Development Trends of Air Flow Velocity Measurement Methods and Devices in Renewable Energy
Abstract
:1. Introduction
2. Airflow Velocity Measurements in Renewable Energy
3. Current Directions of Development, Modification, and Application of Anemometers with a Rotating Measuring Element
4. New Technologies and Measurement Methods in Ultrasonic Anemometers
5. Development of Methods and Technological Advances in Calorimetric Thermal Anemometry
6. Innovative Designs of Other Types of Anemometers for Renewable Energy
7. Conclusions
- Improvement of measurement techniques, calibration, standardization, and control of measuring devices, and improvement of their reliability.
- Modification and development of measurement methods, in particular in the field of improving measurement uncertainty and dynamic properties of devices.
- Application of complex measurement signal processing methods and measurement algorithms, including neural networks, machine learning, and other technologies based on Artificial Intelligence.
- Application of controlled aircraft to position equipment in measurement areas, especially around large and high-energy facilities.
- Creation of extensive measurement networks based on wireless data transmission and collection and sharing of data in the clouds.
- Application of micro-electromechanical MEMS and nanoelectromechanical NEMS technologies to build complex measurement sensors.
- Application of integrated and hybrid multi-parametric sensors equipped with signal processing systems and compensation of signals interfering with the measurement.
- Application of integrated semiconductor devices: three-axis accelerators and gyroscopes to position probes.
- Application of 3D printing to build elements of measurement instruments, including dedicated devices developed for a specific metrological problem.
- Application of fiber optic techniques to build sensors, process signals, and transmit data.
Funding
Conflicts of Interest
References
- Dziurzyński, W.; Krawczyk, J.; Pałka, T.; Krach, A.; Skotniczny, P. Methane Hazard during the Closure of Mine Excavations in Liquidated Mine–Numerical Simulation. Arch. Min. Sci. 2023, 68, 525–538. [Google Scholar]
- Ostrogórski, P.; Skotniczny, P. Methane Emission Measurements Along Underground Galleries of Coal Mine. Arch. Min. Sci. 2024, 69, 107–114. [Google Scholar] [CrossRef]
- Wasilewski, S.; Szlązak, N.; Jamróz, P. An Analysis of the Methane Explosion in the Area of the Return Shaft Bottom at Mine. Arch. Min. Sci. 2024, 69, 89–105. [Google Scholar] [CrossRef]
- Kozieł, K.; Gajda, A.; Skiba, M.; Skoczylas, N.; Pajdak, A. Influence of Grain Size and Gas Pressure on Diffusion Kinetics and CH4 Sorption Isotherm on Coal. Arch. Min. Sci. 2024, 69, 3–23. [Google Scholar] [CrossRef]
- Fernández-Arias, P.; Vergara, D.; Orosa, J.A. A Global Review of PWR Nuclear Power Plants. Appl. Sci. 2020, 10, 4434. [Google Scholar] [CrossRef]
- Alwaeli, M.; Mannheim, V. Investigation into the Current State of Nuclear Energy and Nuclear Waste Management—A State-of-the-Art Review. Energies 2022, 15, 4275. [Google Scholar] [CrossRef]
- Rogalev, N.; Rogalev, A.; Kindra, V.; Zlyvko, O.; Osipov, S. An Overview of Small Nuclear Power Plants for Clean Energy Production: Comparative Analysis of Distributed Generation Technologies and Future Perspectives. Energies 2023, 16, 4899. [Google Scholar] [CrossRef]
- Al Mubarak, F.; Rezaee, R.; Wood, D.A. Economic, Societal, and Environmental Impacts of Available Energy Sources: A Review. Eng 2024, 5, 1232–1265. [Google Scholar] [CrossRef]
- Donald, J.; Axsen, J.; Shaw, K.; Robertson, B. Sun, wind or water? Public support for large-scale renewable energy development in Canada. J. Environ. Policy Plan. 2022, 24, 175–193. [Google Scholar] [CrossRef]
- Ligęza, P. Basic, Advanced, and Sophisticated Approaches to the Current and Forecast Challenges of Wind Energy. Energies 2021, 14, 8147. [Google Scholar] [CrossRef]
- Nazir, M.S.; Ali, N.; Bilal, M.; Iqbal, H.M. Potential environmental impacts of wind energy development: A global perspective. Curr. Opin. Environ. Sci. Health 2020, 13, 85–90. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Smith, L. The Mass of the Atmosphere: A Constraint on Global Analyses. J. Clim. 2005, 18, 864–875. [Google Scholar] [CrossRef]
- Chou, T.; Kosmas, V.; Acciaro, M.; Renken, K. A Comeback of Wind Power in Shipping: An Economic and Operational Review on the Wind-Assisted Ship Propulsion Technology. Sustainability 2021, 13, 1880. [Google Scholar] [CrossRef]
- de Jong, J.; Stremke, S. Evolution of energy landscapes: A regional case study in the Western Netherlands. Sustainability 2020, 12, 4554. [Google Scholar] [CrossRef]
- Tasneem, Z.; Al Noman, A.; Das, S.K.; Saha, D.K.; Islam, R.; Ali, F.; Badal, F.R.; Ahamed, H.; Moyeen, S.I.; Alam, F. An analytical review on the evaluation of wind resource and wind turbine for urban application: Prospect and challenges. Dev. Built Environ. 2020, 4, 100033. [Google Scholar] [CrossRef]
- Porté-Agel, F.; Bastankhah, M.; Shamsoddin, S. Wind-Turbine and Wind-Farm Flows: A Review. Bound.-Layer Meteorol. 2020, 174, 1–59. [Google Scholar] [CrossRef]
- Akhtar, N.; Geyer, B.; Schrum, C. Larger wind turbines as a solution to reduce environmental impacts. Sci. Rep. 2024, 14, 1–12. [Google Scholar] [CrossRef]
- Bošnjaković, M.; Katinić, M.; Santa, R.; Marić, D. Wind Turbine Technology Trends. Appl. Sci. 2022, 12, 8653. [Google Scholar] [CrossRef]
- Elgendi, M.; AlMallahi, M.; Abdelkhalig, A.; Selim, M.Y. A review of wind turbines in complex terrain. Int. J. Thermofluids 2023, 17, 100289. [Google Scholar] [CrossRef]
- Didane, D.H.; Behery, M.R.; Al-Ghriybah, M.; Manshoor, B. Recent Progress in Design and Performance Analysis of Vertical-Axis Wind Turbines—A Comprehensive Review. Processes 2024, 12, 1094. [Google Scholar] [CrossRef]
- Hannan, M.A.; Al-Shetwi, A.Q.; Mollik, M.S.; Ker, P.J.; Mannan, M.; Mansor, M.; Al-Masri, H.M.K.; Mahlia, T.M.I. Wind Energy Conversions, Controls, and Applications: A Review for Sustainable Technologies and Directions. Sustainability 2023, 15, 3986. [Google Scholar] [CrossRef]
- Perera, S.M.H.D.; Putrus, G.; Conlon, M.; Narayana, M.; Sunderland, K. Wind Energy Harvesting and Conversion Systems: A Technical Review. Energies 2022, 15, 9299. [Google Scholar] [CrossRef]
- Yang, B.; He, L.; Liu, Z.; Feng, L.; Zhang, L.; Fan, W. An oscillating float-type piezoel-ectrictriboelectric-electromagnetic hybrid wave energy harvester used in fish-attracting lamp. Smart Mater. Struct. 2024, 33, 095021. [Google Scholar] [CrossRef]
- Abe, M.C.; Gelladuga, G.A.; Mendoza, C.J.; Natavio, J.M.; Zabala, J.S.; Lopez, E.C.R. Pneumatic Conveying Technology: Recent Advances and Future Outlook. Eng. Proc. 2023, 56, 205. [Google Scholar] [CrossRef]
- Dindorf, R.; Takosoglu, J.; Wos, P. Review of Compressed Air Receiver Tanks for Improved Energy Efficiency of Various Pneumatic Systems. Energies 2023, 16, 4153. [Google Scholar] [CrossRef]
- Fu, H.; Jiang, T.; Cui, Y.; Li, B. Design and Operational Strategy Research for Temperature Control Systems of Isothermal Compressed Air Energy Storage Power Plants. J. Therm. Sci. 2019, 28, 204–217. [Google Scholar] [CrossRef]
- Krawczyk, P.; Szabłowski, Ł.; Karellas, S.; Kakaras, E.; Badyda, K. Comparative thermodynamic analysis of com-pressed air and liquid air energy storage systems. Energy 2018, 142, 46–54. [Google Scholar] [CrossRef]
- Olabi, A.; Wilberforce, T.; Ramadan, M.; Abdelkareem, M.A.; Alami, A.H. Compressed air energy storage systems: Components and operating parameters—A review. J. Energy Storage 2021, 34, 102000. [Google Scholar] [CrossRef]
- Bazdar, E.; Sameti, M.; Nasiri, F.; Haghighat, F. Compressed air energy storage in integrated energy systems: A review. Renew. Sustain. Energy Rev. 2022, 167, 112701. [Google Scholar] [CrossRef]
- Borri, E.; Tafone, A.; Comodi, G.; Romagnoli, A.; Cabeza, L.F. Compressed air energy storage—An overview of re-search trends and gaps through a bibliometric analysis. Energies 2022, 15, 7692. [Google Scholar] [CrossRef]
- Elalfy, D.A.; Gouda, E.; Kotb, M.F.; Bureš, V.; Sedhom, B.E. Comprehensive review of energy storage systems technologies, objectives, challenges, and future trends. Energy Strat. Rev. 2024, 54, 101482. [Google Scholar] [CrossRef]
- Czekała, W. Biogas as a sustainable and renewable energy source. In Clean Fuels for Mobility; Springer: Singapore, 2022; pp. 201–214. [Google Scholar]
- Mignogna, D.; Ceci, P.; Cafaro, C.; Corazzi, G.; Avino, P. Production of Biogas and Biomethane as Renewable Energy Sources: A Review. Appl. Sci. 2023, 13, 10219. [Google Scholar] [CrossRef]
- Amjith, L.; Bavanish, B. A review on biomass and wind as renewable energy for sustainable environment. Chemosphere 2022, 293, 133579. [Google Scholar] [CrossRef] [PubMed]
- Ceglia, F.; Marrasso, E.; Roselli, C.; Sasso, M.; Coletta, G.; Pellegrino, L. Biomass-Based Renewable Energy Community: Economic Analysis of a Real Case Study. Energies 2022, 15, 5655. [Google Scholar] [CrossRef]
- Khan, M.A.H.; Bonifacio, S.; Clowes, J.; Foulds, A.; Holland, R.; Matthews, J.C.; Percival, C.J.; Shallcross, D.E. Investigation of Biofuel as a Potential Renewable Energy Source. Atmosphere 2021, 12, 1289. [Google Scholar] [CrossRef]
- Kundu, D.; Samanta, P.; Bhowmick, S.; Panigrahi, S.; Dey, S.; Nath, K.; Rajak, R.C.; Sherpa, K.C.; Barathi, A.; Kofoed, M.V.W.; et al. Heterogeneous catalysts for sustainable biofuel production: A paradigm shift towards renewable energy. Biocatal. Agric. Biotechnol. 2024, 62, 103432. [Google Scholar] [CrossRef]
- Vanlerberghe, G.C.; Dahal, K.; Alber, N.A.; Chadee, A. Photosynthesis, respiration and growth: A carbon and energy balancing act for alternative oxidase. Mitochondrion 2020, 52, 197–211. [Google Scholar] [CrossRef]
- Garcia, A.; Gaju, O.; Bowerman, A.F.; Buck, S.A.; Evans, J.R.; Furbank, R.T.; Gilliham, M.; Millar, A.H.; Pogson, B.J.; Reynolds, M.P.; et al. Enhancing crop yields through improvements in the efficiency of photosynthesis and respiration. New Phytol. 2022, 237, 60–77. [Google Scholar] [CrossRef]
- Ligęza, P. On Search for Unconventional Energy Sources for Harvesting. Energies 2024, 17, 1091. [Google Scholar] [CrossRef]
- Ligęza, P. Electromagnetic Energy Harvester Using Pulsating Airflows—Reeds Waving in the Wind. Energies 2024, 17, 4834. [Google Scholar] [CrossRef]
- Medlock, R.S. The Historical Development of Flow Metering. Meas. Control 1986, 19, 11–22. [Google Scholar] [CrossRef]
- Chue, S. Pressure probes for fluid measurement. Prog. Aerosp. Sci. 1975, 16, 147–223. [Google Scholar] [CrossRef]
- Solov'Ev, Y.P.; Korovushkin, A.I.; Toloknov, Y.N. Characteristics of a Cup Anemometer and a Procedure of Measuring the Wind Velocity. Phys. Oceanogr. 2004, 14, 173–186. [Google Scholar] [CrossRef]
- Du, L.; Zhao, Z.; Pang, C.; Fang, Z. Drag force micro solid state silicon plate wind velocity sensor. Sens. Actuators A Phys. 2009, 151, 35–41. [Google Scholar] [CrossRef]
- Cuerva, A.; Sanz-Andrés, A. On sonic anemometer measurement theory. J. Wind Eng. Ind. Aerodyn. 2000, 88, 25–55. [Google Scholar] [CrossRef]
- Fingerson, L.M. Thermal anemometry, current state, and future directions. Rev. Sci. Instrum. 1994, 65, 285–300. [Google Scholar] [CrossRef]
- King, L.V. XII. On the convection of heat from small cylinders in a stream of fluid: Determination of the convection constants of small platinum wires with applications to hot-wire anemometry. Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 1914, 214, 373–432. [Google Scholar] [CrossRef]
- Sasaki, T.; Asayama, Y.; Motoyoshi, Y.; Yamamoto, H.; Fukami, T. A Karman vortex airflow sensor. SAE Trans. 1982, 91, 1259–1263. [Google Scholar]
- Tropea, C. Laser Doppler anemometry: Recent developments and future challenges. Meas. Sci. Technol. 1995, 6, 605–619. [Google Scholar] [CrossRef]
- Grant, I. Particle image velocimetry: A review. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 1997, 211, 55–76. [Google Scholar] [CrossRef]
- Ligęza, P. An alternative mathematical model of vane anemometers based on the balance of power. Flow Meas. Instrum. 2017, 54, 210–215. [Google Scholar] [CrossRef]
- Pindado, S.; Cubas, J.; Sorribes-Palmer, F. The Cup Anemometer, a Fundamental Meteorological Instrument for the Wind Energy Industry. Research at the IDR/UPM Institute. Sensors 2014, 14, 21418–21452. [Google Scholar] [CrossRef]
- Ligęza, P. Model and simulation studies of the method for optimization of dynamic properties of tachometric anemometers. Sensors 2018, 18, 2677. [Google Scholar] [CrossRef]
- Gutarra, J.S.; Gastelo-Roque, J.A.; Sulluchuco, J. A cup anemometer using 3D additive manufacturing. In Proceedings of the 2020 IEEE XXVII International Conference on Electronics, Electrical Engineering and Computing (INTERCON), Lima, Peru, 3–5 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–4. [Google Scholar]
- Fu, X.; Xu, S.; Gao, Y.; Zhang, X.; Liu, G.; Zhou, H.; Lv, Y.; Zhang, C.; Wang, Z.L. Breeze-Wind-Energy-Powered Autonomous Wireless Anemometer Based on Rolling Contact-Electrification. ACS Energy Lett. 2021, 6, 2343–2350. [Google Scholar] [CrossRef]
- Güçyetmez, M.; Keser, S.; Hayber, E. Wind speed measurement with a low-cost polymer optical fiber anemometer based on Fresnel reflection. Sens. Actuators A Phys. 2022, 339, 113509. [Google Scholar] [CrossRef]
- Ligęza, P. Dynamic Error Correction Method in Tachometric Anemometers for Measurements of Wind Energy. Energies 2022, 15, 4132. [Google Scholar] [CrossRef]
- Alfonso-Corcuera, D.; Vega, E.; Ogueta-Gutiérrez, M.; Alcala-Gonzalez, D.; Pindado, S. Effect of ice/dirt on cup anemometer rotors. Flow Meas. Instrum. 2022, 89, 102267. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, Y.; Wang, K.; Guan, X.; Li, T.; Cheng, T.; Han, Z. A bioinspired triboelectric wireless anemometer with low cut-in wind speed for meteorological UAVs. Nano Energy 2024, 128, 109917. [Google Scholar] [CrossRef]
- Alfonso-Corcuera, D.; Ogueta-Gutiérrez, M.; Pindado, S.; González-Bárcena, D.; Porras-Hermoso, Á.L.; Marín-Coca, S.; Zamorano, J.; Perez-Muñoz, Á.G. On the use of cup anemometers as wind speed sensors in stratospheric balloon missions. J. Phys. Conf. Ser. 2024, 2716, 012100. [Google Scholar] [CrossRef]
- Li, Z.; Pu, O.; Pan, Y.; Huang, B.; Zhao, Z.; Wu, H. A Study on Measuring the Wind Field in the Air Using a Multi-rotor UAV Mounted with an Anemometer. Bound.-Layer Meteorol. 2023, 188, 1–27. [Google Scholar] [CrossRef]
- Thielicke, W.; Hübert, W.; Müller, U.; Eggert, M.; Wilhelm, P. Towards accurate and practical drone-based wind measurements with an ultrasonic anemometer. Atmos. Meas. Tech. 2021, 14, 1303–1318. [Google Scholar] [CrossRef]
- Koivula, K.M. Utilisation of Drones in Wind Measurements: An Analysis of Wind Data Gathered with a Drone-Bound Ultrasonic Anemometer. Master’s Thesis, University of Helsinki, Helsinki, Finland, 2023. [Google Scholar]
- Basawanal, A. Development and Qualification of a Drone-Based Anemometry Platform for Air Risk Assessment in Urban Environments. Ph.D. Thesis, Carleton University, Ottawa, ON, Canada, 2024. [Google Scholar]
- Arens, E.; Ghahramani, A.; Przybyla, R.; Andersen, M.; Min, S.; Peffer, T.; Raftery, P.; Zhu, M.; Luu, V.; Zhang, H. Measuring 3D indoor air velocity via an inexpensive low-power ultrasonic anemometer. Energy Build. 2020, 211, 109805. [Google Scholar] [CrossRef]
- San Pedro JL, M.A.; Martinez DW, C.; Gozun PJ, P.; Reyes KA, C.; Ruiz, S.J. Development of Localized 3D-Printed Ultrasonic Wind Anemometer with Cloud Data Transfer and Storage. Chem. Eng. Trans. 2023, 106, 307–312. [Google Scholar]
- Chen, X.; Zhan, W. Effect of Transducer Shadowing of Ultrasonic Anemometers on Wind Velocity Measurement. IEEE Sens. J. 2020, 21, 4731–4738. [Google Scholar] [CrossRef]
- Cao, Z.; Zhang, Z.; Li, R.; Yang, X.; Zhou, Z. Compensation Method for Shadow Effect of Mine Ultrasonic Anemometer. IEEE Access 2021, 9, 118893–118906. [Google Scholar] [CrossRef]
- Shan, Z.; Xie, S.; Liu, X.; Liu, Y. Arrayed ultrasonic wind speed and direction measurement based on the BNF-FLOC-MUSIC algorithm. Sens. Actuators A Phys. 2024, 379, 115908. [Google Scholar] [CrossRef]
- Glabeke, G.; Gigon, A.; De Mulder, T.; Van Beeck, J. How accurate are ultrasonic anemometers, calibrated in a laminar wind tunnel, under turbulent conditions? J. Phys. Conf. Ser. 2024, 2767, 042023. [Google Scholar] [CrossRef]
- Popiolek, Z.; Hurnik, M. Low velocity thermal anemometer with precise, digitally controlled temperature compensation. Measurement 2025, 242, 116260. [Google Scholar] [CrossRef]
- Khamshah, N.; Abdalla, A.N.; Koh, S.P.; Rashag, H.F. Issues and temperature compensation techniques for hot wire thermal flow sensor: A review. Int. J. Phys. Sci. 2011, 6, 3270–3278. [Google Scholar]
- Gao, Y.; Ramirez, B.C.; Hoff, S.J. Omnidirectional thermal anemometer for low airspeed and multi-point measurement applications. Comput. Electron. Agric. 2016, 127, 439–450. [Google Scholar] [CrossRef]
- Idjeri, B.; Laghrouche, M.; Boussey, J. Wind Measurement Based on MEMS Micro-Anemometer with High Accuracy Using ANN Technique. IEEE Sens. J. 2017, 17, 4181–4188. [Google Scholar] [CrossRef]
- Korprasertsak, N.; Leephakpreeda, T. Novel wind measurement via thermoelectric anemometer. Measurement 2020, 149, 107037. [Google Scholar] [CrossRef]
- Jerotić, A.; Đokić, D.; Atanasijević, P.; Mihailovic, P. Non-bridge NTC thermistor anemometer with programmable sensitivity. Flow Meas. Instrum. 2024, 96, 102544. [Google Scholar] [CrossRef]
- Ligęza, P.; Jamróz, P.; Ostrogorski, P. Methods for dynamic behavior improvement of tachometric and thermal anemometers by active control. Measurement 2020, 166, 108147. [Google Scholar] [CrossRef]
- Dziurzyński, W.; Ostrogórski, P.; Skotniczny, P. Methane Concentration Measurements in the Longwall Area as a Data Source for the Assessment of Methane Hazard. Arch. Min. Sci. 2024, 94, 675–684. [Google Scholar] [CrossRef]
- Ligęza, P. Method of testing fast-changing and pulsating flows by means of a hot-wire anemometer with simultaneous measurement of voltage and current of the sensor. Measurement 2022, 187, 110291. [Google Scholar] [CrossRef]
- Ligęza, P.; Jamróz, P. A Hot-Wire Anemometer with Automatically Adjusted Dynamic Properties for Wind Energy Spectrum Analysis. Energies 2022, 15, 4618. [Google Scholar] [CrossRef]
- Ligęza, P.; Jamróz, P.; Ostrogórski, P. Reduction of electromagnetic interferences in measurements of fast-changing air velocity fluctuations by means of hot-wire anemometer. Flow Meas. Instrum. 2021, 79, 101945. [Google Scholar] [CrossRef]
- Wang, X.; Dong, X.; Zhou, Y.; Li, Y.; Cheng, J.; Chen, Z. Optical fiber anemometer using silver-coated fiber Bragg grating and bitaper. Sens. Actuators A Phys. 2014, 214, 230–233. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z.-Y.; Gao, S.; Zhang, A.P.; Shen, Y.-H.; Tam, H.-Y. Fiber-Optic Anemometer Based on Bragg Grating Inscribed in Metal-Filled Microstructured Optical Fiber. J. Light. Technol. 2016, 34, 4884–4889. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, H.; Guan, L.; Yang, J. Fiber Bragg grating anemometer and temperature compensation technology. Opt. Eng. 2018, 57, 064104. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, X.; Zhang, J.; Lv, D.; Xiong, L.; Dong, X. Sensitivity-enhanced hot-wire anemometer by using clad-ding-etched fiber bragg grating. Photonic Sens. 2023, 13, 230305. [Google Scholar] [CrossRef]
- De Vita, E.; Di Palma, P.; Zahra, S.; Roviello, G.; Ferone, C.; Iadicicco, A.; Campopiano, S. Hot-Wire Anemometer Based on D-Shaped Optical Fiber. IEEE Sens. J. 2023, 23, 12845–12852. [Google Scholar] [CrossRef]
- Daldaban, F.; Karagöz, F.; Genç, M.S. A drag force anemometer using finite length cylinder with direction measurement capability. Measurement 2017, 104, 117–122. [Google Scholar] [CrossRef]
- Ye, Y.; Wan, S.; He, X. Effect of Wind-Induced Vibration on Measurement Range of Microcantilever Anemometer. Micromachines 2022, 13, 720. [Google Scholar] [CrossRef]
- Ramanathan, A.K.; Headings, L.M.; Dapino, M.J. Airfoil Anemometer with Integrated Flexible Piezo-Capacitive Pressure Sensor. Front. Mater. 2022, 9, 904056. [Google Scholar] [CrossRef]
- Revathi, K.; Tamilselvi, T.; Theresa, W.G.; Dhivya, M. A Complete Design of Smart Wind Farm Enriched with Novel Anemometer. Int. J. Recent Innov. Trends Comput. Commun. 2023, 11, 433–439. [Google Scholar] [CrossRef]
- Lv, Y.; Wang, M.; Wu, W.; Shang, W.; Yao, H.; Li, J.; Jr, G.D.Q.; Zhang, H.; Shen, X. Experimental study of building natural ventilation with pendulum velocity anemometer. Build. Environ. 2024, 253, 111311. [Google Scholar] [CrossRef]
- Li, S.; Ye, Y.; Wan, S.; Lu, M.; Jiang, R.; Fang, L.; Wang, Y.; Yan, J. A Frequency-Detection-Type Photoelectric Anemometer. IEEE Sens. J. 2024, 24, 27283–27289. [Google Scholar] [CrossRef]
- Rocha, B.; Fernandes, E.d.M.; Souto, J.I.V.; Gomez, R.S.; Delgado, J.M.P.Q.; Lima, F.S.; Alves, R.M.N.; Bezerra, A.L.D.; Lima, A.G.B. Development of Anemometer Based on Inertial Sensor. Micromachines 2024, 15, 1186. [Google Scholar] [CrossRef]
- Khodarahmi, M.; Maihami, V. A review on Kalman filter models. Arch. Comput. Methods Eng. 2023, 30, 727–747. [Google Scholar] [CrossRef]
- Ren, Z.; Verma, A.S.; Li, Y.; Teuwen, J.J.; Jiang, Z. Offshore wind turbine operations and maintenance: A state-of-the-art review. Renew. Sustain. Energy Rev. 2021, 144, 110886. [Google Scholar] [CrossRef]
Tachometric Anemometers | Ultrasonic Anemometers | Calorimetric Anemometers | |
---|---|---|---|
typical applications | one-dimensional or two-dimensional wind velocity measurements, open flow measurements, ventilation measurements | three-dimensional wind speed measurements, industrial measurements in pipelines, measurements of gas flow with variable composition | one-dimensional or omnidirectional air velocity measurements, velocity profile measurements, laboratory measurements, ventilation measurements |
lower range limitations of velocity measurement | friction force in rotor bearings, dimensions, and inertia of the rotor | flow disturbance through the measuring sensor | natural convection caused by the sensor temperature |
upper range limitations of velocity measurement | durability of the sensor structure | acoustic interference caused by the interaction of the sensor with the flow | sensor durability and sensitivity decrease with increasing velocity |
typical disadvantages of anemometers | measurement averaging, velocity field disturbance, overestimation of readings in fluctuating flows, moving mechanical elements | measurement averaging, large sensor size, complex anemometer construction, high price | sensitivity of the measurement to the composition and temperature of the medium, need for calibration, delicate structure of the sensor |
typical advantages of anemometers | simple construction, linearity of readings, low sensitivity to temperature and medium composition, moderate price | absolute measurement, low sensitivity to temperature and medium composition, low measurement uncertainty, no moving parts | ability to measure fast-changing velocity fluctuations, low invasiveness of measurement, close-to-point measurement, no moving elements |
main directions of development | new construction materials, 3D printing, magnetic rotor bearing, fiber optic signal reading, autonomous power supply, and wireless signal transmission | new sensor design technologies, application of AI methods in signal processing, positioning of sensors in the measurement space using drones, reduction in costs, and widespread use | sensors in microelectromechanical and nanoelectromechanical technology, multi-sensor arrays, sensors for extremely low or extremely high temperatures, intelligent sensors, sensor networks |
Anemometer Type | Type of Measurement | Velocity Measurement Range | Velocity Measurement Uncertainty | Flow Direction Measurement | Temperature Range | Estimated Price | |
---|---|---|---|---|---|---|---|
tachometric anemometer | 05108 RM Young Company Traverse City, MI, USA | 2D velocity vector measurement | 1 to 100 m/s | ±0.3 m/s or ±1% | azimuth 0 to 355° | −50° to +60 °C | 1500 $ |
ultrasonic anemometer | Aeolus 3 Senseca Italy Srl Selvazzano Dentro, Italy | 3D velocity vector measurement | 0.01 to 85 m/s | ±0.2 m/s or ±2% | azimuth 0 to 360° elevation −60° to 60° | −40 to +60 °C | 5000 $ |
calorimetric anemometer | Fluke 923 Fluke Corporation Everett, WA, USA | 1D velocity measurement | 0.2 to 20 m/s | 5% | no direction measurement | −20 to +60 °C | 500 $ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ligęza, P.; Jamróz, P.; Socha, K. Development Trends of Air Flow Velocity Measurement Methods and Devices in Renewable Energy. Energies 2025, 18, 412. https://doi.org/10.3390/en18020412
Ligęza P, Jamróz P, Socha K. Development Trends of Air Flow Velocity Measurement Methods and Devices in Renewable Energy. Energies. 2025; 18(2):412. https://doi.org/10.3390/en18020412
Chicago/Turabian StyleLigęza, Paweł, Paweł Jamróz, and Katarzyna Socha. 2025. "Development Trends of Air Flow Velocity Measurement Methods and Devices in Renewable Energy" Energies 18, no. 2: 412. https://doi.org/10.3390/en18020412
APA StyleLigęza, P., Jamróz, P., & Socha, K. (2025). Development Trends of Air Flow Velocity Measurement Methods and Devices in Renewable Energy. Energies, 18(2), 412. https://doi.org/10.3390/en18020412