TSMixer- and Transfer Learning-Based Highly Reliable Prediction with Short-Term Time Series Data in Small-Scale Solar Power Generation Systems
Abstract
:1. Introduction
- We designed a framework that utilizes transfer learning and dynamic time warping (DTW) to compensate for temporal nonlinearities in time-series data and maintain high prediction performance even in data-sparse environments.
- After training a generalized model based on multi-source domain data, a target-domain-specific model was constructed by applying linear probing techniques.
- We quantitatively evaluated the prediction accuracy of the proposed model by comparing its performance with representative time-series models such as long short-term memory (LSTM) and Transformer, and found that the proposed model achieved the lowest error rate in the mean squared error (MSE) and mean absolute error (MAE) metrics.
2. Related Research
2.1. Solar Power Forecasting Research
2.2. Time-Series Forecasting Research
2.3. DTW
2.4. Transfer Learning
3. TSMixer- and Transfer Learning-Based Highly Reliable Prediction
3.1. System Framework
3.2. TSMixer
3.2.1. MLP Block
3.2.2. Gated Attention Block
3.3. Single-Source Transfer Learning
3.4. Multi-Source Transfer Learning
4. Experiment and Results
4.1. Experimental Environment
4.2. Datasets
4.3. Evaluation Metrics
4.4. Results
4.4.1. Stage 1
4.4.2. Stage 2
4.4.3. Model Comparison
5. Discussion
6. Conclusions
6.1. Research Results
6.2. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, B.; Liu, Y.; Wang, D.; Song, C.; Fu, Z.; Zhang, C. A review of the photothermal-photovoltaic energy supply system for building in solar energy enrichment zones. Renew. Sustain. Energy Rev. 2024, 191, 114100. [Google Scholar] [CrossRef]
- Shahid, A.; Plaum, F.; Korõtko, T.; Rosin, A. AI Technologies and Their Applications in Small-Scale Electric Power Systems. IEEE Access 2024, 12, 109984–110001. [Google Scholar] [CrossRef]
- Wang, J.; Yang, C.; Jiang, X.; Wu, J. WHEN: A Wavelet-DTW hybrid attention network for heterogeneous time series analysis. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Long Beach, CA, USA, 6–10 August 2023. [Google Scholar]
- Zheng, J.; Du, J.; Wang, B.; Klemeš, J.J.; Liao, Q.; Liang, Y. A hybrid framework for forecasting power generation of multiple renewable energy sources. Renew. Sustain. Energy Rev. 2023, 172, 113046. [Google Scholar] [CrossRef]
- Li, W.; Huang, R.; Li, J.; Liao, Y.; Chen, Z.; He, G.; Yan, R.; Gryllias, K. A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios: Theories, applications and challenges. Mech. Syst. Signal Process. 2022, 167, 108487. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A comprehensive survey on transfer learning. Proc. IEEE 2020, 109, 43–76. [Google Scholar] [CrossRef]
- Bouquet, P.; Jackson, I.; Nick, M.; Kaboli, A. AI-based forecasting for optimised solar energy management and smart grid efficiency. Int. J. Prod. Res. 2024, 62, 4623–4644. [Google Scholar] [CrossRef]
- Al-Dahidi, S.; Madhiarasan, M.; Al-Ghussain, L.; Abubaker, A.M.; Ahmad, A.D.; Alrbai, M.; Aghaei, M.; Alahmer, H.; Alahmer, A.; Baraldi, P.; et al. Forecasting solar photovoltaic power production: A comprehensive review and innovative data-driven modeling framework. Energies 2024, 17, 4145. [Google Scholar] [CrossRef]
- Zhao, Z.y.; Zhang, S.Y.; Hubbard, B.; Yao, X. The emergence of the solar photovoltaic power industry in China. Renew. Sustain. Energy Rev. 2013, 21, 229–236. [Google Scholar] [CrossRef]
- Yang, H.T.; Huang, C.M.; Huang, Y.C.; Pai, Y.S. A weather-based hybrid method for 1-day ahead hourly forecasting of PV power output. IEEE Trans. Sustain. Energy 2014, 5, 917–926. [Google Scholar] [CrossRef]
- Gandhi, O.; Zhang, W.; Kumar, D.S.; Rodríguez-Gallegos, C.D.; Yagli, G.M.; Yang, D.; Reindl, T.; Srinivasan, D. The value of solar forecasts and the cost of their errors: A review. Renew. Sustain. Energy Rev. 2024, 189, 113915. [Google Scholar] [CrossRef]
- Mohammad, A.; Mahjabeen, F. Revolutionizing solar energy: The impact of artificial intelligence on photovoltaic systems. Int. J. Multidiscip. Sci. Arts 2023, 2. [Google Scholar] [CrossRef]
- Shen, Q.; Wen, X.; Xia, S.; Zhou, S.; Zhang, H. AI-Based Analysis and Prediction of Synergistic Development Trends in US Photovoltaic and Energy Storage Systems. Int. J. Innov. Res. Comput. Sci. Technol. 2024, 12, 36–46. [Google Scholar] [CrossRef]
- Bae, S.U. Research Trends in Solar PV Output Power Prediction Techniques. Electr. World 2018, 67, 16–25. [Google Scholar]
- Akal, M. Forecasting Turkey’s tourism revenues by ARMAX model. Tour. Manag. 2004, 25, 565–580. [Google Scholar] [CrossRef]
- Kang, B.B.; Yoon, J.H. A study on solar power generation prediction model using deep learning algorithm. Electron. Eng. J. 2023, 60, 119–125. [Google Scholar]
- AlKandari, M.; Ahmad, I. Solar power generation forecasting using ensemble approach based on deep learning and statistical methods. Appl. Comput. Inform. 2024, 20, 231–250. [Google Scholar] [CrossRef]
- Chiang, S.; Zito, J.; Rao, V.R.; Vannucci, M. Time-series analysis. In Statistical Methods in Epilepsy; Chapman and Hall/CRC: Boca Raton, FL, USA, 2024; pp. 166–200. [Google Scholar]
- Li, W.; Yu, W.; Du, H.; Du, S.; You, J.; Tang, Y. Learning Seasonal-Trend Representations and Conditional Heteroskedasticity for Time Series Analysis. In Proceedings of the International Conference on Artificial Neural Networks, Lugano, Switzerland, 17–20 September 2024; Springer: Cham, Switzerland, 2024; pp. 267–281. [Google Scholar]
- Kashpruk, N.; Piskor-Ignatowicz, C.; Baranowski, J. Time Series Prediction in Industry 4.0: A Comprehensive Review and Prospects for Future Advancements. Appl. Sci. 2023, 13, 12374. [Google Scholar] [CrossRef]
- Yi, K.; Zhang, Q.; Fan, W.; Wang, S.; Wang, P.; He, H.; An, N.; Lian, D.; Cao, L.; Niu, Z. Frequency-domain MLPs are more effective learners in time series forecasting. arXiv 2024, arXiv:2311.06184. [Google Scholar]
- Liu, J. Navigating the Financial Landscape: The Power and Limitations of the ARIMA Model. Highlights Sci. Eng. Technol. 2024, 88, 747–752. [Google Scholar] [CrossRef]
- Pełka, P. Analysis and forecasting of monthly electricity demand time series using pattern-based statistical methods. Energies 2023, 16, 827. [Google Scholar] [CrossRef]
- Morid, M.A.; Sheng, O.R.L.; Dunbar, J. Time series prediction using deep learning methods in healthcare. ACM Trans. Manag. Inf. Syst. 2023, 14, 1–29. [Google Scholar] [CrossRef]
- De Simone, V.; Di Pasquale, V.; Miranda, S. An overview on the use of AI/ML in manufacturing MSMEs: Solved issues, limits, and challenges. Procedia Comput. Sci. 2023, 217, 1820–1829. [Google Scholar] [CrossRef]
- Kim, S.; Kim, D. Multivariate Time Series Unsupervised Domain Adaptation based on Uncertainty-Aware Pseudo-Label Selection and Manifold Mixup using Medical-Bio Signal. In Proceedings of the Korean Institute of Information Scientists and Engineers Assoc., Jeju, Republic of Korea, 26–28 June 2024; pp. 1112–1114. [Google Scholar]
- Lim, B.; Zohren, S. Time-series forecasting with deep learning: A survey. Philos. Trans. R. Soc. A 2021, 379, 20200209. [Google Scholar] [CrossRef]
- Jailani, N.L.M.; Dhanasegaran, J.K.; Alkawsi, G.; Alkahtani, A.A.; Phing, C.C.; Baashar, Y.; Capretz, L.F.; Al-Shetwi, A.Q.; Tiong, S.K. Investigating the power of LSTM-based models in solar energy forecasting. Processes 2023, 11, 1382. [Google Scholar] [CrossRef]
- Lee, C.Y.; Kim, J.H. Prediction and analysis of electric energy time series using Elman recurrent neural networks. Ind. Manag. Syst. J. 2018, 41, 84–93. [Google Scholar]
- Han, Y.; Heo, J. A Study on Short-Term Wind Power Forecasting Based on Time Series Decomposition and Automated Machine Learning. In Proceedings of the Korean Electr. Soc., Jeju, Republic of Korea, 10–13 July 2024; pp. 541–542. [Google Scholar]
- Shifaz, A.; Pelletier, C.; Petitjean, F.; Webb, G.I. Elastic similarity and distance measures for multivariate time series. Knowl. Inf. Syst. 2023, 65, 2665–2698. [Google Scholar] [CrossRef]
- Baek, J.; Alhindi, T.J.; Jeong, Y.S.; Jeong, M.K.; Seo, S.; Kang, J.; Shim, W.; Heo, Y. Real-time fire detection system based on dynamic time warping of multichannel sensor networks. Fire Saf. J. 2021, 123, 103364. [Google Scholar] [CrossRef]
- Wang, L.; Koniusz, P. Uncertainty-dtw for time series and sequences. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer Nature: Cham, Switzerland, 2022; pp. 1–17. [Google Scholar]
- Vaughan, N.; Gabrys, B. Comparing and combining time series trajectories using dynamic time warping. Procedia Comput. Sci. 2016, 96, 465–474. [Google Scholar] [CrossRef]
- Martinez, I. Diffeomorphic Transformations for Time Series Analysis: An Efficient Approach to Nonlinear Warping. arXiv 2023, arXiv:2309.14029. [Google Scholar]
- Matheri, A.N.; Nabadda, E.; Mohamed, B. Sustainable and circularity in the decentralized hybrid solar-bioenergy system. Environ. Dev. Sustain. 2024, 26, 16987–17011. [Google Scholar] [CrossRef]
- Krishnan, N.; Kumar, K.R.; Inda, C.S. How solar radiation forecasting impacts the utilization of solar energy: A critical review. J. Clean. Prod. 2023, 388, 135860. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, X.; Ma, T.; Liu, D.; Wang, H.; Hu, W. A Multi-step ahead photovoltaic power forecasting model based on TimeGAN, Soft DTW-based K-medoids clustering, and a CNN-GRU hybrid neural network. Energy Rep. 2022, 8, 10346–10362. [Google Scholar] [CrossRef]
- Deriso, D.; Boyd, S. A general optimization framework for dynamic time warping. Optim. Eng. 2023, 24, 1411–1432. [Google Scholar] [CrossRef]
- Mao, W.; Zhang, W.; Feng, K.; Beer, M.; Yang, C. Tensor representation-based transferability analytics and selective transfer learning of prognostic knowledge for remaining useful life prediction across machines. Reliab. Eng. Syst. Saf. 2024, 242, 109695. [Google Scholar] [CrossRef]
- Ge, L.; Du, T.; Li, C.; Li, Y.; Yan, J.; Rafiq, M. Virtual Collection for Distributed Photovoltaic Data: Challenges, Methodologies, and Applications. Energies 2022, 15, 8783. [Google Scholar] [CrossRef]
- Jain, V.; Fokow, V.; Wicht, J.; Wetzker, U. A dynamic time warping based method to synchronize spectral and protocol domains for troubleshooting wireless communication. IEEE Access 2023, 11, 64668–64678. [Google Scholar] [CrossRef]
- Niu, S.; Liu, Y.; Wang, J.; Song, H. A decade survey of transfer learning (2010–2020). IEEE Trans. Artif. Intell. 2020, 1, 151–166. [Google Scholar] [CrossRef]
- Vrbančič, G.; Podgorelec, V. Transfer learning with adaptive fine-tuning. IEEE Access 2020, 8, 196197–196211. [Google Scholar] [CrossRef]
- Neyshabur, B.; Sedghi, H.; Zhang, C. What is being transferred in transfer learning? Adv. Neural Inf. Process. Syst. 2020, 33, 512–523. [Google Scholar]
- Xu, Y.; Lin, K.; Hu, C.; Wang, S.; Wu, Q.; Zhang, L.; Ran, G. Deep transfer learning based on transformer for flood forecasting in data-sparse basins. J. Hydrol. 2023, 625, 129956. [Google Scholar] [CrossRef]
- Zhu, Z.; Lin, K.; Jain, A.K.; Zhou, J. Transfer learning in deep reinforcement learning: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 13344–13362. [Google Scholar] [CrossRef] [PubMed]
- Wei, N.; Yin, L.; Yin, C.; Liu, J.; Wang, S.; Qiao, W.; Zeng, F. Pseudo-correlation problem and its solution for the transfer forecasting of short-term natural gas loads. Gas Sci. Eng. 2023, 119, 205133. [Google Scholar] [CrossRef]
- Hu, Z.; Gao, Y.; Ji, S.; Mae, M.; Imaizumi, T. Improved multistep ahead photovoltaic power prediction model based on LSTM and self-attention with weather forecast data. Appl. Energy 2024, 359, 122709. [Google Scholar] [CrossRef]
- Spencer, R.; Ranathunga, S.; Boulic, M.; van Heerden, A.; Susnjak, T. Transfer Learning on Transformers for Building Energy Consumption Forecasting–A Comparative Study. arXiv 2024, arXiv:2410.14107. [Google Scholar]
- Ekambaram, V.; Jati, A.; Nguyen, N.; Sinthong, P.; Kalagnanam, J. Tsmixer: Lightweight mlp-mixer model for multivariate time series forecasting. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Long Beach, CA, USA, 6–10 August 2023; pp. 459–469. [Google Scholar]
- Kim, T.; Kim, J.; Tae, Y.; Park, C.; Choi, J.H.; Choo, J. Reversible instance normalization for accurate time-series forecasting against distribution shift. In Proceedings of the International Conference on Learning Representations, Virtual, 25–29 April 2022. [Google Scholar]
- Hendrycks, D.; Gimpel, K. Gaussian error linear units (gelus). arXiv 2016, arXiv:1606.08415. [Google Scholar]
Symbol | Description |
---|---|
L | Length of the time series |
c | Number of time series or channels |
Input sequence length | |
Forecast sequence length | |
b | Batch size |
n | Number of patches |
Patch length | |
Hidden feature dimension | |
Expansion feature dimension | |
Number of MLP-Mixer layers | |
Context length | |
Linear layer for compactness |
Parameter | Description |
---|---|
CPU | Intel Core i7 13700 K |
RAM | 64.0 GB |
Graphic Card | Geforce 4060 Ti |
CUDA | 12.6 |
PyTorch | 2.4.1 |
Dataset ID | Collection Start Date | Collection End Date | Total Data Points |
---|---|---|---|
(Target) Elm_38 | 2014-06-10 02:30:00 | 2014-11-17 08:30:00 | 7504 |
Elm_57 | 2014-06-10 02:30:00 | 2014-11-17 09:30:00 | 7493 |
Elm_58 | 2014-06-10 02:30:00 | 2014-11-17 08:30:00 | 7495 |
Elm_60 | 2014-06-10 02:30:00 | 2014-11-17 09:30:00 | 7515 |
Forest_07 | 2014-06-10 02:30:00 | 2014-11-17 10:00:00 | 7671 |
Forest_20 | 2014-06-10 02:30:00 | 2014-11-17 11:00:00 | 7655 |
Forest_28 | 2014-06-10 02:30:00 | 2014-11-17 11:00:00 | 7666 |
Maple_23 | 2014-06-10 02:30:00 | 2014-11-19 14:00:00 | 5358 |
Maple_25 | 2014-06-10 02:30:00 | 2014-11-19 14:00:00 | 5357 |
YMCA_73 | 2014-06-10 02:30:00 | 2014-11-19 13:00:00 | 7791 |
YMCA_81 | 2014-06-10 02:30:00 | 2014-11-19 19:00:00 | 7785 |
Step | Training Loss | Training Time (m) | Evaluation Loss | Evaluation Time (m) |
---|---|---|---|---|
22 | 0.9803 | 11.3697 | 1.4657 | 11.3674 |
528 | 0.6383 | 76.5214 | 0.9340 | 76.6172 |
1012 | 0.6277 | 74.3255 | 0.9227 | 74.3044 |
1408 | 0.6362 | 58.8556 | 0.9160 | 58.7563 |
1804 | 0.6085 | 56.9159 | 0.9196 | 56.9235 |
2200 | 0.6096 | 56.8487 | 0.9199 | 56.8370 |
Model | MSE | MAE |
---|---|---|
Our model | 0.4517 | 0.4349 |
LSTM | 0.6888 | 0.5585 |
Transformer | 0.8517 | 0.6692 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.; Jeong, J. TSMixer- and Transfer Learning-Based Highly Reliable Prediction with Short-Term Time Series Data in Small-Scale Solar Power Generation Systems. Energies 2025, 18, 765. https://doi.org/10.3390/en18040765
Lee Y, Jeong J. TSMixer- and Transfer Learning-Based Highly Reliable Prediction with Short-Term Time Series Data in Small-Scale Solar Power Generation Systems. Energies. 2025; 18(4):765. https://doi.org/10.3390/en18040765
Chicago/Turabian StyleLee, Younjeong, and Jongpil Jeong. 2025. "TSMixer- and Transfer Learning-Based Highly Reliable Prediction with Short-Term Time Series Data in Small-Scale Solar Power Generation Systems" Energies 18, no. 4: 765. https://doi.org/10.3390/en18040765
APA StyleLee, Y., & Jeong, J. (2025). TSMixer- and Transfer Learning-Based Highly Reliable Prediction with Short-Term Time Series Data in Small-Scale Solar Power Generation Systems. Energies, 18(4), 765. https://doi.org/10.3390/en18040765