Mexico, 2021. Available online: https://dof.gob.mx/nota_detalle_popup.php?codigo=5614693 (accessed on 1 June 2025).
- GHG Emission Factors Hub; U.S. Environmental Protection Agency: Washington, DC, USA, 2023. Available online: https://www.epa.gov/system/files/documents/2023-03/ghg_emission_factors_hub.pdf (accessed on 12 April 2023).
- Arnabat, I. What Is the Carbon Footprint of a Solar Thermal Collector and a Photovoltaic Panel? Calor y Frío. 5 December 2019. Available online: https://www.caloryfrio.com/energias-renovables/energia-solar/cual-huella-dcarbono-de-un-captador-solar-termico-y-de-un-panel-fotovoltaico.html (accessed on 1 June 2025).
- Sustainable Ships. Sustainable Ships Home Page. Available online: https://www.sustainable-ships.org/stories/2022/carbon-footprint-steel (accessed on 1 June 2025).
Stream | Temperature (°C) | Mass Flow Rate (kg/s) | (kJ/kg·K) |
---|---|---|---|
M1 | 7 | 11.9 | 3.87 |
M2 | 50 | 11.9 | 3.89 |
M3 | 50 | 10.7 | 3.96 |
M4 | 70 | 10.7 | 3.97 |
M5 | 75 | 10.7 | 3.97 |
M6 | 40 | 1.75 | - 1 |
Date | Irradiation (kWh) | Maximum Irradiance Level (kW/m2) | Wind Speed (m/s) | Ambient Temperature (°C) | Sun Light (h) |
---|---|---|---|---|---|
Winter (18 February) | 5.58 | 933 | 2.31 | 17.65 | 11.53 |
Spring (2 April) | 6.63 | 1086 | 3.09 | 22.20 | 12.30 |
Summer (2 June) | 7.00 | 1076 | 2.66 | 25.22 | 13.27 |
Autumn (21 October) | 5.97 | 924 | 2.85 | 20.34 | 11.57 |
Start Hour (h) | Final Hour (h) | Average Irradiance (Wm−2) | Average Hot Water Temperature (°C) | Volume (m3) | Absorber Area (m2) |
---|---|---|---|---|---|
11:30 | 14:45 | 890.86 | 90.44 | 47.44 | 2860 (55 × 26) |
Start Hour (h) | Final Hour (h) | Average Irradiance (Wm−2) | Average Hot Water Temperature (°C) | Volume (m3) | Absorber Area (m2) |
---|---|---|---|---|---|
10:15 | 15:15 | 839.77 | 86.30 | 52.65 | 2028 (39 × 26) |
Cold Water Mass Flow Rate (kg/s) | Water Temperature (°C) | Stored Volume of Water (m3) | Heat Load (kJ) | Surplus Heat Load (kJ) | Parallels Number |
---|---|---|---|---|---|
0.0407 | 90.48 | 53.76 | 16,071.87 | 1475.88 | 3.87 |
0.0415 | 90.01 | 53.76 | 15,965.75 | 1369.76 | 3.59 |
0.0423 | 89.48 | 54.72 | 16,129.05 | 1533.05 | 4.02 |
0.0432 | 88.95 | 55.70 | 16,293.92 | 1697.92 | 4.45 |
0.0440 | 88.34 | 56.70 | 16,441.19 | 1845.19 | 4.84 |
0.0445 | 88.18 | 57.20 | 16,547.73 | 1951.73 | 5.11 |
Cold Water Mass Flow Rate (kg/s) | Water Temperature (°C) | Resulting Volume of Water (m3) | % Reduced Volume | % Saved Absorber Area |
---|---|---|---|---|
0.0407 | 90.55 | 47.60 | 7.82 | 8.16 |
0.0415 | 90.02 | 48.81 | 5.48 | 7.42 |
0.0423 | 89.48 | 49.08 | 4.95 | 8.55 |
0.0432 | 88.95 | 49.30 | 4.53 | 9.67 |
0.0440 | 88.34 | 49.60 | 3.95 | 10.69 |
0.0445 | 88.18 | 49.70 | 3.75 | 11.40 |
Tank Cost (USD) | Solar Network Cost (USD) | Total Cost (USD) | LCOE (USD/kWh) | Payback (y) | % Costs Reduction | |
---|---|---|---|---|---|---|
Base case | 103,276 | 552,942 | 853,083 | 0.0074 | 5.42 | ---- |
Flow 1 | 95,200 | 507,839 | 783,951 | 0.0068 | 4.98 | 8.10 |
Flow 2 | 97,620 | 511,887 | 792,359 | 0.0069 | 5.04 | 7.12 |
Flow 3 | 98,160 | 505,671 | 784,980 | 0.0068 | 4.99 | 7.98 |
Flow 4 | 98,600 | 499,455 | 777,471 | 0.0067 | 4.94 | 8.86 |
Flow 5 | 99,200 | 493,817 | 770,922 | 0.0067 | 4.90 | 9.63 |
Flow 6 | 99,400 | 489,914 | 766,108 | 0.0066 | 4.87 | 10.20 |
Case | Number of Solar Collectors | CFP for Manufacturing toneCO2 | CFP for Operating toneCO2 | CFP toneCO2 |
---|---|---|---|---|
Fossil fuel (natural gas) | 0 | 1106.64 | 6725 | 117,389 |
Base case | 1014 | 140.52 | 0 | 140.52 |
Optimized case | 884 | 124.64 | 0 | 124.64 |
Start Hour (h) | Final Hour (h) | Average Irradiance (Wm−2) | Average Hot Water Temperature (°C) | Volume (m3) | Absorber Area (m2) |
---|---|---|---|---|---|
08:00 | 16:00 | 687.33 | 88.18 | 49.70 | 1768 (34 × 26) |
Mass Flow Rate (kg/s) | Operating Time (h) | Storage Temperature (°C) | Storage Volume (m3) | Cold Water Mass Flow Rate (kg/s) |
---|---|---|---|---|
0.126 | 8.0 | 86.65 | 49.7 | 0.0445 |
0.144 | 7.0 | 85.06 | 50.4 | 0.0512 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Sánchez, J.; Martínez-Rodríguez, G.; Diaz-de-Leon, C.R.; Baltazar, J.-C. Operational Study of a Solar Thermal Installation with Recirculation for Industrial Applications. Energies 2025, 18, 4927. https://doi.org/10.3390/en18184927
Martínez-Sánchez J, Martínez-Rodríguez G, Diaz-de-Leon CR, Baltazar J-C. Operational Study of a Solar Thermal Installation with Recirculation for Industrial Applications. Energies. 2025; 18(18):4927. https://doi.org/10.3390/en18184927
Chicago/Turabian StyleMartínez-Sánchez, Jazmin, Guillermo Martínez-Rodríguez, Cristobal R. Diaz-de-Leon, and Juan-Carlos Baltazar. 2025. "Operational Study of a Solar Thermal Installation with Recirculation for Industrial Applications" Energies 18, no. 18: 4927. https://doi.org/10.3390/en18184927
APA StyleMartínez-Sánchez, J., Martínez-Rodríguez, G., Diaz-de-Leon, C. R., & Baltazar, J.-C. (2025). Operational Study of a Solar Thermal Installation with Recirculation for Industrial Applications. Energies, 18(18), 4927. https://doi.org/10.3390/en18184927