Integrated Lithofacies, Diagenesis, and Fracture Control on Reservoir Quality in Ultra-Deep Tight Sandstones: A Case from the Bashijiqike Formation, Kuqa Depression
Abstract
1. Introduction
2. Geological Setting
3. Samples and Experiments
3.1. Samples and Data
3.2. Experiments and Methods
4. Results
4.1. Lithofacies and Lithofacies Assemblage Characteristics
4.1.1. Lithofacies Classification
4.1.2. Lithofacies Assemblage Classification
4.1.3. Lateral and Vertical Distribution of Lithofacies
4.2. Diagenetic Features
4.2.1. Diagenesis Types
4.2.2. Diagenetic Facies Types
4.3. Fracture Characteristics
4.3.1. Genetic Types and Characteristics of Structural Fractures
4.3.2. Fracture Combination Patterns
5. Discussion
5.1. Controlling Factors of Reservoir Quality
5.1.1. Lithofacies Control on Reservoir Quality
5.1.2. Diagenetic Facies Control on Reservoir Quality
5.1.3. Fracture Facies Control on Reservoir Productivity
5.2. Reservoir Classification and Evaluation Based on “Ternary Reservoir Control”
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- da Silva, E.B.; Severiano Ribeiro, H.J.P.; de Souza, E.S. Exploration plays of the Potiguar Basin in deep and ultra-deep water, Brazilian Equatorial Margin. J. South Am. Earth Sci. 2021, 111, 103454. [Google Scholar] [CrossRef]
- He, D.; Jia, C.; Zhao, W.; Xu, F.; Luo, X.; Liu, W.; Tang, Y.; Gao, S.; Zheng, X.; Li, D.; et al. Research progress and key issues of ultra-deep oil and gas exploration in China. Pet. Explor. Dev. 2023, 50, 1333–1344. [Google Scholar] [CrossRef]
- Pellegrini, B.d.S.; Portugal Severiano Ribeiro, H.J. Exploratory plays of Para-Maranhao and Barreirinhas basins in deep and ultra-deep waters, Brazilian Equatorial Margin. Braz. J. Geol. 2018, 48, 485–502. [Google Scholar] [CrossRef]
- Wu, X.; Shi, Y.; Chen, S.; Wu, H.; Cai, J.; Dan, W.; Liu, X.; Wang, X.; Zhang, X.; Zhang, J. Exploration breakthrough and factors for enrichment and high-yield of hydrocarbons in ultra-deep clastic rocks in Linhe Depression, Hetao Basin, NW China. Pet. Explor. Dev. 2024, 51, 1109–1121. [Google Scholar] [CrossRef]
- Ajdukiewicz, J.M.; Nicholson, P.H.; Esch, W.L. Prediction of deep reservoir quality using early diagenetic process models in the Jurassic Norphlet Formation, Gulf of Mexico. AAPG Bull. 2010, 94, 1189–1227. [Google Scholar] [CrossRef]
- Dyman, T.S.; Wyman, R.E.; Kuuskraa, V.A.; Lewan, M.D.; Cook, T.A. Deep Natural Gas Resources. Nat. Resour. Res. 2003, 12, 41–56. [Google Scholar] [CrossRef]
- Ma, Y.; Cai, X.; Li, M.; Li, H.; Zhu, D.; Qiu, N.; Pang, X.; Zeng, D.; Kang, Z.; Ma, A.; et al. Research advances on the mechanisms of reservoir formation and hydrocarbon accumulation and the oil and gas development methods of deep and ultra-deep marine carbonates. Pet. Explor. Dev. 2024, 51, 795–812. [Google Scholar] [CrossRef]
- Xu, C.; Yang, H.; Wang, F.; Peng, J. Formation conditions of deep to ultra-deep large composite buried-hill hydrocarbon reservoirs in offshore Bohai Bay Basin, China. Pet. Explor. Dev. 2024, 51, 1421–1434. [Google Scholar] [CrossRef]
- Elkins, L.E. The Technology and Economics of Gas Recovery from Tight Sands. In Proceedings of the SPE Production Technology Symposium, Hobbs, NM, USA, 30–31 October 1978; Society of Petroleum Engineers: Dallas, TX, USA, 1978. [Google Scholar] [CrossRef]
- Khelifa, C.; Zeddouri, A.; Djabes, F. Influence of Natural Fractures on Oil Production of Unconventional Reservoirs. Energy Procedia 2014, 50, 360–367. [Google Scholar] [CrossRef]
- Selvadurai, A.P.S.; Zhang, D.; Kang, Y. Permeability evolution in natural fractures and their potential influence on loss of productivity in ultra-deep gas reservoirs of the Tarim Basin, China. J. Nat. Gas Sci. Eng. 2018, 58, 162–177. [Google Scholar] [CrossRef]
- Lai, J.; Li, D.; Bai, T.; Zhao, F.; Ai, Y.; Liu, H.; Cai, D.; Wang, G.; Chen, K.; Xie, Y. Reservoir quality evaluation and prediction in ultra-deep tight sandstones in the Kuqa depression, China. J. Struct. Geol. 2023, 170, 104850. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, H.; Yang, W. New progress and future exploration targets in petroleum geological research of ultra-deep clastic rocks in Kuqa Depression, Tarim Basin, NW China. Pet. Explor. Dev. 2025, 52, 79–94. [Google Scholar] [CrossRef]
- Xu, X.-T.; Zeng, L.-B.; Dong, S.-Q.; Li, H.-M.; Liu, J.-Z.; Ji, C.-Q. The characteristics and controlling factors of high-quality reservoirs of ultra-deep tight sandstone: A case study of the Dabei Gas Field, Tarim Basin, China. Pet. Sci. 2025, in press. [CrossRef]
- Ren, Y.; Yan, J.; Qiu, X.; Wang, M.; Geng, B.; Hu, Q. Characteristics and correlations of rock components, structure, and physical properties of deep clastic reservoirs in the LD-X area of Yinggehai basin, western South China Sea. Mar. Pet. Geol. 2024, 167, 106995. [Google Scholar] [CrossRef]
- Yang, Y.; Kra, K.L.; Qiu, L.; Yang, B.; Dong, D.; Wang, Y.; Khan, D. Impact of sedimentation and diagenesis on deeply buried sandy conglomerate reservoirs quality in nearshore sublacustrine fan: A case study of lower Member of the Eocene Shahejie Formation in Dongying Sag, Bohai Bay Basin (East China). Sediment. Geol. 2023, 444, 106317. [Google Scholar] [CrossRef]
- Ortiz-Orduz, A.; Ríos-Reyes, C.A.; Vargas-Escudero, M.A.; García-González, M. Impact of diagenesis on the reservoir rock quality of the Cachiri Group tight sandstones in Cesar sub basin (Colombia): A case of study from ANH-CR-MONTECARLO 1X well. J. Nat. Gas Sci. Eng. 2021, 95, 104138. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Liu, K.; Li, Y.; Li, Z.; Chen, M.; Yang, L. Marine flooding induced basinal brine mixing and carbonate cementation: An example from Cretaceous ultra-deep clastic reservoirs in the Kuqa Depression, western China. Mar. Pet. Geol. 2025, 107561, 107561. [Google Scholar] [CrossRef]
- Chen, S.; Xian, B.; Ji, Y.; Li, J.; Tian, R.; Wang, P.; Tang, H. Influences of burial process on diagenesis and high-quality reservoir development of deep–ultra-deep clastic rocks: A case study of Lower Cretaceous Qingshuihe Formation in southern margin of Junggar Basin, NW China. Pet. Explor. Dev. 2024, 51, 364–379. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Zhang, R.; Dong, L.; Wang, K.; Zhang, Z. Improvement of reservoir quality of ultra-deep tight sandstones by tectonism and fluid: A case study of Keshen gas field in Tarim Basin, western China. Petroleum 2023, 9, 124–134. [Google Scholar] [CrossRef]
- Marghani, M.M.A.; Zairi, M.; Radwan, A.E. Facies analysis, diagenesis, and petrophysical controls on the reservoir quality of the low porosity fluvial sandstone of the Nubian formation, east Sirt Basin, Libya: Insights into the role of fractures in fluid migration, fluid flow, and enhancing the permeability of low porous reservoirs. Mar. Pet. Geol. 2023, 147, 105986. [Google Scholar] [CrossRef]
- Qin, S.; Wang, R.; Shi, W.; Geng, F.; Luo, F.; Li, G.; Li, J.; Zhang, X.; Ostadhassan, M. Integrated controls of tectonics, diagenesis and sedimentation on sandstone densification in the Cretaceous paleo-uplift settings, north Tarim Basin. Geoenergy Sci. Eng. 2024, 233, 212561. [Google Scholar] [CrossRef]
- Naveed Butt, M.; Franks, S.G.; Hussain, A.; Amao, A.O.; Muhammad Bello, A.; Al-Ramadan, K. Depositional and diagenetic controls on the reservoir quality of Early Miocene syn-rift deep-marine sandstones, NW Saudi Arabia. J. Asian Earth Sci. 2024, 259, 105880. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, Z.; Wang, S.; Wu, J.; Liu, X.; Hu, Y.; Chen, S.; Feng, G.; Wang, B.; Wang, H. Genetic mechanism and main controlling factors of high-quality clastic rock reservoirs in deep and ultradeep layers: A case study of Oligocene Linhe Formation in Linhe Depression, Hetao Basin, NW China. Pet. Explor. Dev. 2024, 51, 548–562. [Google Scholar] [CrossRef]
- Jin, J.; Xian, B.; Lian, L.; Chen, S.; Wang, J.; Li, J. Reformation of deep clastic reservoirs with different diagenetic intensities by microfractures during late rapid deep burial: Implications from diagenetic physical simulation of Cretaceous Qingshuihe Formation in the southern margin of Junggar Basin, NW China. Pet. Explor. Dev. 2023, 50, 346–359. [Google Scholar] [CrossRef]
- Sun, J.; You, X.; Zhang, Q.; Xue, J.; Chang, Q. Development characteristics and genesis of deep tight conglomerate reservoirs of Mahu area in Junggar Basin, China. J. Nat. Gas Geosci. 2023, 8, 201–212. [Google Scholar] [CrossRef]
- Jia, C.; Gu, J.; Zhang, G. Geological constraints of giant and medium-sized gas fields in Kuqa Depression. Chin. Sci. Bull. 2002, 47, 47–54. [Google Scholar] [CrossRef]
- Li, J.; Wang, R.; Qin, S.; Shi, W.; Geng, F.; Luo, F.; Li, G.; Zhang, X. Evolution of Mesozoic paleo-uplifts and differential control on sedimentation on the southern margin of Kuqa Depression, Tarim Basin. Mar. Pet. Geol. 2024, 161, 106707. [Google Scholar] [CrossRef]
- Zeng, L.; Wang, H.; Gong, L.; Liu, B. Impacts of the tectonic stress field on natural gas migration and accumulation: A case study of the Kuqa Depression in the Tarim Basin, China. Mar. Pet. Geol. 2010, 27, 1616–1627. [Google Scholar] [CrossRef]
- Nian, T.; Wang, G.; Xiao, C.; Zhou, L.; Deng, L.; Li, R. The in situ stress determination from borehole image logs in the Kuqa Depression. J. Nat. Gas Sci. Eng. 2016, 34, 1077–1084. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, C.; Chen, D.; Yang, F.; Li, H.; Li, M. Microscopic Seepage Mechanism of Gas and Water in Ultra-Deep Fractured Sandstone Gas Reservoirs of Low Porosity: A Case Study of Keshen Gas Field in Kuqa Depression of Tarim Basin, China. Front. Earth Sci. 2022, 10, 893701. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, W.; Zhou, L.; Zhou, P.; Zhang, J. Characteristics of fluid inclusions and implications for the timing of hydrocarbon accumulation in the cretaceous reservoirs, Kelasu Thrust Belt, Tarim Basin, China. Mar. Pet. Geol. 2019, 99, 473–487. [Google Scholar] [CrossRef]
- Yang, H.; Li, Y.; Tang, Y.; Lei, G.; Sun, X.; Zhou, P.; Zhou, L.; Xu, A.; Tang, J.; Zhu, W.; et al. Reservoir accumulation conditions and key exploration & development technologies for Keshen gas field in Tarim Basin. Pet. Res. 2019, 4, 295–313. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, C.; Xu, K.; Zhang, H.; Chen, N.; Deng, H.; Hu, X.; Yang, Y.; Feng, X.; Du, Y.; et al. Characteristics and control factors of tectonic fractures of ultra-deep tight sandstone: Case study of the Lower Cretaceous reservoir in Bozi-Dabei area, Kuqa Depression, Tarim Basin, China. J. Nat. Gas Geosci. 2023, 8, 439–453. [Google Scholar] [CrossRef]
- Shen, Y.Q.; Lü, X.X.; Guo, S.; Song, X.; Zhao, J. Effective evaluation of gas migration in deep and ultra-deep tight sandstone reservoirs of Keshen structural belt, Kuqa depression. J. Nat. Gas Sci. Eng. 2017, 46, 119–131. [Google Scholar] [CrossRef]
- Nian, T.; Jiang, Z.; Wang, G.; Xiao, C.; He, W.; Fei, L.; He, Z. Characterization of braided river-delta facies in the Tarim Basin Lower Cretaceous: Application of borehole image logs with comparative outcrops and cores. Mar. Pet. Geol. 2018, 97, 1–23. [Google Scholar] [CrossRef]
- Guo, X.; Liu, K.; Jia, C.; Song, Y.; Zhao, M.; Zhuo, Q.; Lu, X. Constraining tectonic compression processes by reservoir pressure evolution: Overpressure generation and evolution in the Kelasu Thrust Belt of Kuqa Foreland Basin, NW China. Mar. Pet. Geol. 2016, 72, 30–44. [Google Scholar] [CrossRef]
- Jiang, T.; Sun, X. Development of Keshen ultra-deep and ultra-high pressure gas reservoirs in the Kuqa foreland basin, Tarim Basin: Understanding and technical countermeasures. Nat. Gas Ind. B 2019, 6, 16–24. [Google Scholar] [CrossRef]
- Shi, H.; Luo, X.; Yang, H.; Lei, G.; Tang, Y.; Zhang, L.; Lei, Y. Sources of quartz grains influencing quartz cementation and reservoir quality in ultra-deeply buried sandstones in Keshen-2 gas field, north-west China. Mar. Pet. Geol. 2018, 98, 185–198. [Google Scholar] [CrossRef]
- Sun, S.; Hou, G.; Zheng, C. Fracture zones constrained by neutral surfaces in a fault-related fold: Insights from the Kelasu tectonic zone, Kuqa Depression. J. Struct. Geol. 2017, 104, 112–124. [Google Scholar] [CrossRef]
- SY/T5368-200; Thin Section Examination of Rock. The Standardization Administration of the People’s Republic of China: Beijing, China, 2000.
- SY/T5162-1997; Analytical Method of Rock Sample By Scanning Electron Microscope. The Standardization Administration of the People’s Republic of China: Beijing, China, 1997.
- SY/T 5916-1994; Cathodoluminescence Analysis of Rock Samples. The Standardization Administration of the People’s Republic of China: Beijing, China, 1994.
- SY/T 5163-2010; Analysis Method for Clay Minerals and Ordinary Non-Clay Minerals in Sedimentary Rocks by the X-Ray Diffraction. The Standardization Administration of the People’s Republic of China: Beijing, China, 2010.
- SY/T 5336-2006; Practices for Core Analysis. The Standardization Administration of the People’s Republic of China: Beijing, China, 2006.
- SY/T 5346-2005; Rock Capillary Pressure Measurement. The Standardization Administration of the People’s Republic of China: Beijing, China, 2005.
- SY/T 5434-2009; Analysis Method for Particle Size of Clastic Rocks. The Standardization Administration of the People’s Republic of China: Beijing, China, 2009.
- El-Ghali, M.A.K.; Moustafa, M.S.H.; Al-Mahrouqi, B.; Al-Harthi, A.R.; Al-Sayigh, A.; Siddiqui, N.A. Lithofacies and microfacies of Paleogene deep marine slope carbonate system of the Ruwaydah Formation in the southern Arabian Peninsula: Implications for hydrocarbon exploration and development. J. Asian Earth Sci. 2025, 290, 106656. [Google Scholar] [CrossRef]
- Murta, M.C.P.; Costa, A.G.; de Oliveira, F.S. Lithofacies association and stratigraphy of the Quixaba and Remédios formations, Fernando de Noronha archipelago, Brazil. J. South Am. Earth Sci. 2024, 137, 104830. [Google Scholar] [CrossRef]
- Benayad, S.; Ysbaa, S.; Chaouchi, R.; Haddouche, O.; Kacimi, A.; Kaddour, H. Sedimentological characteristics and reservoir quality prediction in the Upper Ordovician glaciogenic sandstone of the In-Adaoui-Ohanet gas field, Illizi basin, Algeria. J. Pet. Sci. Eng. 2019, 179, 159–172. [Google Scholar] [CrossRef]
- Mahgoub, M.I.; Abdullatif, O.M. Facies, petrography, reservoir heterogeneity and quality of the late Carboniferous-Permian Juwayl Member, Wajid Sandstone, SW Saudi Arabia. Mar. Pet. Geol. 2020, 120, 104521. [Google Scholar] [CrossRef]
- Suriamin, F.; Pranter, M.J. Lithofacies, depositional, and diagenetic controls on the reservoir quality of the Mississippian mixed siliciclastic-carbonate system, eastern Anadarko Basin, Oklahoma, USA. Interpret.-A J. Subsurf. Charact. 2021, 9, T881–T910. [Google Scholar] [CrossRef]
- Obradors-Prats, J.; Rouainia, M.; Aplin, A.C.; Crook, A.J.L. A Diagenesis Model for Geomechanical Simulations: Formulation and Implications for Pore Pressure and Development of Geological Structures. J. Geophys. Res.-Solid Earth 2019, 124, 4452–4472. [Google Scholar] [CrossRef]
- Qiao, J.; Zeng, J.; Jiang, S.; Wang, Y. Impacts of sedimentology and diagenesis on pore structure and reservoir quality in tight oil sandstone reservoirs: Implications for macroscopic and microscopic heterogeneities. Mar. Pet. Geol. 2020, 111, 279–300. [Google Scholar] [CrossRef]
- Jafarzadeh, N.; Kadkhodaie, A.; Bahrehvar, M.; Wood, D.A.; Janahmad, B. Reservoir characterization of fluvio-deltaic sandstone packages in the framework of depositional environment and diagenesis, the south Caspian Sea basin. J. Asian Earth Sci. 2022, 224, 105028. [Google Scholar] [CrossRef]
- Swanson, B.F. A Simple Correlation Between Permeabilities and Mercury Capillary Pressures. J. Pet. Technol. 1981, 33, 2498–2504. [Google Scholar] [CrossRef]
- Aliakbardoust, E.; Rahimpour-Bonab, H. Effects of pore geometry and rock properties on water saturation of a carbonate reservoir. J. Pet. Sci. Eng. 2013, 112, 296–309. [Google Scholar] [CrossRef]
- Pittman, E.D. Relationship of Porosity and Permeability to Various Parameters Derived from Mercury Injection-Capillary Pressure Curves for Sandstone1. AAPG Bull. 1992, 76, 191–198. [Google Scholar] [CrossRef]
- Rashid, F.; Hussein, D.; Lawrence, J.A.; Khanaqa, P. Characterization and impact on reservoir quality of fractures in the Cretaceous Qamchuqa Formation, Zagros folded belt. Mar. Pet. Geol. 2020, 113, 104117. [Google Scholar] [CrossRef]
- Sun, S.; Pollitt, D.A. Optimising development and production of naturally fractured reservoirs using a large empirical dataset. Pet. Geosci. 2021, 27, petgeo2020-079. [Google Scholar] [CrossRef]
- Mazdarani, A.; Kadkhodaie, A.; Wood, D.A.; Soluki, Z. Natural fractures characterization by integration of FMI logs, well logs and core data: A case study from the Sarvak Formation (Iran). J. Pet. Explor. Prod. Technol. 2023, 13, 1247–1263. [Google Scholar] [CrossRef]
Data Types | Specific Measurement/Analysis | Quantity |
---|---|---|
Core data | Drilling meterage | 364.18 m (from 16 wells) |
Coring meterage | 339.47 m | |
Petrophysical data | Porosity and permeability | 580 samples |
Thin sections analysis | 300 samples | |
SEM | 186 samples | |
XRD | 299 samples | |
CL | 120 samples | |
Granulometry analysis | 114 samples | |
MICP | 201 samples | |
Conventional logs | CAL, SP, GR, M2R3, M2R6, M2RX, DEN, CNL, DT | 16 vertical wells |
Image logs | FMI | 7 vertical wells |
Well tests | Daily gas production rates | 11 vertical wells |
Fluid interpretation outcomes | 31 vertical wells |
Lithofacies | Depositional Interpretation | Core Photographs | Thin Section Photographs | Grain Size Probability Plots |
---|---|---|---|---|
LF1 | Intense erosion and rapid deposition occur during flood events or high-energy braided flow stages. | W1, 6602.58 m | W6, 6800.23 m | |
LF2 | Turbulent flow and rapid facies transitions near scour surfaces at channel bases. | W2, 6623.64 m | W1, 6602.38 m | |
LF3 | Stable, continuous deposition under normal flow conditions. | W3, 6511.32 m | W7, 6941.92 m | |
LF4 | Suspended-load deposition under reduced hydrodynamic energy. | W4, 6714.68 m | W3, 6739.17 m | |
LF5 | Low-energy, distal depositional setting beyond channel influence. | W5, 7086.86 m | W1, 6611.84 m | Undetected |
Diagenetic Facies Types | φ (%) | k (mD) | P50 (Mpa) | Pd (Mpa) | SHg (%) | WE (%) | Rmax (μm) | R50 (μm) | D |
---|---|---|---|---|---|---|---|---|---|
DF1 | 6 | 0.093 | 17.33 | 3.13 | 79.62 | 29.80 | 1.53 | 0.24 | 0.92 |
DF2 | 4.2 | 0.041 | 18.13 | 3.17 | 78.72 | 30.28 | 0.63 | 0.07 | 0.95 |
DF3 | 3.3 | 0.027 | 31.14 | 4.89 | 77.73 | 33.39 | 0.21 | 0.03 | 1.23 |
DF4 | 2.7 | 0.018 | 54.85 | 9.25 | 67.91 | 34.44 | 0.15 | 0.02 | 1.09 |
Reservoir Types | I | II | III | IV | |
---|---|---|---|---|---|
Porosity (%) | 6.0 | 6.0~4.2 | 4.2~3.3 | <3.3 | |
Permeability (mD) | >0.093 | 0.093~0.041 | 0.041~0.027 | <0.027 | |
Controlling factors of reservoir quality | Lithofacies | Predominantly LF1; subordinate LF2 and LF3 | Predominantly LF2 and LF3; subordinate LF4 | Predominantly LF4; subordinate LF3 | LF5 |
Diagenetic facies | Predominantly DF1; subordinate DF2 | Predominantly DF2 | Predominantly DF3; subordinate DF4 | DF4 | |
Fracture facies | FF3, FF4 | FF2, FF3 | FF1 | Poorly developed fractures | |
Thin section characteristics | Mud content (%) | 0~5 | 2~6 | 5~8 | >8% |
Disslution pores porosity(%) | >1 | 0.4~2 | 0.1~1.3 | <0.1 | |
Pore types | Primary intergranular pores with abundant secondary dissolution pores | Minor residual primary intergranular pores, intergranular dissolution pores, and intragranular dissolution pores | Micropores between clay minerals | Very poorly developed porosity | |
Pore throat characteristics | P50 (MPa) | <17.33 | 17.33~31.14 | 18.13~54.85 | >54.85 |
R50 (μm) | >0.24 | 0.03~0.24 | 0.02~0.07 | <0.02 | |
WE (%) | <29.8 | 29.8~33.39 | 30.28~34.44 | >34.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, W.; Xu, Z.; Xu, H.; Wang, L.; Wang, Y. Integrated Lithofacies, Diagenesis, and Fracture Control on Reservoir Quality in Ultra-Deep Tight Sandstones: A Case from the Bashijiqike Formation, Kuqa Depression. Energies 2025, 18, 5067. https://doi.org/10.3390/en18195067
Song W, Xu Z, Xu H, Wang L, Wang Y. Integrated Lithofacies, Diagenesis, and Fracture Control on Reservoir Quality in Ultra-Deep Tight Sandstones: A Case from the Bashijiqike Formation, Kuqa Depression. Energies. 2025; 18(19):5067. https://doi.org/10.3390/en18195067
Chicago/Turabian StyleSong, Wendan, Zhaohui Xu, Huaimin Xu, Lidong Wang, and Yanli Wang. 2025. "Integrated Lithofacies, Diagenesis, and Fracture Control on Reservoir Quality in Ultra-Deep Tight Sandstones: A Case from the Bashijiqike Formation, Kuqa Depression" Energies 18, no. 19: 5067. https://doi.org/10.3390/en18195067
APA StyleSong, W., Xu, Z., Xu, H., Wang, L., & Wang, Y. (2025). Integrated Lithofacies, Diagenesis, and Fracture Control on Reservoir Quality in Ultra-Deep Tight Sandstones: A Case from the Bashijiqike Formation, Kuqa Depression. Energies, 18(19), 5067. https://doi.org/10.3390/en18195067