A Review of Multi-Temporal Scale Regulation Requirements of Power Systems and Diverse Flexible Resource Applications
Abstract
:1. Introduction
2. Analysis of Regulation Requirements Based on Temporal Scales
2.1. Instantaneous and Short-Term Scale
2.2. Medium-Term Scale
2.3. Long-Term Scale
3. Overview of Diverse Flexible Resources
3.1. Classification of Flexible Resources
3.1.1. Supply-Side Flexible Resources
- Flexible Fossil Fuel Power Plants
- Hydropower Resources
- Nuclear Power Resources
3.1.2. Grid-Side Flexible Resources
3.1.3. Storage-Side Flexible Resources
3.1.4. Demand-Side Flexible Resources
3.2. Comparative Characteristics of Flexible Resources
4. Application of Diverse Flexible Resources Across Different Time Scales
4.1. Instantaneous and Short-Term Applications
4.1.1. Single Regulation Methods for Instantaneous and Short-Term Needs
- Frequency Regulation
- Voltage Stability
- Power Quality Maintenance
4.1.2. Hybrid Regulation Methods for Instantaneous and Short-Term Needs
- Frequency Regulation with Demand Response and Batteries
- Voltage Support with Pumped Hydro Storage and Wind Power
- Power Quality Maintenance with Gas Turbines and Batteries.
4.2. Medium-Term Applications
4.2.1. Single Regulation Methods for Medium-Term Needs
- Generation Scheduling and Forecasting
- Reserve Capacity Management
- Ramp Rate Adjustment
- Voltage Stability
- Minimum Output Flexibility
4.2.2. Hybrid Regulation Methods for Medium-Term Needs
- Generation Scheduling and Forecasting with Batteries and Hydropower
- Reserve Capacity with Gas and Storage Systems
- Ramp Rate Flexibility with Gas and Storage
- Voltage Stability with Wind, Storage, and Stabilizing Devices
- Minimum Output Flexibility with Storage and Demand Response
4.3. Long-Term Applications
4.3.1. Single Regulation Methods for Long-Term Needs
- Capacity Planning and Integration of New Generation Resources
- Evolving Flexibility of the System
- Shifts in Demand Patterns
4.3.2. Hybrid Regulation Methods for Long-Term Needs
- Capacity Planning and Integration of New Generation Resources
- Shifts in Demand Patterns
5. Future Development Directions
5.1. Short-Term
5.2. Medium-Term
5.3. Long-Term
5.3.1. Hydrogen Energy’s Application Prospects in Power Systems
5.3.2. Development of Hydrogen Production and Storage Technologies
5.3.3. Integration of Hydrogen Energy with Other Energy Systems
6. Conclusions and Outlook
- Diverse Flexible Resources
- Short-Term Flexibility
- Medium-Term Flexibility
- Long-Term Flexibility
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sayed, E.T.; Olabi, A.G.; Alami, A.H.; Radwan, A.; Mdallal, A.; Rezk, A.; Abdelkareem, M.A. Renewable Energy and Energy Storage Systems. Energies 2023, 16, 1415. [Google Scholar] [CrossRef]
- Khare, V.; Nema, S.; Baredar, P. Solar-wind hybrid renewable energy system: A review. Renew. Sustain. Energy Rev. 2016, 58, 23–33. [Google Scholar] [CrossRef]
- Impram, S.; Nese, S.V.; Oral, B. Challenges of renewable energy penetration on power system flexibility: A survey. Energy Strategy Rev. 2020, 31, 100539. [Google Scholar] [CrossRef]
- Muzammal Islam, M.; Yu, T.; Giannoccaro, G.; Mi, Y.; la Scala, M.; Rajabi Nasab, M.; Wang, J. Improving Reliability and Stability of the Power Systems: A Comprehensive Review on the Role of Energy Storage Systems to Enhance Flexibility. IEEE Access 2024, 12, 152738–152765. [Google Scholar] [CrossRef]
- Mlilo, N.; Brown, J.; Ahfock, T. Impact of intermittent renewable energy generation penetration on the power system networks—A review. Technol. Econ. Smart Grids Sustain. Energy 2021, 6, 25. [Google Scholar] [CrossRef]
- Shahzad, S.; Jasinska, E. Renewable Revolution: A Review of Strategic Flexibility in Future Power Systems. Sustainability 2024, 16, 5454. [Google Scholar] [CrossRef]
- Anwar, M.B.; Qazi, H.W.; Burke, D.J.; O’Malley, M.J. Harnessing the Flexibility of Demand-Side Resources. IEEE Trans. Smart Grid 2018, 10, 4151–4163. [Google Scholar] [CrossRef]
- Haikarainen, C.; Pettersson, F.; Saxén, H. Optimising the Regional Mix of Intermittent and Flexible Energy Technologies. J. Clean. Prod. 2019, 219, 508–517. [Google Scholar] [CrossRef]
- Dalhues, S.; Zhou, Y.; Pohl, O.; Rewald, F.; Erlemeyer, F.; Schmid, D.; Zwartscholten, J.; Hagemann, Z.; Wagner, C.; Gonzalez, D.M.; et al. Research and Practice of Flexibility in Distribution Systems: A Review. CSEE J. Power Energy Syst. 2019, 5, 285–294. [Google Scholar] [CrossRef]
- Heggarty, T.; Bourmaud, J.-Y.; Girard, R.; Kariniotakis, G. Multi-temporal Assessment of Power System Flexibility Requirement. Appl. Energy 2019, 238, 1327–1336. [Google Scholar] [CrossRef]
- Yamujala, S.; Kushwaha, P.; Jain, A.; Bhakar, R.; Wu, J.; Mathur, J. A Stochastic Multi-Interval Scheduling Framework to Quantify Operational Flexibility in Low Carbon Power Systems. Appl. Energy 2021, 304, 117763. [Google Scholar] [CrossRef]
- Heggarty, T.; Bourmaud, J.-Y.; Girard, R.; Kariniotakis, G. Quantifying Power System Flexibility Provision. Appl. Energy 2020, 279, 115852. [Google Scholar] [CrossRef]
- Wang, Z.; Xi, K.; Cheng, A.; Lin, H.; Ran, A.C.M.; van Schuppen, J.H.; Zhang, C. Synchronization of Power Systems under Stochastic Disturbances. Automatica 2023, 151, 110884. [Google Scholar] [CrossRef]
- Qin, B.; Wang, H.; Li, W.; Li, F.; Wang, W.; Ding, T. Aperiodic Coordination Scheduling of Multiple PPLs in Shipboard Integrated Power Systems. IEEE Trans. Intell. Transp. Syst. 2024, 25, 14844–14854. [Google Scholar] [CrossRef]
- Li, H.; Qin, B.; Wang, S.; Ding, T.; Liu, J.; Wang, H. Aggregate power flexibility of multi-energy systems supported by dynamic networks. Appl. Energy 2025, 377, 124565. [Google Scholar] [CrossRef]
- Arya, Y. Effect of Energy Storage Systems on Automatic Generation Control of Interconnected Traditional and Restructured Energy Systems. Int. J. Energy Res. 2019, 43, 6475–6493. [Google Scholar] [CrossRef]
- Du, Y.; Wu, J.; Li, S.; Long, C.; Onori, S. Hierarchical Coordination of Two-Time Scale Microgrids with Supply-Demand Imbalance. IEEE Trans. Smart Grid 2020, 11, 3726–3736. [Google Scholar] [CrossRef]
- Li, H.; Yu, H.; Liu, Z.; Li, F.; Wu, X.; Cao, B.; Zhang, C.; Liu, D. Long-term scenario generation of renewable ener-gy generation using attention-based conditional generative adversarial networks. Energy Convers. 2024, 5, 15–27. [Google Scholar] [CrossRef]
- Yuan, Z.; Zecchino, A.; Cherkaoui, R.; Paolone, M. Real-time Control of Battery Energy Storage Systems to Provide Ancillary Services Considering Voltage-Dependent Capability of DC-AC Converters. IEEE Trans. Smart Grid 2021, 12, 4164–4175. [Google Scholar] [CrossRef]
- Doenges, K.; Egido, I.; Sigrist, L.; Lobato Miguélez, E.; Rouco, L. Improving AGC Performance in Power Systems with Regulation Response Accuracy Margins Using Battery Energy Storage System (BESS). IEEE Trans. Power Syst. 2019, 35, 2816–2825. [Google Scholar] [CrossRef]
- Alsharif, H.; Jalili, M.; Hasan, K.N. Fast Frequency Response Services in Low Inertia Power Systems—A Review. Energy Rep. 2023, 9, 228–237. [Google Scholar] [CrossRef]
- Homan, S.; Mac Dowell, N.; Brown, S. Grid Frequency Volatility in Future Low Inertia Scenarios: Challenges and Mitigation Options. Appl. Energy 2021, 290, 116723. [Google Scholar] [CrossRef]
- Al Kez, D.; Foley, A.M.; McIlwaine, N.; Morrow, D.J.; Hayes, B.P.; Zehir, M.A.; Mehigan, L.; Papari, B.; Edrington, C.S.; Baran, M. A Critical Evaluation of Grid Stability and Codes, Energy Storage and Smart Loads in Power Systems with Wind Generation. Energy 2020, 205, 117671. [Google Scholar] [CrossRef]
- Yoo, Y.; Jung, S.; Jang, G. Dynamic Inertia Response Support by Energy Storage System with Renewable Energy Integration Substation. J. Mod. Power Syst. Clean Energy 2020, 8, 260–266. [Google Scholar] [CrossRef]
- Ahmed, F.; Al Kez, D.; McLoone, S.; Best, R.J.; Cameron, C.; Foley, A. Dynamic Grid Stability in Low Carbon Power Systems with Minimum Inertia. Renew. Energy 2023, 210, 486–506. [Google Scholar] [CrossRef]
- Baringo, A.; Baringo, L.; Arroyo, J.M. Day-Ahead Self-Scheduling of a Virtual Power Plant in Energy and Reserve Electricity Markets under Uncertainty. IEEE Trans. Power Syst. 2018, 34, 1881–1894. [Google Scholar] [CrossRef]
- Dhaliwal, N.K.; Bouffard, F.; O’Malley, M.J. A Fast Flexibility-Driven Generation Portfolio Planning Method for Sustainable Power Systems. IEEE Trans. Sustain. Energy 2020, 12, 368–377. [Google Scholar] [CrossRef]
- Okur, Ö.; Voulis, N.; Heijnen, P.; Lukszo, Z. Aggregator-mediated Demand Response: Minimizing Imbalances Caused by Uncertainty of Solar Generation. Appl. Energy 2019, 247, 426–437. [Google Scholar] [CrossRef]
- Mehrjerdi, H.; Rakhshani, E. Correlation of Multiple Time-Scale and Uncertainty Modelling for Renewable Energy-Load Profiles in Wind Powered System. J. Clean. Prod. 2019, 236, 117644. [Google Scholar] [CrossRef]
- Pourahmadi, F.; Kazempour, J.; Ordoudis, C.; Pinson, P.; Hosseini, S.H. Distributionally Robust Chance-Constrained Generation Expansion Planning. IEEE Trans. Power Syst. 2020, 35, 2888–2903. [Google Scholar] [CrossRef]
- Qin, B.; Li, H.; Wang, Z.; Jiang, Y.; Lu, D.; Du, X.; Qian, Q. New framework of low-carbon city development of China: Underground space based integrated energy systems. Undergr. Space 2024, 14, 300–318. [Google Scholar] [CrossRef]
- Hunt, J.D.; Zakeri, B.; Lopes, R.; Barbosa, P.S.F.; Nascimento, A.; de Castro, N.J.; Brandão, R.; Schneider, P.S.; Wada, Y. Existing and New Arrangements of Pumped-Hydro Storage Plants. Renew. Sustain. Energy Rev. 2020, 129, 109914. [Google Scholar] [CrossRef]
- Bilal, A.B.; Sarmad, H.; Jan, A.; Bhaskar, M.; Roshan, K.; Di, W. Using Energy Storage Systems to Extend the Life of Hydropower Plants. Appl. Energy 2023, 337, 120894. [Google Scholar] [CrossRef]
- Biber, A.; Wieland, C.; Spliethoff, H. Economic Analysis of Energy Storages Integrated into Combined-Cycle Power Plants. Energy Policy 2022, 170, 113255. [Google Scholar] [CrossRef]
- Khojasteh, M.; Faria, P.; Vale, Z. A Robust Model for Aggregated Bidding of Energy Storages and Wind Resources in the Joint Energy and Reserve Markets. Energy 2022, 238, 121735. [Google Scholar] [CrossRef]
- Khorasany, M.; Najafi-Ghalelou, A.; Afshin and Razzaghi, R. A Framework for Joint Scheduling and Power Trading of Prosumers in Transactive Markets. IEEE Trans. Sustain. Energy 2021, 12, 955–965. [Google Scholar] [CrossRef]
- Askeland, M.; Backe, S.; Bjarghov, S.; Korpås, M. Helping End-Users Help Each Other: Coordinating Development and Operation of Distributed Resources Through Local Power Markets and Grid Tariffs. Energy Econ. 2021, 94, 105065. [Google Scholar] [CrossRef]
- Minai, A.F.; Khan, A.A.; Kitmo; Ndiaye, M.F.; Alam, T.; Khargotra, R.; Singh, T. Evolution and Role of Virtual Power Plants: Market Strategy with Integration of Renewable Based Microgrids. Energy Strategy Rev. 2024, 53, 101390. [Google Scholar] [CrossRef]
- Nikos, D.H.; Georgia, E.A. DER Integration Through a Monopoly DER Aggregator. Energy Policy 2020, 137, 111124. [Google Scholar] [CrossRef]
- Lledó, L.; Torralba, V.; Soret, A.; Ramon, J.; Doblas-Reyes, F.J. Seasonal Forecasts of Wind Power Generation. Renew. Energy 2019, 143, 91–100. [Google Scholar] [CrossRef]
- Orlov, A.; Jana, S.; Ilaria, V. Author Correction: Better Seasonal Forecasts for the Renewable Energy Industry. Nat. Energy 2020, 5, 108–110. [Google Scholar] [CrossRef]
- Zhou, T.; Kao, S.; Xu, W.; Gangrade, S.; Voisin, N. Impacts of Climate Change on Sub-annual Hydropower Generation: A Multi-Model Assessment of the United States Federal Hydropower Plant. Environ. Res. Lett. 2023, 18, 034009. [Google Scholar] [CrossRef]
- Dimanchev, E.G.; Hodge, J.L.; Parsons, J.E. The Role of Hydropower Reservoirs in Deep Decarbonization Policy. Energy Policy 2021, 155, 112369. [Google Scholar] [CrossRef]
- Cáceres, A.L.; Jaramillo, P.; Matthews, H.S.; Samaras, C.; Nijssen, B. Potential Hydropower Contribution to Mitigate Climate Risk and Build Resilience in Africa. Nat. Clim. Chang. 2022, 12, 719–727. [Google Scholar] [CrossRef]
- Jahns, C.; Podewski, C.; Weber, C. Supply Curves for Hydro Reservoirs—Estimation and Usage in Large-Scale Electricity Market Models. Energy Econ. 2020, 87, 104696. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Z.; Zhuo, R.; Wang, X. Optimal operation of independent regional power grid with multiple wind-solar-hydro-battery power. Appl. Energy 2019, 235, 1541–1550. [Google Scholar] [CrossRef]
- Hunter, C.A.; Penev, M.M.; Reznicek, E.P.; Eichman, J.; Rustagi, N.; Baldwin, S.F. Techno-economic Analysis of Long-Duration Energy Storage and Flexible Power Generation Technologies to Support High-Variable Renewable Energy Grids. Joule 2020, 5, 2077–2101. [Google Scholar] [CrossRef]
- Sánchez-Díez, E.; Ventosa, E.; Guarnieri, M.; Trovò, A.; Flox, C.; Marcilla, R.; Soavi, F.; Mazur, P.; Aranzabe, E.; Ferret, R. Redox Flow Batteries: Status and Perspective Towards Sustainable Stationary Energy Storage. J. Power Sources 2021, 481, 228804. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abdelkareem, M.A. Energy Storage Systems Towards 2050. Energy 2021, 219, 119634. [Google Scholar] [CrossRef]
- Babatunde, O.M.; Munda, J.L.; Hamam, Y. Power system flexibility: A review. Energy Rep. 2020, 6, 101–106. [Google Scholar] [CrossRef]
- Good, N.; Mancarella, P. Flexibility in Multi-Energy Communities with Electrical and Thermal Storage: A Stochastic, Robust Approach for Multi-Service Demand Response. IEEE Trans. Smart Grid 2019, 10, 503–513. [Google Scholar] [CrossRef]
- Xi, Y.; Fang, J.; Chen, Z.; Zeng, Q.; Lund, H. Optimal Coordination of Flexible Resources in the Gas-Heat-electricity Integrated Energy System. Energy 2021, 223, 119729. [Google Scholar] [CrossRef]
- Ding, Y.; Li, M.; Abdulla, A.; Shan, R.; Ga, S.; Jia, G. The Persistence of Flexible Coal in a Deeply Decarbonizing Energy System. Environ. Res. Lett. 2021, 16, 064043. [Google Scholar] [CrossRef]
- Shrimali, G. Managing Power System Flexibility in India Via Coal Plants. Energy Policy 2021, 150, 112061. [Google Scholar] [CrossRef]
- Rúa, J.; Verheyleweghen, A.; Jäschke, J.; Nord, L.O. Optimal Scheduling of Flexible Thermal Power Plants with Lifetime Enhancement under Uncertainty. Appl. Therm. Eng. 2021, 191, 116794. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, M.; Yan, J. Flexibility and Efficiency Co-Enhancement of Thermal Power Plant by Control Strategy Improvement Considering Time Varying and Detailed Boiler Heat Storage Characteristics. Energy 2021, 232, 121048. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, L.; Xu, C.; Van, H.J.; Maréchal, F.; Yang, Y. Enhancing the operational flexibility of thermal power plants by coupling high-temperature power-to-gas. Appl. Energy 2020, 263, 114608. [Google Scholar] [CrossRef]
- Wang, C.; Song, J.; Zhu, L.; Zheng, W.; Liu, Z.; Lin, C. Peak Shaving and Heat Supply Flexibility of Thermal Power Plants. Appl. Therm. Eng. 2021, 193, 117030. [Google Scholar] [CrossRef]
- Li, H.; Qin, B.; Wang, S.; Ding, T.; Wang, H. Data-driven two-stage scheduling of multi-energy systems for operational flexibility enhancement. Int. J. Electr. Power Energy Syst. 2024, 162, 110230. [Google Scholar] [CrossRef]
- Golovina, E.Y.; Samarkina, E.V.; Buinov, N.E.; Evloeva, M.V. Digitalization and digital transformation of the thermal-power industry as a factor of improving the thermal infrastructure efficiency. Therm. Eng. 2022, 69, 393–404. [Google Scholar] [CrossRef]
- Zhao, Z.; Ding, X.; Behrens, P.; Li, J.; He, M.; Gao, Y.; Liu, G.; Xu, B.; Chen, D. The Importance of Flexible Hydropower in Providing Electricity Stability During China’s Coal Phase-out. Appl. Energy 2023, 336, 120684. [Google Scholar] [CrossRef]
- Qin, B.; Wang, H.; Liao, Y.; Liu, D.; Wang, Z.; Li, F. Liquid hydrogen superconducting transmission based super energy pipeline for Pacific Rim in the context of global energy sustainable development. Int. J. Hydrogen Energy 2024, 56, 1391–1396. [Google Scholar] [CrossRef]
- Qin, B.; Wang, H.; Li, F.; Liu, D.; Liao, Y.; Li, H. Towards zero carbon hydrogen: Co-production of photovoltaic electrolysis and natural gas reforming with CCS. Int. J. Hydrogen Energy 2024, 78, 604–609. [Google Scholar] [CrossRef]
- The Engineering ToolBox. 2008. Hydropower. Available online: https://www.engineeringtoolbox.com/hydropower-d_1359.html (accessed on 3 January 2025).
- Huang, J.; Li, W.; Wu, X.; Gu, Z. A Bi-Level Capacity Planning Approach of Combined Hydropower Hydrogen System. J. Clean. Prod. 2021, 327, 129414. [Google Scholar] [CrossRef]
- Lopes, R.A.; Junker, R.G.; Martins, J.; Murta-Pina, J.; Reynders, G.; Madsen, H. Characterisation and Use of Energy Flexibility in Water Pumping and Storage Systems. Appl. Energy 2020, 277, 115587. [Google Scholar] [CrossRef]
- National Energy Agency. Technical and Economic Aspects of Load Following with Nuclear Power Plants; National Energy Agency: London, UK, 2011. [Google Scholar]
- National Renewable Energy Laboratory. Flexible Nuclear Energy for Clean Energy Systems; National Renewable Energy Laboratory: Denver, CO, USA, 2020. [Google Scholar]
- Lee, K.; Choe, J.; Lee, D. Application of load follow operation to equilibrium cycle. In Proceedings of the Transactions of the Korean Nuclear Society Autumn Meeting, Gyeongju, Republic of Korea, 25–26 October 2012. [Google Scholar]
- Cui, C.; Zhang, J.; Shen, J. System-level modeling, analysis and coordinated control design for the pressurized water reactor nuclear power system. Energy 2023, 283, 128472. [Google Scholar] [CrossRef]
- World Nuclear Performance Report 2024. Available online: https://world-nuclear.org/our-association/publications/global-trends-reports/world-nuclear-performance-report-2024 (accessed on 3 January 2025).
- Morilhat, P.; Feutry, S.; Maitre, C.L.; Favennec, J.M. Nuclear Power Plant flexibility at EDF. HAL 2019, preprint. [Google Scholar]
- EUR Organization. European Utility Requirements for LWR Nuclear Power Plants; Revision E; EUR Organization: Vienna, Austria, 2016. [Google Scholar]
- Advanced Research Projects Agency-Energy. DAYS Duration Addition to Electricity Storage; Advanced Research Projects Agency-Energy: Washington, DC, USA, 2018.
- Li, J.; Liu, F.; Li, Z.; Shao, C.; Liu, X. Grid-side flexibility of power systems in integrating large-scale renewable generations: A critical review on concepts, formulations and solution approaches. Renew. Sustain. Energy Rev. 2018, 93, 272–284. [Google Scholar] [CrossRef]
- Murphy, C.; Mai, T.; Sun, Y.N.; Jadun, P.; Muratori, M.; Nelson, B.; Jones, R. Electrification Futures Study: Scenarios of Power System Evolution and Infrastructure Development for the United States; National Renewable Energy Laboratory: Golden, CO, USA, 2021. [Google Scholar]
- Degefa, M.Z.; Sperstad, I.B.; Sæl, H. Comprehensive classifications and characterizations of power system flexibility resources. Electr. Power Syst. Res. 2021, 194, 107022. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, X.; Dou, X.; Zhang, X. A data-driven coulomb counting method for state of charge calibration and estimation of lithium-ion battery. Sustain. Energy Technol. Assess. 2020, 40, 100752. [Google Scholar] [CrossRef]
- Alberto, B. Hydrogen key technology to cover the energy storage needs of NEOM City. Int. J. Hydrogen Energy 2022, 47, 14371–14374. [Google Scholar] [CrossRef]
- Yamujala, S.; Jain, A.; Bhakar, R.; Mathur, J.; Kushwaha, P. Operational flexibility enhancement through flexible ramp products from energy storage. In Proceedings of the 2019 8th International Conference on Power Systems (ICPS), Jaipur, India, 20–22 December 2019; Volume 8, pp. 1–5. [Google Scholar] [CrossRef]
- Qin, R.; Chen, J.; Li, Z.; Teng, W.; Liu, Y. Simulation of secondary frequency modulation process of wind power with auxiliary of flywheel energy storage. Sustainability 2023, 15, 11832. [Google Scholar] [CrossRef]
- Marzooghi, H.; Verbič, G.; Hill, D.J. Aggregated demand response modelling for future grid scenarios. Sustain. Energy Grids Netw. 2016, 5, 94–104. [Google Scholar] [CrossRef]
- Park, D.W.; Caas, N.A.; Schwan, M.; Milow, B.; Ratke, L.; Friedrich, K. A dual mesopore electrode for a high energy density supercapacitor. Curr. Appl. Phys. 2016, 16, 658–664. [Google Scholar] [CrossRef]
- Muzaffar, A.; Ahamed, M.B.; Deshmukh, K.; Thirumalai, J. A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renew. Sustain. Energy Rev. 2019, 101, 123–145. [Google Scholar] [CrossRef]
- Liu, H.; Hu, Z.; Song, Y.; Lin, J. Decentralized vehicle to grid control for primary frequency regulation considering charging demands. IEEE Trans. Power Syst. 2013, 28, 3480–3489. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Z.; Li, G.; Zhao, D.; Tian, W. Optimal scheduling of an isolated microgrid with battery storage considering load and renewable generation Uncertainties. IEEE Trans. Ind. Electron. 2019, 66, 1565–1575. [Google Scholar] [CrossRef]
- Reddy, S.S. Optimal scheduling of thermal-wind-solar power system with storage. Renew. Energy 2017, 101, 1357–1368. [Google Scholar] [CrossRef]
- Yu, B.; Sun, F.; Chen, C.; Fu, G.; Hu, L. Power demand response in the context of smart home application. Energy 2022, 240, 122774. [Google Scholar] [CrossRef]
- Qin, B.; Liu, W.; Li, H.; Ding, T.; Ma, K.; Liu, T. Impact of System Inherent Characteristics on Initial-Stage Short-Circuit Current of MMC-Based MTDC Transmission Systems. IEEE Trans. Power Syst. 2022, 37, 3913–3922. [Google Scholar] [CrossRef]
- Zhu, J.; Lin, Y.; Lei, W.; Liu, Y.; Tao, M. Optimal household appliances scheduling of multiple smart homes using an improved cooperative algorithm. Energy 2019, 171, 944–955. [Google Scholar] [CrossRef]
- Li, L.; Cao, X.; Wang, P. Optimal coordination strategy for multiple distributed energy systems considering supply, demand, and price uncertainties. Energy 2021, 227, 122774. [Google Scholar] [CrossRef]
- Wang, M.; Guo, J.; Ma, S.; Zhang, X.; Wang, T.; Luo, K. A Novel Decentralized Frequency Regulation Method of Renewable Energy Stations Based on Minimum Reserve Capacity for Renewable Energy-Dominated Power Systems. IEEE Trans. Power Syst. 2023, 39, 3701–3714. [Google Scholar] [CrossRef]
- Curto, D.; Favuzza, S.; Franzitta, V.; Guercio, A.; Navia, M.A.N.; Telaretti, E.; Zizzo, G. Grid stability improvement using synthetic inertia by battery energy storage systems in small islands. Energy 2022, 254, 124456. [Google Scholar] [CrossRef]
- Singh, P.; Arora, K.; Rathore, U.C.; Joshi, G.P.; Cho, W. Comparative study of controllers in battery energy storage system integrated with doubly fed induction generator-based wind energy conversion system for power quality improvement. Energy Rep. 2024, 11, 4587–4600. [Google Scholar] [CrossRef]
- Zhao, Z.; Yuan, Y.; He, M.; Jurasz, J.; Wang, J.; Egusquiza, M.; Egusquiza, E.; Xu, B.; Chen, D. Stability and efficiency performance of pumped hydro energy storage system for higher flexibility. Renew. Energy 2022, 199, 1482–1494. [Google Scholar] [CrossRef]
- Prasasti, E.B.; Aouad, M.; Joseph, M.; Zangeneh, M.; Terheiden, K. Optimization of pumped hydro energy storage design and operation for offshore low-head application and grid stabilization. Renew. Sustain. Energy Rev. 2024, 191, 114122. [Google Scholar] [CrossRef]
- Wang, H.; Qin, B.; Hong, S.; Cai, Q.; Li, F.; Ding, T.; Li, H. Optimal planning of hybrid hydrogen and battery energy storage for resilience enhancement using bi-layer decomposition algorithm. J. Energy Storage 2025, 110, 115367. [Google Scholar] [CrossRef]
- Shang, L.; Dong, X.; Liu, C.; Gong, Z. Fast grid frequency and voltage control of battery energy storage system based on the amplitude-phase-locked-loop. IEEE Trans. Smart Grid 2021, 13, 941–953. [Google Scholar] [CrossRef]
- Gilani, M.A.; Kazemi, A.; Ghasemi, M. Distribution system resilience enhancement by microgrid formation considering distributed energy resources. Energy 2020, 191, 116442. [Google Scholar] [CrossRef]
- Pusceddu, E.; Zakeri, B.; Gissey, G.C. Synergies between energy arbitrage and fast frequency response for battery energy storage systems. Appl. Energy 2021, 283, 116274. [Google Scholar] [CrossRef]
- Vasudevan, K.R.; Ramachandaramurthy, V.K.; Venugopal, G.; Ekanayake, J.; Tiong, S. Variable speed pumped hydro storage: A review of converters, controls and energy management strategies. Renew. Sustain. Energy Rev. 2021, 135, 110156. [Google Scholar] [CrossRef]
- Gulzar, M.M.; Iqbal, M.; Shahzad, S.; Muqeet, H.A.; Shahzad, M.; Hussain, M.M. Load Frequency Control (LFC) Strategies in Renewable Energy-Based Hybrid Power Systems: A Review. Energies 2022, 15, 3488. [Google Scholar] [CrossRef]
- Brown, P.R.; Botterud, A. The Value of Inter-Regional Coordination and Transmission in Decarbonizing the US Electricity System. Joule 2020, 5, 115–134. [Google Scholar] [CrossRef]
- Deng, X.; Lv, T.; Xu, J.; Hou, X.; Liu, F. Assessing the integration effect of inter-regional transmission on variable power generation under renewable energy consumption policy in China. Energy Policy 2022, 170, 113219. [Google Scholar] [CrossRef]
- Kumar, D.S.; Salish, M.; Srinivasan, D. Ramp-rate limiting strategies to alleviate the impact of PV power ramping on voltage fluctuations using energy storage systems. Sol. Energy 2022, 234, 377–386. [Google Scholar] [CrossRef]
- Bazdar, E.; Sameti, M.; Nasiri, F.; Haghighat, F. Compressed air energy storage in integrated energy systems: A review. Renew. Sustain. Energy Rev. 2022, 167, 112701. [Google Scholar] [CrossRef]
- Vasconcelos, M.H. Flexibility extension in hydropower for the provision of frequency control services within the European energy transition. Int. J. Electr. Power Energy Syst. 2024, 156, 109689. [Google Scholar] [CrossRef]
- Park, Y.K.; Seong, W.M.; Tong, S.K. Advanced control to improve the ramp-rate of a gas turbine: Optimization of control schedule. Energies 2021, 14, 8024. [Google Scholar] [CrossRef]
- Palacios, A.; Barreneche, C.; Navarro, M.; Ding, Y. Thermal energy storage technologies for concentrated solar power—A review from a materials perspective. Renew. Energy 2020, 156, 1244–1265. [Google Scholar] [CrossRef]
- Zakeri, B.; Gissey, G.C.; Dodds, P.E.; Subkhankulova, D. Centralized vs. distributed energy storage—Benefits for residential users. Energy 2021, 236, 121443. [Google Scholar] [CrossRef]
- Yuan, Z.; Xia, J.; Li, P. Two-Time-Scale Energy Management for Microgrids with Data-Based Day-Ahead Distribution Robust Chance-Constrained Scheduling. IEEE Trans. Smart Grid 2021, 12, 4778–4787. [Google Scholar] [CrossRef]
- Li, X.; Wang, W.; Wang, H. Hybrid time-scale energy optimal scheduling strategy for integrated energy system with bilateral interaction with supply and demand. Appl. Energy 2021, 285, 116458. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, T.; Zhou, Q.; Sun, Y.; Qu, M.; Zeng, Z.; Ju, Y.; Li, L.; Wang, K.; Chi, F. A review of technologies and applications on versatile energy storage systems. Renew. Sustain. Energy Rev. 2021, 148, 111263. [Google Scholar] [CrossRef]
- Attar, M.; Repo, S.; Homaee, O.; Siano, P. Mid-term operational planning of pre-installed voltage regulators in distribution networks. Int. J. Electr. Power Energy Syst. 2021, 133, 107276. [Google Scholar] [CrossRef]
- Durvasulu, V.; Balliet, W.H.; Lopez, C.J.; Lin, Y.; Li, B.; Alam, S.S.; Mahalik, M.R.; Kwon, J.; Mosier, T.M. Rationale for adding batteries to hydropower plants and tradeoffs in hybrid system operation: A review. Renew. Sustain. Energy Rev. 2024, 202, 114673. [Google Scholar] [CrossRef]
- Ćalasan, M.; Kecojević, K.; Lukačević, O.; Ali, Z.M. Testing of influence of SVC and energy storage device’s location on power system using GAMS. In Uncertainties in Modern Power Systems; Academic Press: Cambridge, MA, USA, 2021; pp. 297–342. [Google Scholar]
- Pommeret, A.; Schubert, K. Optimal energy transition with variable and intermittent renewable electricity generation. J. Econ. Dyn. Control 2022, 134, 104273. [Google Scholar] [CrossRef]
- Li, B.; Wang, H.; Tan, Z. Capacity optimization of hybrid energy storage system for flexible islanded microgrid based on real-time price-based demand response. Int. J. Electr. Power Energy Syst. 2022, 136, 107581. [Google Scholar] [CrossRef]
- Zhang, Z.; Qin, B.; Gao, X.; Ding, T.; Zhang, Y.; Wang, H. SE-CNN based emergency control coordination strategy against voltage instability in multi-infeed hybrid AC/DC systems. Int. J. Electr. Power Energy Syst. 2024, 160, 110082. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, H. New energy generation forecasting and dispatching method based on big data. Energy Rep. 2021, 7, 1280–1288. [Google Scholar] [CrossRef]
- Xi, H.; Wu, X.; Chen, X.; Sha, P. Artificial intelligent based energy scheduling of steel mill gas utilization system towards carbon neutrality. Appl. Energy 2021, 295. [Google Scholar] [CrossRef]
- Qin, B.; Wang, H.; Liao, Y.; Li, H.; Ding, T.; Wang, Z.; Li, F.; Liu, D. Challenges and opportunities for long-distance renewable energy transmission in China. Sustain. Energy Technol. Assess. 2024, 69, 103925. [Google Scholar] [CrossRef]
- Khezri, R.; Amin, M.; Hirohisa, A. Optimal planning of solar photovoltaic and battery storage systems for grid-connected residential sector: Review, challenges and new perspectives. Renew. Sustain. Energy Rev. 2022, 153, 111763. [Google Scholar] [CrossRef]
- Gjorgievski, V.Z.; Markovska, N.; Abazi, A.; Duić, N. The potential of power-to-heat demand response to improve the flexibility of the energy system: An empirical review. Renew. Sustain. Energy Rev. 2021, 138, 110489. [Google Scholar] [CrossRef]
- Ismail, A.A.; Mbungu, N.T.; Elnady, A.; Bansal, R.C.; Hamid, A.K. Impact of electric vehicles on smart grid and future predictions: A survey. Int. J. Model. Simul. 2023, 43, 1041–1057. [Google Scholar] [CrossRef]
- Sadeghian, O.; Oshnoei, A.; Mohammadi-Ivatloo, B.; Vahidinasab, V.; Anvari-Moghaddam, A. A comprehensive review on electric vehicles smart charging: Solutions, strategies, technologies, and challenges. J. Energy Storage 2022, 54, 105241. [Google Scholar] [CrossRef]
- Marinković, D.; Dezső, G.; Milojević, S. Application of Machine Learning During Maintenance and Exploitation of Electric Vehicles. Adv. Eng. Lett. 2024, 3, 132–140. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, T.; Gao, R.; Wu, C. Portfolio planning of renewable energy with energy storage technologies for different applications from electricity grid. Appl. Energy 2021, 287, 116562. [Google Scholar] [CrossRef]
- Dong, H.; Fu, Y.; Jia, Q.; Zhang, T.; Meng, D. Low carbon optimization of integrated energy microgrid based on life cycle analysis method and multi time scale energy storage. Renew. Energy 2023, 206, 60–71. [Google Scholar] [CrossRef]
- Andersson, J.; Grönkvist, S. Large-scale storage of hydrogen. Int. J. Hydrogen Energy 2019, 44, 11901–11919. [Google Scholar] [CrossRef]
- Egeland-Eriksen, T.; Hajizadeh, A.; Sartori, S. Hydrogen-based systems for integration of renewable energy in power systems: Achievements and perspectives. Int. J. Hydrogen Energy 2021, 46, 31963–31983. [Google Scholar] [CrossRef]
- Zhang, Y.; Davis, D.; Brear, M.J. The role of hydrogen in decarbonizing a coupled energy system. J. Clean. Prod. 2022, 346, 131082. [Google Scholar] [CrossRef]
- Zhang, C.; Greenblatt, J.; Wei, M.; Eichman, J.; Saxena, S.; Muratori, M.; Guerra, O.J. Flexible grid-based electrolysis hydrogen production for fuel cell vehicles reduces costs and greenhouse gas emissions. Appl. Energy 2020, 278, 115651. [Google Scholar] [CrossRef]
- Ozturk, M.; Dincer, I. Development of renewable energy system integrated with hydrogen and natural gas subsystems for cleaner combustion. J. Nat. Gas Sci. Eng. 2020, 83, 103583. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, H.; Tan, J.; Li, Z.; Hou, W.; Guo, Y. Capacity configuration optimization of multi-energy system integrating wind turbine/photovoltaic/hydrogen/battery. Energy 2022, 252, 124046. [Google Scholar] [CrossRef]
- Yang, M.; Hunger, R.; Berrettoni, S.; Sprecher, B.; Wan, B. A review of hydrogen storage and transport technologies. Clean Energy 2023, 7, 190–216. [Google Scholar] [CrossRef]
Time Scale | Regulation Requirements | Challenges |
---|---|---|
Instantaneous and Short-Term | System dynamic response to sudden disturbances, frequency stability, voltage regulation, power angle stability, inertia | System inertia is low due to high renewable penetration, frequency and voltage fluctuations, and ramp rate limitations. |
Medium-Term | Scheduling and reserve capacity management, generation and load uncertainty, demand pattern changes | Deviation in load prediction and volatility in renewable generation, ramp rate limitations of traditional generation. |
Long-Term | Capacity planning, integration of new generation resources, demand shifts, adaptation to changing demand patterns | Forecasting errors, uncertainty in energy resource availability, mismatched generation, and load over the long-term. |
Type | Operational Range | Ramping Rate | Start-Up Time | Regulation Timescale | Relative Capital Cost | Relative Operational Cost | Relative LCOE | |
---|---|---|---|---|---|---|---|---|
Supply | Normal coal-fired unit | 50–100% | 1–2% | 6–10 h | Short/Medium/Long | Medium | Medium | Medium |
Retrofitted coal-fired unit | 30–100% | 3–6% | 4–5 h | Short/Medium | Medium | Medium | Medium | |
Gas plant | 20–100% | 8% | 2 h | Short/Medium | Medium | Medium | Medium | |
Dispatchable hydropower | 0–100% | 20% | <1 h | Short/Medium/Long | Medium | Low | Low | |
Nuclear power | 20–100% | 1–5% | 30 min | Short/Medium/Long | Very High | Medium | High | |
Load | Demand response | 3–5% | Instantaneous | Instantaneous | Short | Very Low | Very Low | Very Low |
Energy storage | Pumped hydro storage | −100–100% | 10–50% | <0.1 h | Short/Medium/Long | High | Low | Low |
Electrochemical energy storage | −100–100% | 100% | <0.1 h | Short | Medium | Medium | Medium | |
Hydrogen | 10–110% | <0.8% | <50 min | Medium/Long | Very High | Medium | High |
Type | Technologies/Systems | Limitations |
---|---|---|
Short-term Storage | Lithium-ion batteries, Supercapacitors | (1) Limited energy storage capacity, (2) Cannot handle long-term fluctuations, (3) Short cycle life, (4) High cost. |
Medium-term Storage | PHS, CAES | (1) Geographic limitations (e.g., PHS), (2) High infrastructure cost, 3) Environmental impact. |
Long-term Storage | Thermal energy storage, Chemical batteries (e.g., flow batteries, solid-state batteries) | (1) Early-stage development, (2) High energy losses, low efficiency, (3) High cost, limited energy density, (4) Short lifespan. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Wang, H.; Liu, D.; Sun, K. A Review of Multi-Temporal Scale Regulation Requirements of Power Systems and Diverse Flexible Resource Applications. Energies 2025, 18, 643. https://doi.org/10.3390/en18030643
Li F, Wang H, Liu D, Sun K. A Review of Multi-Temporal Scale Regulation Requirements of Power Systems and Diverse Flexible Resource Applications. Energies. 2025; 18(3):643. https://doi.org/10.3390/en18030643
Chicago/Turabian StyleLi, Fan, Hongzhen Wang, Dong Liu, and Ke Sun. 2025. "A Review of Multi-Temporal Scale Regulation Requirements of Power Systems and Diverse Flexible Resource Applications" Energies 18, no. 3: 643. https://doi.org/10.3390/en18030643
APA StyleLi, F., Wang, H., Liu, D., & Sun, K. (2025). A Review of Multi-Temporal Scale Regulation Requirements of Power Systems and Diverse Flexible Resource Applications. Energies, 18(3), 643. https://doi.org/10.3390/en18030643