Recent Advances in Cooling Technology for the Leading Edge of Gas Turbine Blades
Abstract
:1. Introduction
2. Internal Cooling
2.1. Jet Impingement Cooling
- (a)
- Impact of jet hole design and configuration
- (b)
- Effect of crossflow
- (c)
- Effects of Ribs
2.2. Swirling Cooling
3. External Cooling
4. Composite Cooling Technology
4.1. Impingement-Film Composite Cooling
4.2. Swirl Film Composite Cooling
4.3. The Influence of Actual Operating Conditions on Blade Cooling
5. Conclusions
- (1)
- External cooling forms a cooling film on the blade surface through film holes, and is generally more suitable for rapid cooling. It can effectively protect the blade from high-temperature airflow, improving thermal stability and uniformity, and helping to reduce thermal stress. However, it may also lead to higher consumption of cooling gas, resulting in airflow losses and efficiency degradation. External film cooling is often influenced by the geometry and arrangement of the film holes, as well as the jet parameters.
- (2)
- For internal jet cooling, factors such as the shape and arrangement of the jet holes, jet distance, Reynolds number, and jet recirculation have a significant impact on the leading edge cooling effect. Smaller jet spacing enhances lateral flow effects, which help achieve more uniform heat transfer but may also reduce cooling efficiency. By optimizing the channel design, reducing nozzle spacing, and using asymmetrical hole injection, the penetration ability of impingement cooling and the overall cooling effect can be enhanced. Ribs in the internal cooling of gas turbine blades primarily enhance heat transfer by increasing disturbances and turbulence in the cooling airflow. Internal swirl cooling technology improves heat exchange between the cooling airflow and the blade surface by introducing rotating airflow, which extends the residence time of the airflow on the surface, thereby improving heat transfer efficiency. Swirl flow provides more uniform cooling, prevents the formation of axial cross-flow, and improves the uniformity of the temperature distribution.
- (3)
- Composite film cooling technology combines external film cooling with internal jet impingement cooling and swirl cooling through the design of film holes and nozzles, significantly improving the heat transfer efficiency and uniformity of gas turbine blades. Factors such as the Reynolds number, injection method (normal or tangential), nozzle design, nozzle hole arrangement, and cooling chamber structure have a significant impact on the composite film cooling performance. Swirl film composite cooling has advantages in improving the Nusselt number, cooling uniformity, and reducing thermal gradients, especially under conditions of a high Reynolds number and a low Bi number. However, it should be noted that the improvement in cooling performance is typically accompanied by higher pressure losses, and design optimization needs to strike a balance between cooling effectiveness and energy loss.
Author Contributions
Funding
Conflicts of Interest
References
- McInturff, P.; Suzuki, M.; Ligrani, P.; Nakamata, C.; Lee, D.H. Effects of hole shape on impingement jet array heat transfer with small-scale, target surface triangle roughness. Int. J. Heat Mass Transfer. 2018, 127, 585–597. [Google Scholar] [CrossRef]
- Mohamad, K.K.; Sherif, A.M.; Attalla, M.; Hussein, M.M. Cooling of gas turbine blade leading edge via an array of air jets with variable diameters. J. Heat Transfer. 2022, 144, 123801. [Google Scholar]
- Paccati, S.; Cocchi, L.; Mazzei, L.; Andreini, A. Numerical investigation on the effect of rotation and holes arrangement in cold bridge-type impingement cooling systems. J. Turbomach. 2020, 142, 041004. [Google Scholar] [CrossRef]
- Wang, N.; Chen, A.F.; Zhang, M.J.; Han, J.-C. Turbine blade leading edge cooling with one row of normal or tangential impinging jets. J. Heat Transfer. 2018, 140, 062201. [Google Scholar] [CrossRef]
- Salem, A.R.; Nourin, F.N.; Abousabae, M.; Amano, R.S. Experimental and numerical study of jet impingement cooling for improved gas turbine blade internal cooling with in-line and staggered nozzle arrays. J. Energy Resour. Technol. 2021, 143, 012103. [Google Scholar] [CrossRef]
- De La Calzada, P.; Alvarez, J.J. Experimental investigation on the heat transfer of a leading edge impingement cooling system for low pressure turbine vanes. J. Heat Transfer. 2010, 132, 122202. [Google Scholar] [CrossRef]
- He, W.; Deng, Q.H.; Yang, G.Y.; Feng, Z.P. Effects of turning Angle and turning internal radius on channel impingement cooling for a novel internal cooling structure. J. Turbomach. 2021, 143, 091005. [Google Scholar] [CrossRef]
- Kulkarni, R.V.; Wright, L.M. Parametric study and correlation of racetrack shaped jets for leading edge impingement. J. Heat Transfer. 2022, 144, 103801. [Google Scholar] [CrossRef]
- Chupp, R.E.; Helms, H.E.; McFadden, P.W.; Brown, T.R. Evaluation of internal heat-transfer coefficients for impingement-cooled turbine airfoils. J. Aircr. 1969, 6, 203–208. [Google Scholar] [CrossRef]
- Liu, L.L.; Zhu, X.C.; Liu, H.; Du, Z.H. Effect of tangential jet impingement on blade leading edge impingement heat transfer. Appl. Therm. Eng. 2018, 130, 1380–1390. [Google Scholar] [CrossRef]
- Mukherjee, D.K. Pressure loss coefficient of impingement cooled leading edge system of a turbine blade. J. Eng. Power 1976, 98, 554–556. [Google Scholar] [CrossRef]
- Bunker, R.S.; Metzger, D.E. Local heat transfer in internally cooled turbine airfoil leading edge regions: Part II-Impingement cooling without film coolant extraction. J. Turbomach. 1990, 112, 451–458. [Google Scholar] [CrossRef]
- Yan, H.; Luo, L.; Heo, J.H.; Du, W.; Wang, S.T.; Moon, H.K.; Cho, H.H. Numerical evaluation of a new impingement cooling scheme with a separate return-channel applied to turbine blade leading edge. Appl. Therm. Eng. 2023, 221, 119906. [Google Scholar] [CrossRef]
- Wu, W.L.; Yao, R.; Wang, J.H.; Su, H.; Wu, X.Y. Leading edge impingement cooling analysis with separators of a real gas turbine blade. Appl. Therm. Eng. 2022, 208, 118275. [Google Scholar] [CrossRef]
- Yasser, S.A.; Wright, L.M.; Han, J.-C. Effects of jet-to-target surface spacing and pin-fin height on jet impingement heat transfer in a rectangular channel. J. Therm. Sci. Eng. Appl. 2023, 15, 031003. [Google Scholar]
- Forster, M.; Weigand, B. Experimental and numerical investigation of jet impingement cooling onto a concave leading edge of a generic gas turbine blade. Int. J. Therm. Sci. 2021, 164, 106862. [Google Scholar] [CrossRef]
- Taslim, M.E.; Bethka, D. Experimental and numerical impingement heat transfer in an airfoil leading-edge cooling channel with cross-flow. J. Turbomach. 2009, 131, 011021. [Google Scholar] [CrossRef]
- Elebiary, K.; Taslim, M.E. Experimental/numerical crossover jet impingement in an airfoil leading-edge cooling channel. J. Turbomach. 2012, 135, 011037. [Google Scholar] [CrossRef]
- He, J.; Deng, Q.H.; Xiao, K.; Feng, Z.P. Heat transfer enhancement of impingement cooling by different crossflow diverters. J. Heat Transfer. 2022, 144, 042001. [Google Scholar] [CrossRef]
- Chambers, A.C.; Gillespie, D.R.H.; Ireland, P.T.; Kingston, R. Enhancement of impingement cooling in a high cross flow channel using shaped impingement cooling holes. J. Turbomach. 2010, 132, 021001. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Liu, Y.Y.; Bhaiyat, T.I.; Schekman, S.W.; Lu, T.J.; Kim, T. Impingement cooling by multiple asymmetric orifice jets. J. Heat Transfer. 2022, 144, 042301. [Google Scholar] [CrossRef]
- Taslim, M.E.; Setayeshgar, L.; Spring, S.D. An experimental evaluation of advanced leading edge impingement cooling concepts. J. Turbomach. 2001, 123, 147–153. [Google Scholar] [CrossRef]
- Taslim, M.E.; Bakhtari, K.; Liu, H. Experimental and numerical investigation of impingement on a rib-roughened leading-edge wall. J. Turbomach. 2003, 125, 682–691. [Google Scholar] [CrossRef]
- Nourin, F.N.; Amano, R.S. Heat transfer augmentation with multiple jet impingement cooling on dimpled surface for gas turbine blades. J. Energy Resour. Technol. 2023, 145, 022101. [Google Scholar] [CrossRef]
- Kong, D.-H.; Zhang, C.X.; Ma, Z.Y.; Liu, C.L.; Isaev, S.A.; Guo, T.; Xie, F. Numerical study on flow and heat transfer characteristics of swirling jet on a dimpled surface with effusion holes at turbine blade leading edge. Appl. Therm. Eng. 2022, 209, 118243. [Google Scholar] [CrossRef]
- Xiao, K.; He, J.; Zheng, P.F.; Feng, Z.P. Effects of circumferential ribs on suppressing cross-flow and enhancing heat transfer in swirl cooling. Int. J. Therm. Sci. 2022, 181, 107785. [Google Scholar] [CrossRef]
- Han, S.H.; Zhang, R.S.; Xing, J.J.; Song, Y.Y.; An, N.; Huo, T.Y.; Zhou, L.P.; Li, L.; Zhang, H.; Du, X.Z. Flow and conjugate heat transfer of swirl chamber with micro-ribs in turbine vane leading edge. J. Therm. Sci. Eng. Appl. 2023, 15, 081004. [Google Scholar] [CrossRef]
- Luan, Y.; Rao, Y.; Weigand, B. Experimental and numerical study of heat transfer and pressure loss in a multi-convergent swirl tube with tangential jets. Int. J. Heat Mass Transfer. 2022, 190, 122797. [Google Scholar] [CrossRef]
- Zhou, J.F.; Wang, X.J.; Li, J.; Hou, W.T. Effects of target channel shapes on double swirl cooling performance at gas turbine blade leading edge. J. Eng. Gas Turbines Power. 2019, 141, 071004. [Google Scholar] [CrossRef]
- Lin, G.; Kusterer, K.; Ayed, A.H.; Bohn, D.; Sugimoto, T.; Tanaka, R.; Kazari, M. Numerical investigation on heat transfer in an advanced new leading edge impingement cooling configuration. Propuls. Power Res. 2015, 4, 179–189. [Google Scholar] [CrossRef]
- Wang, N.; Han, J.-C. Swirl impinging cooling on an airfoil leading edge model at large reynolds number. J. Therm. Sci. Eng. Appl. 2019, 11, 031006. [Google Scholar] [CrossRef]
- Zhou, J.F.; Wang, X.J.; Li, J.; Hou, W.T. Comparison between impingement/effusion and double swirl/effusion cooling performance under different effusion hole diameters. Int. J. Heat Mass Transfer. 2019, 141, 1097–1113. [Google Scholar] [CrossRef]
- Bruschewski, M.; Grundmann, S.; Schiffer, H.-P. Considerations for the design of swirl chambers for the cyclone cooling of turbine blades and for other applications with high swirl intensity. Int. J. Heat Fluid Flow. 2020, 86, 108670. [Google Scholar] [CrossRef]
- Seibold, F.; Ligrani, P.; Yang, X.; Poser, R.; Weigand, B. Heat transfer in convergent swirl chambers for cyclone cooling in turbine blades. Appl. Therm. Eng. 2023, 230, 120744. [Google Scholar] [CrossRef]
- Seibold, F.; Weigand, B. Numerical analysis of the flow pattern in convergent vortex tubes for cyclone cooling applications. Int. J. Heat Fluid Flow. 2021, 90, 108806. [Google Scholar] [CrossRef]
- Wang, D.Y.; Khalatov, A.; Shi-Ju, E.; Borisov, I. Swirling flow heat transfer and hydrodynamics in the model of blade cyclone cooling with inlet co-swirling flow. Int. J. Heat Mass Transfer. 2021, 175, 121404. [Google Scholar] [CrossRef]
- Wang, L.; Li, H.W.; Xie, G.; Zhou, Z.Y. Effect of blowing ratio, rotation, and film hole row location on film cooling on the suction surface of a rotating turbine blade. Int. J. Heat Mass Transfer. 2023, 208, 124048. [Google Scholar] [CrossRef]
- Al-Zurfi, N.; Turan, A. LES of rotational effects on film cooling effectiveness and heat transfer coefficient in a gas turbine blade with one row of air film injection. Int. J. Therm. Sci. 2016, 99, 96–112. [Google Scholar] [CrossRef]
- Taslim, M.E.; Khanicheh, A. Experimental and numerical study of impingement on an airfoil leading edge with and without showerhead and gill film holes. J. Turbomach. 2006, 128, 310–320. [Google Scholar] [CrossRef]
- Zhao, Y.C.; Gao, H.S.; Wen, Z.X.; Yang, Y.Q.; Cheng, H.; Li, Q.; Yue, Z.F. Film cooling of showerhead holes from the twisted leading edge of a gas turbine blade: Complex mainstream characteristics and reasonable angle arrangement. Aerosp. Sci. Technol. 2021, 119, 107208. [Google Scholar] [CrossRef]
- Moore, J.D.; Easterby, C.C.; Bogard, D.G. Effects on film cooling performance in the showerhead from geometric parameterization of shaped hole designs. J. Turbomach. 2022, 144, 091006. [Google Scholar] [CrossRef]
- Shine, S.R.; Kumar, S.S.; Suresh, B.N. Internal wall-jet film cooling with compound angle cylindrical holes. Energy. Convers. Manag. 2013, 68, 54–62. [Google Scholar] [CrossRef]
- Dyson, T.E.; Bogard, D.G.; Piggush, J.D.; Kohli, A. Overall effectiveness for a film cooled turbine blade leading edge with varying hole pitch. J. Turbomach. 2013, 135, 031011. [Google Scholar] [CrossRef]
- Kong, X.R.; Zhang, Y.F.; Li, G.Q.; Lu, X.G.; Zhu, J.Q.; Xu, J.L. Heat transfer and flow structure characteristics of film-cooled leading edge model with sweeping and normal jets. Int. Commun. 2022, 138, 106338. [Google Scholar] [CrossRef]
- Fawzy, H.; Zheng, Q.; Jiang, Y.T. Impingement cooling using different arrangements of conical nozzles in a film cooled blade leading edge. Int. Commun. Heat Mass Transfer. 2020, 112, 104506. [Google Scholar] [CrossRef]
- Fawzy, H.; Zheng, Q.; Jiang, Y.T.; Lin, A.Q.; Ahmad, N. Conjugate heat transfer of impingement cooling using conical nozzles with different schemes in a film-cooled blade leading-edge. Appl. Therm. Eng. 2020, 177, 115491. [Google Scholar] [CrossRef]
- Fu, J.L.; Cao, Y.; Zhang, C.; Zhu, J.Q. Investigation of the conjugate heat transfer and flow field for a flat plate with combined film and impingement cooling. J. Therm. Sci. 2020, 29, 955–971. [Google Scholar] [CrossRef]
- Deng, H.W.; Wang, Z.S.; Wang, J.S.; Li, H. Flow and heat transfer in a rotating channel with impingement cooling and film extraction. Int. J. Heat Mass Transfer. 2021, 180, 121751. [Google Scholar] [CrossRef]
- Zolfagharian, M.M.; Rajabi-Zargarabadi, M.; Mujumdar, A.S.; Valipour, M.S.; Asadollahi, M. Optimization of turbine blade cooling using combined cooling techniques. Eng. Appl. Comp. Fluid Mech. 2014, 8, 462–475. [Google Scholar] [CrossRef]
- Jung, E.Y.; Oh, S.H.; Lee, D.H.; Kim, K.M.; Cho, H.H. Effect of impingement jet on the full-coverage film cooling system with double layered wall. Experimental Heat Transfer. 2017, 30, 544–562. [Google Scholar] [CrossRef]
- Jung, E.Y.; Chung, H.Y.; Choi, S.M.; Woo, T.-K.; Cho, H.H. Conjugate heat transfer on full-coverage film cooling with array jet impingements with various Biot numbers. Exp. Therm. Fluid Sci. 2017, 83, 1–8. [Google Scholar] [CrossRef]
- Tan, X.M.; Zhang, J.Z.; Xu, H.S. Experimental investigation on impingement/effusion cooling with short normal injection holes. Int. Commun. Heat Mass Transfer. 2015, 69, 1–10. [Google Scholar]
- Zhang, J.Y.; Yuan, C.; Ji, P.F.; Wei, J.L.; He, X.M. Experimental investigation on the overall cooling effectiveness of t-type impinging-film cooling. Appl. Therm. Eng. 2018, 128, 595–603. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Wei, J.L.; He, X.M.; Li, J.; Luo, D.; Wu, Y. Effects of impingement parameters on impinging-film cooling performance. Heat Transfer. Res. 2021, 51, 1241–1260. [Google Scholar] [CrossRef]
- Taslim, M.E.; Pan, Y.; Spring, S.D. An experimental study of impingement on roughened airfoil leading-edge walls with film holes. J. Turbomach. 2001, 123, 766–773. [Google Scholar] [CrossRef]
- Andrei, L.; Carcasci, C.; Da Soghe, R.; Facchini, B.; Maiuolo, F.; Tarchi, L.; Zecchi, S. Heat transfer measurements in a leading edge geometry with racetrack holes and film cooling extraction. J. Turbomach. 2013, 135, 031020. [Google Scholar] [CrossRef]
- Shen, Y.H.; Wang, W.Z.; Zhang, M.K.; Zhang, C. Effect of different internal impingement structures and cratered film cooling holes on overall cooling effectiveness. J. Braz. Soc. Mech. Sci. Eng. 2024, 46, 300. [Google Scholar] [CrossRef]
- Fawzy, H.; Zheng, Q.; Ahmad, N.; Jiang, Y.T. Optimization of a swirl with impingement compound cooling unit for a gas turbine blade leading edge. Energies 2020, 13, 210. [Google Scholar] [CrossRef]
- Zhang, M.J.; Wang, N.; Han, J.-C. Internal heat transfer of film-cooled leading edge model with normal and tangential impinging jets. Int. J. Heat Mass Transfer. 2019, 139, 193–204. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, L.; Li, J.W.; Wu, F.; Du, C.H. Numerical investigation on flow and heat transfer characteristics of vortex cooling in an actual film-cooled leading edge. Appl. Therm. Eng. 2021, 185, 115942. [Google Scholar] [CrossRef]
- Du, H.F.; Mei, Z.Y.; Zou, J.Y.; Jiang, W.; Xie, D.M. Conjugate heat transfer investigation on swirl-film cooling at the leading edge of a gas turbine vane. Entropy 2019, 21, 1007. [Google Scholar] [CrossRef]
- Luan, Y.-X.; Rao, Y.; Yan, H.J. Experimental and numerical study of swirl impingement cooling for turbine blade leading edge with internal ridged wall and film extraction holes. Int. J. Heat Mass Transfer. 2023, 201, 123633. [Google Scholar] [CrossRef]
- Han, S.H.; Xiang, Z.; Xing, J.J.; Zhang, R.S.; An, N.; Qi, S.Z.; Huo, T.Y.; Liu, Q.L.; Zhou, L.P.; Li, L.; et al. Numerical simulation of composite swirl/film double-wall cooling structures and chamber designs for enhanced overall cooling effectiveness. Int. J. Heat Mass Transfer. 2024, 228, 125664. [Google Scholar] [CrossRef]
- Han, S.H.; Xiang, Z.; Qi, S.Z.; Jia, Y.B.; Guo, T.R.; An, N.; Liu, Q.L.; Huo, T.Y.; Xing, J.J.; Zhang, R.S.; et al. Numerical simulation of composite swirl/film double-wall cooling structures and chamber designs for enhanced overall cooling effectiveness: II. Improvement with serpentine chamber and application in C3X vane. Int. J. Heat Mass Transfer. 2024, 234, 126154. [Google Scholar] [CrossRef]
- Wang, H.H.; Deng, Q.H.; He, W.; Feng, Z.P. Cooling and flow characteristics of multi-channel wall jet structure with film holes at blade leading edge. J. Turbomach. 2023, 145, 061009. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, S.; Li, Y.; Yan, J.; Zhang, C. Recent Advances in Cooling Technology for the Leading Edge of Gas Turbine Blades. Energies 2025, 18, 540. https://doi.org/10.3390/en18030540
Zhu S, Li Y, Yan J, Zhang C. Recent Advances in Cooling Technology for the Leading Edge of Gas Turbine Blades. Energies. 2025; 18(3):540. https://doi.org/10.3390/en18030540
Chicago/Turabian StyleZhu, Shixing, Yan Li, Junyang Yan, and Chao Zhang. 2025. "Recent Advances in Cooling Technology for the Leading Edge of Gas Turbine Blades" Energies 18, no. 3: 540. https://doi.org/10.3390/en18030540
APA StyleZhu, S., Li, Y., Yan, J., & Zhang, C. (2025). Recent Advances in Cooling Technology for the Leading Edge of Gas Turbine Blades. Energies, 18(3), 540. https://doi.org/10.3390/en18030540