An Enhanced Gradient Algorithm for Computing Generalized Nash Equilibrium Applied to Electricity Market Games
Abstract
:1. Introduction
2. The Gradient Algorithm
2.1. Fundamental Idea
2.2. Algorithm Analysis
- 1.
- If then , ;
- 2.
- There exists a neighborhood of , called the basin of attraction of , such that for any open neighborhood of there is a positive constant T such that , and ;
- 3.
- There is no non-empty subset of having the first two properties.
2.3. Examples for Convergence Analysis
3. Generalized Nash Equilibrium
3.1. Generalized Gradient Algorithm
3.2. Generalized Gradient Algorithm Analysis
3.3. An Example with Infinite Generalized Nash Equilibria
3.4. A Numerical Example: Internet Game
4. Energy Market Application
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Green, R.J.; Newbery, D.M. Competition in the British Electricity Spot Market. J. Political Econ. 1992, 100, 929–953. [Google Scholar] [CrossRef]
- Carvalho, M.; Pedroso, J.P.; Saraiva, J. Electricity day-ahead markets: Computation of Nash equilibria. J. Ind. Manag. Optim. 2015, 11, 985–998. [Google Scholar] [CrossRef]
- PJM. PJM Manual 11: Energy & Ancillary Services Market Operations; PJM: Norristown, PA, USA, 2024. [Google Scholar]
- Marshall, L.; Bruce, A.; MacGill, I. Assessing wholesale competition in the Australian National Electricity Market. Energy Policy 2021, 149, 112066. [Google Scholar] [CrossRef]
- Hao, Y.; Vand, B.; Delgado, B.M.; Baldi, S. Market Manipulation in Stock and Power Markets: A Study of Indicator-Based Monitoring and Regulatory Challenges. Energies 2023, 16, 1894. [Google Scholar] [CrossRef]
- Yu, L.; Wang, P.; Chen, Z.; Li, D.; Li, N.; Cherkaoui, R. Finding Nash equilibrium based on reinforcement learning for bidding strategy and distributed algorithm for ISO in imperfect electricity market. Appl. Energy 2023, 350, 121704. [Google Scholar] [CrossRef]
- Wu, C.; Gu, W.; Yi, Z.; Lin, C.; Long, H. Non-cooperative differential game and feedback Nash equilibrium analysis for real-time electricity markets. Int. J. Electr. Power Energy Syst. 2023, 144, 108561. [Google Scholar] [CrossRef]
- Ribeiro, L.; Street, A.; Valladão, D.; Freire, A.C.; Barroso, L. Technical and economical aspects of wholesale electricity markets: An international comparison and main contributions for improvements in Brazil. Electr. Power Syst. Res. 2023, 220, 109364. [Google Scholar] [CrossRef]
- PSR. Propostas de Metodologias Para a Formação de Preços por Oferta No Brasil, Entregável 3: Proposta de Desenho de Mecanismo Conceitual; Technical Report; PSR: Rio de Janeiro, Braizl, 2021. [Google Scholar]
- Lin, X.; Wang, B.; Xiang, Z.; Zheng, Y. A review of market power-mitigation mechanisms in electricity markets. Energy Convers. Econ. 2022, 3, 304–318. [Google Scholar] [CrossRef]
- Nash, J.F. Equilibrium points in n-person games. Proc. Natl. Acad. Sci. USA 1950, 36, 48–49. [Google Scholar] [CrossRef] [PubMed]
- Rosen, J. Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 1965, 33, 520–534. [Google Scholar] [CrossRef]
- Facchinei, F.; Fischer, A.; Piccialli, V. On generalized Nash games and variational inequalities. Oper. Res. Lett. 2007, 35, 159–164. [Google Scholar] [CrossRef]
- Monderer, D.; Shapley, L.S. Potential games. Games Econ. Behav. 1996, 14, 124–143. [Google Scholar] [CrossRef]
- Dindos, M.; Mezzetti, C. Better-reply dynamics and global convergence to Nash equilibrium in aggregative games. Games Econ. Behav. 2006, 54, 261–292. [Google Scholar] [CrossRef]
- Fabrikant, A.; Jaggard, A.D.; Schapira, M. On the structure of weakly acyclic games. Theory Comput. Syst. 2013, 53, 107–122. [Google Scholar] [CrossRef]
- Friedman, J.W.; Mezzetti, C. Learning in games by random sampling. J. Econ. Theory 2001, 98, 55–84. [Google Scholar] [CrossRef]
- Takahashi, S.; Yamamori, T. The pure Nash equilibrium property and the quasi-acyclic condition. Econ. Bull. 2002, 3, 1–6. [Google Scholar]
- Hukuhane, N.; Kazuo, I. Note on noncooperative convex games. Pac. J. Math. 1955, 5, 807–815. [Google Scholar]
- Uryas’ev, S.; Rubinstein, R.Y. On relaxation algorithm in computation of noncooperative equilibria. IEEE Trans. Autom. Control 1994, 39, 1263–1267. [Google Scholar] [CrossRef]
- Krawczyk, J.B.; Uryas’ev, S. Relaxation algorithms to find Nash equilibria with economic applications. Environ. Model. Assess. 2000, 5, 63–73. [Google Scholar] [CrossRef]
- dos Santos, F.F.G.; de Castro Lobato, M.V.; Vieira, D.A.G.; Lisboa, A.C.; Saldanha, R.R. A Nash equilibrium approach to the Brazilian seasonalization of energy certificates. Energies 2022, 15, 2156. [Google Scholar] [CrossRef]
- Lemaréchal, C. Cauchy and the gradient method. Doc. Math. Extra 2012, 251, 10. [Google Scholar]
- Vieira, D.A.G.; Takashi, R.H.C.; Saldanha, R.R. Multicriteria optimization with a multiobjective golden section line search. Math. Program. 2012, 131, 131–161. [Google Scholar] [CrossRef]
- Facchinei, F.; Kanzow, C. Generalized Nash equilibrium problems. Q. J. Oper. Res. 2007, 5, 173–210. [Google Scholar] [CrossRef]
- Kesselman, A.; Leonardi, S.; Bonifaci, V. Game-theoretic analysis of internet switching with selfish users. Notes Comput. Sci. 2005, 3828, 236–245. [Google Scholar]
t | |||||||
---|---|---|---|---|---|---|---|
1 | 744 | 54,169 | 0.99670380 | 13,767 | 13,757 | 13,735 | 13,701 |
2 | 672 | 56,765 | 1.03818298 | 12,148 | 12,148 | 11,182 | 11,117 |
3 | 744 | 58,476 | 1.00380676 | 11,781 | 11,782 | 10,617 | 9953 |
4 | 720 | 52,581 | 0.83536170 | 10,342 | 10,334 | 9652 | 8529 |
5 | 744 | 48,936 | 0.86609332 | 10,067 | 10,042 | 9505 | 8848 |
6 | 720 | 46,301 | 0.91454965 | 10,048 | 9937 | 9742 | 9772 |
7 | 744 | 45,573 | 0.98870119 | 10,234 | 10,080 | 9672 | 9782 |
8 | 744 | 45,880 | 1.01770868 | 10,161 | 9991 | 9736 | 9879 |
9 | 720 | 46,472 | 1.06667054 | 10,369 | 10,167 | 9984 | 10,094 |
10 | 744 | 48,262 | 1.09996905 | 10,293 | 10,115 | 10,021 | 10,086 |
11 | 720 | 48,630 | 1.09499348 | 10,126 | 10,021 | 9802 | 9830 |
12 | 744 | 51,927 | 1.07686986 | 8659 | 8645 | 8419 | 8401 |
t | ||||
---|---|---|---|---|
1 | 46,805 | 8982.91 | 9539 | 15,918 |
2 | 38,630 | 9569 | 5685 | 11,247 |
3 | 42,278 | 11,498 | 6779 | 9215 |
4 | 32,363 | 9014 | 6590 | 5655 |
5 | 30,513 | 7621 | 5851 | 7303 |
6 | 28,156 | 5434 | 5240 | 9628 |
7 | 29,064 | 5962 | 4,816 | 9687 |
8 | 29,121 | 5574 | 5102 | 10,117 |
9 | 29,136 | 5415 | 5285 | 10,141 |
10 | 31,089 | 5635 | 5916 | 10,903 |
11 | 29,806 | 5811 | 5500 | 10,138 |
12 | 28,151 | 5719 | 5240 | 9433 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisboa, A.C.; Santos, F.F.G.; Vieira, D.A.G.; Saldanha, R.R.; Pereira, F.A.C. An Enhanced Gradient Algorithm for Computing Generalized Nash Equilibrium Applied to Electricity Market Games. Energies 2025, 18, 727. https://doi.org/10.3390/en18030727
Lisboa AC, Santos FFG, Vieira DAG, Saldanha RR, Pereira FAC. An Enhanced Gradient Algorithm for Computing Generalized Nash Equilibrium Applied to Electricity Market Games. Energies. 2025; 18(3):727. https://doi.org/10.3390/en18030727
Chicago/Turabian StyleLisboa, Adriano C., Fellipe F. G. Santos, Douglas A. G. Vieira, Rodney R. Saldanha, and Felipe A. C. Pereira. 2025. "An Enhanced Gradient Algorithm for Computing Generalized Nash Equilibrium Applied to Electricity Market Games" Energies 18, no. 3: 727. https://doi.org/10.3390/en18030727
APA StyleLisboa, A. C., Santos, F. F. G., Vieira, D. A. G., Saldanha, R. R., & Pereira, F. A. C. (2025). An Enhanced Gradient Algorithm for Computing Generalized Nash Equilibrium Applied to Electricity Market Games. Energies, 18(3), 727. https://doi.org/10.3390/en18030727