A Survey on Green Designs for Energy Harvesting Backscatter Communications to Enable Sustainable IoT
Abstract
:1. Introduction
1.1. Background
1.2. Overview of Related Works on EH BackCom
1.3. Motivation and Contribution
1.4. Paper Organization
2. Principles of EH in BackCom Systems
2.1. EH
2.1.1. Radio Frequency EH
2.1.2. Renewable EH
- Solar EH: The use of solar cells (photovoltaic cells) to convert light energy into electricity is one of the most widely used EH technologies [40]. It is suitable for outdoor environmental sensors, monitoring devices, and embedded IoT devices. Solar systems often use maximum power point tracking (MPPT) algorithms to improve conversion efficiency.
- Piezoelectric EH: The generation of electrical energy through mechanical vibration or pressure changes [41]. Piezoelectric materials generate an electrical charge when subjected to stress or deformation and are widely used in mechanical vibration sensors and industrial environmental monitoring equipment. IoT devices require small, sustainable power sources, and piezoelectric materials are considered the most promising and widespread solution for powering these devices by converting mechanical energy into electrical energy [42].
- Thermoelectric EH: A technology that converts thermal energy to electrical energy by using a temperature difference, often used to recover waste heat in factories, automobile engines, and other environments [43]. Thermoelectric generators (TEGs) are the core components of this technology and are suitable for scenarios with large temperature differences.
- Wind EH: Wind power generation is a renewable energy technology that uses the kinetic energy of the wind to convert it into electrical energy through a wind turbine. The wind drives the generator blades to rotate, and the blades transfer the rotational kinetic energy to the generator rotor through the main shaft connected to it. Under the interaction of the coil and the magnetic field, electrical energy is generated according to the principle of electromagnetic induction [44].
2.2. Fundamentals of BackCom
- Monostatic BackCom system: In an MBCS (e.g., an RFID system), there are two main components: the backscatter tag and the reader. The reader consists of an RF source and a backscatter receiver. The reader emits a carrier signal to activate the tag, and then the tag modulates its information to the carrier signal and reflects it to the reader receiver [48]. Since the reader’s RF source and the backscatter receiver are on the same device, the loss of the round-trip path will affect the reflected signal during transmission [54]. This loss will increase the probability of system energy interruption and weaken the strength of the modulated backscatter signal.
- Bistatic BackCom systems: In a BBCS, the RF source (e.g., a carrier transmitter) and the backscatter receiver are independent of each other, compared to a MBCS, thus avoiding the loss of the round-trip path in the MBCS [14]. By optimizing the placement of the carrier transmitters, the performance of the BBCS can be significantly improved. Specifically, a centralized backscatter receiver is usually placed in a central location, and multiple carrier transmitters are arranged around the backscatter transmitter to achieve wider coverage. In addition, the BBCS effectively alleviates the problem of double-path loss. The backscatter transmitter can obtain unmodulated RF signals from the adjacent carrier transmitter for EH and data transmission, improving signal quality and stability. Although the carrier transmitter is larger and may be more expensive to deploy, the carrier transmitter and backscatter receiver of the BBCS are cheaper to manufacture than the MBCS due to their simplified design.
- Ambient BackCom system: An ABCS is a BackCom system that utilizes existing environmental RF sources such as TV towers, cellular base stations, and WiFi access points as carrier transmitters [15]. Unlike traditional BackCom systems, it does not require a dedicated RF source. Thus, the need for dedicated spectrum is reduced, costs are significantly reduced, and the system’s spectrum resource utilization is improved. This feature gives the ABCS some unique advantages. For example, there is no need to deploy dedicated high-power readers to transmit RF signals, making it more suitable for outdoor or large-scale environments, further reducing additional energy consumption.
2.3. Structure of EH BackCom System
3. Green Designs for BackCom Tags
3.1. Antenna and Matching Load Design
3.2. Rectifier Design
3.3. Energy Storage and Load Design
3.4. Tag Modulation Design
4. Green Design for Readers and RF Sources in BackCom
4.1. EH from Renewable Sources
4.2. Utilization of Ambient RF Sources
4.3. Resource Allocation
4.3.1. Power Allocation
4.3.2. Time Allocation
4.3.3. Frequency Allocation
4.3.4. Computing Resource Allocation
4.4. Carrier Waveform Design for BackCom
4.5. Coding and Multiple Access Techniques
5. Green Design for Cooperative BackCom Systems
5.1. UAV-Assisted EE BackCom System
5.2. IRS-Assisted EE BackCom System
5.3. Efficient Relaying Techniques in BackCom
6. New Applications, Open Challenges, and Future Research Directions in Green EH BackCom
6.1. New Applications
6.1.1. Urban Management in the Era of Smart Cities
6.1.2. AI-Empowered EH BackCom-Enabled IoT
6.1.3. Applications of BackCom in Healthcare
6.1.4. Sustainable BackCom-Enabled Sensor Networks
6.2. Open Challenges
6.2.1. Channel Capacity and Coverage Limitations
6.2.2. Ensuring Security in BackCom Systems
6.2.3. Limitations of BackCom Models with Dynamic Readers
6.2.4. Trade-Off Between Computational Complexity and EE in BackCom Relay Systems
6.2.5. Ensuring Full Compatibility with Existing Standards and Network Protocols
6.2.6. Channel Estimation
6.2.7. The Trade-Off on Cost-Effectiveness in EH BackCom
6.3. Future Research Directions
6.3.1. EE Channel Estimation for BackCom
6.3.2. Trade-Off Between EH BackCom Security and Energy Consumption
6.3.3. EH BackCom-Enabled ISAC
6.3.4. Green Design for Millimeter Wave-Based EH BackCom
6.3.5. Cell-Free Massive MIMO-Enabled EH BackCom Networks
6.3.6. Toward Practical Experimental Validation in BackCom Systems
7. Conclusions
Funding
Conflicts of Interest
Nomenclature
BackCom | backscatter communication |
IoT | Internet of Things |
WSN | wireless sensor network |
RF | radio frequency |
WPT | wireless power transfer |
WPCN | wireless-powered communication network |
SWIPT | simultaneous wireless information and power transfer |
HTT | Harvest-Then-Transmit |
MBCS | monostatic BackCom system |
BBCS | bistatic BackCom system |
ABCS | ambient BackCom system |
EH | energy harvesting |
EE | energy efficiency |
CDMA | Code Division Multiple Access |
OFDM | Orthogonal Frequency Division Multiplexing |
TDMA | time division multiple access |
OMA | Orthogonal Multiple Access |
NOMA | Non-orthogonal Multiple Access |
QAM | quadrature amplitude modulation |
APSK | Amplitude and Phase-Shift Keying |
FPSK | Frequency and Phase-Shift Keying |
RIS | reconfigurable intelligent surface |
IRS | intelligent reflecting surface |
UAV | unmanned aerial vehicle |
AaF | amplify-and-forward |
DaF | decode-and-forward |
CaF | compress-and-forward |
ISAC | integrated sensing and communication |
AN | artificial noise |
References
- Zikria, Y.B.; Ali, R.; Afzal, M.K.; Kim, S.W. Next-Generation Internet of Things (IoT): Opportunities, Challenges, and Solutions. Sensors 2021, 21, 1174. [Google Scholar] [CrossRef] [PubMed]
- Ramirez Lopez, L.J.; Grijalba Castro, A.I. Sustainability and Resilience in Smart City Planning: A Review. Sustainability 2021, 13, 181. [Google Scholar] [CrossRef]
- Quy, V.K.; Hau, N.V.; Anh, D.V.; Quy, N.M.; Ban, N.T.; Lanza, S.; Randazzo, G.; Muzirafuti, A. IoT-Enabled Smart Agriculture: Architecture, Applications, and Challenges. Appl. Sci. 2022, 12, 3396. [Google Scholar] [CrossRef]
- Al-rawashdeh, M.; Keikhosrokiani, P.; Belaton, B.; Alawida, M.; Zwiri, A. IoT Adoption and Application for Smart Healthcare: A Systematic Review. Sensors 2022, 22, 5377. [Google Scholar] [CrossRef]
- Zeeshan, K.; Hämäläinen, T.; Neittaanmäki, P. Internet of Things for Sustainable Smart Education: An Overview. Sustainability 2022, 14, 4293. [Google Scholar] [CrossRef]
- Ullo, S.L.; Sinha, G.R. Advances in Smart Environment Monitoring Systems Using IoT and Sensors. Sensors 2020, 20, 3113. [Google Scholar] [CrossRef]
- Farhan, L.; Shukur, S.T.; Alissa, A.E.; Alrweg, M.; Raza, U.; Kharel, R. A survey on the challenges and opportunities of the Internet of Things (IoT). In Proceedings of the 2017 Eleventh International Conference on Sensing Technology (ICST), Sydney, Australia, 4–6 December 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Bello, O.; Zeadally, S. Intelligent Device-to-Device Communication in the Internet of Things. IEEE Syst. J. 2016, 10, 1172–1182. [Google Scholar] [CrossRef]
- Shafique, K.; Khawaja, B.A.; Sabir, F.; Qazi, S.; Mustaqim, M. Internet of Things (IoT) for Next-Generation Smart Systems: A Review of Current Challenges, Future Trends and Prospects for Emerging 5G-IoT Scenarios. IEEE Access 2020, 8, 23022–23040. [Google Scholar] [CrossRef]
- Friedli, M.; Kaufmann, L.; Paganini, F.; Kyburz, R. Energy Efficiency of the Internet of Things; Technology and Energy Assessment Report prepared for IEA 4E EDNA; Lucerne University of Applied Sciences: Luzern, Switzerland, 2016. [Google Scholar]
- Alsharif, M.H.; Jahid, A.; Kelechi, A.H.; Kannadasan, R. Green IoT: A Review and Future Research Directions. Symmetry 2023, 15, 757. [Google Scholar] [CrossRef]
- Aljaidi, M.; Kaiwartya, O.; Samara, G.; Alsarhan, A.; Mahmud, M.; Alenezi, S.M.; Alazaidah, R.; Lloret, J. Green Communication in IoT for Enabling Next-Generation Wireless Systems. Computers 2024, 13, 251. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, Y.; Ma, W.; Peng, M.; Peng, Y.; Feng, M.; Liu, G. Backscatter Communication Meets Practical Battery-Free Internet of Things: A Survey and Outlook. IEEE Commun. Surv. Tutor. 2023, 25, 2021–2051. [Google Scholar] [CrossRef]
- Rezaei, F.; Tellambura, C.; Herath, S. Large-Scale Wireless-Powered Networks With Backscatter Communications—A Comprehensive Survey. IEEE Open J. Commun. Soc. 2020, 1, 1100–1130. [Google Scholar] [CrossRef]
- Van Huynh, N.; Hoang, D.T.; Lu, X.; Niyato, D.; Wang, P.; Kim, D.I. Ambient Backscatter Communications: A Contemporary Survey. IEEE Commun. Surv. Tutor. 2018, 20, 2889–2922. [Google Scholar] [CrossRef]
- Zhuo, L.; Goay, A.C.Y.; Sangkarat, P.; Xu, F.; He, Y.; Gao, Z.; Mishra, D.; He, S.; Zhang, Y.X.; Zhang, J. Enhanced Triboelectric Outputs from PAN/MoS2 Nanofiber-Based Nanogenerators for Powering Backscatter Communications in Sustainable 6G Networks. Adv. Energy Sustain. Res. 2024, 2400301. [Google Scholar] [CrossRef]
- Cansiz, M.; Altinel, D.; Kurt, G.K. Efficiency in RF energy harvesting systems: A comprehensive review. Energy 2019, 174, 292–309. [Google Scholar] [CrossRef]
- Niu, J.P.; Li, G.Y. An Overview on Backscatter Communications. J. Commun. Inf. Netw. 2019, 4, 1–14. [Google Scholar] [CrossRef]
- Ye, Y.; Shi, L.; Qingyang Hu, R.; Lu, G. Energy-Efficient Resource Allocation for Wirelessly Powered Backscatter Communications. IEEE Commun. Lett. 2019, 23, 1418–1422. [Google Scholar] [CrossRef]
- Memon, M.L.; Saxena, N.; Roy, A.; Shin, D.R. Backscatter Communications: Inception of the Battery-Free Era—A Comprehensive Survey. Electronics 2019, 8, 129. [Google Scholar] [CrossRef]
- Wu, W.; Wang, X.; Hawbani, A.; Yuan, L.; Gong, W. A survey on ambient backscatter communications: Principles, systems, applications, and challenges. Comput. Netw. 2022, 216, 109235. [Google Scholar] [CrossRef]
- Tedeschi, P.; Sciancalepore, S.; Di Pietro, R. Security in Energy Harvesting Networks: A Survey of Current Solutions and Research Challenges. IEEE Commun. Surv. Tutor. 2020, 22, 2658–2693. [Google Scholar] [CrossRef]
- Calautit, K.; Nasir, D.S.; Hughes, B.R. Low power energy harvesting systems: State of the art and future challenges. Renew. Sustain. Energy Rev. 2021, 147, 111230. [Google Scholar] [CrossRef]
- Ku, M.L.; Li, W.; Chen, Y.; Ray Liu, K.J. Advances in Energy Harvesting Communications: Past, Present, and Future Challenges. IEEE Commun. Surv. Tutor. 2016, 18, 1384–1412. [Google Scholar] [CrossRef]
- Zhang, Z.; Pang, H.; Georgiadis, A.; Cecati, C. Wireless Power Transfer—An Overview. IEEE Trans. Ind. Electron. 2019, 66, 1044–1058. [Google Scholar] [CrossRef]
- Detka, K.; Górecki, K. Wireless Power Transfer—A Review. Energies 2022, 15, 7236. [Google Scholar] [CrossRef]
- Zhang, W.; Mi, C.C. Compensation Topologies of High-Power Wireless Power Transfer Systems. IEEE Trans. Veh. Technol. 2016, 65, 4768–4778. [Google Scholar] [CrossRef]
- Haerinia, M.; Shadid, R. Wireless Power Transfer Approaches for Medical Implants: A Review. Signals 2020, 1, 209–229. [Google Scholar] [CrossRef]
- Triviño, A.; González-González, J.M.; Aguado, J.A. Wireless Power Transfer Technologies Applied to Electric Vehicles: A Review. Energies 2021, 14, 1547. [Google Scholar] [CrossRef]
- Bi, Z.; Kan, T.; Mi, C.C.; Zhang, Y.; Zhao, Z.; Keoleian, G.A. A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility. Appl. Energy 2016, 179, 413–425. [Google Scholar] [CrossRef]
- Mi, C.C.; Buja, G.; Choi, S.Y.; Rim, C.T. Modern Advances in Wireless Power Transfer Systems for Roadway Powered Electric Vehicles. IEEE Trans. Ind. Electron. 2016, 63, 6533–6545. [Google Scholar] [CrossRef]
- Bi, S.; Zeng, Y.; Zhang, R. Wireless powered communication networks: An overview. IEEE Wirel. Commun. 2016, 23, 10–18. [Google Scholar] [CrossRef]
- Kim, B.; Kang, J.M.; Kim, H.M.; Lee, J. Max-Min Energy-Efficiency Optimization in Wireless Powered Communication Network with Harvest-Then-Transmit Protocol. In Proceedings of the 2016 6th International Conference on IT Convergence and Security (ICITCS), Prague, Czech Republic, 26–29 September 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Chen, H.; Li, Y.; Luiz Rebelatto, J.; Uchôa-Filho, B.F.; Vucetic, B. Harvest-Then-Cooperate: Wireless-Powered Cooperative Communications. IEEE Trans. Signal Process. 2015, 63, 1700–1711. [Google Scholar] [CrossRef]
- Cho, S.; Lee, K.; Kang, B.; Koo, K.; Joe, I. Weighted Harvest-Then-Transmit: UAV-Enabled Wireless Powered Communication Networks. IEEE Access 2018, 6, 72212–72224. [Google Scholar] [CrossRef]
- Ponnimbaduge Perera, T.D.; Jayakody, D.N.K.; Sharma, S.K.; Chatzinotas, S.; Li, J. Simultaneous Wireless Information and Power Transfer (SWIPT): Recent Advances and Future Challenges. IEEE Commun. Surv. Tutor. 2018, 20, 264–302. [Google Scholar] [CrossRef]
- Wei, Z.; Yu, X.; Ng, D.W.K.; Schober, R. Resource Allocation for Simultaneous Wireless Information and Power Transfer Systems: A Tutorial Overview. Proc. IEEE 2022, 110, 127–149. [Google Scholar] [CrossRef]
- Kim, S.; Vyas, R.; Bito, J.; Niotaki, K.; Collado, A.; Georgiadis, A.; Tentzeris, M.M. Ambient RF Energy-Harvesting Technologies for Self-Sustainable Standalone Wireless Sensor Platforms. Proc. IEEE 2014, 102, 1649–1666. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, M.; Kumar, R. Powering the future: A survey of ambient RF-based communication systems for next-gen wireless networks. IET Wirel. Sens. Syst. 2024, 14, 265–292. [Google Scholar] [CrossRef]
- Luo, P.; Peng, D.; Wang, Y.; Zheng, X. Review of solar energy harvesting for IoT applications. In Proceedings of the IEEE APCCAS. IEEE, Chengdu, China, 26–30 October 2018; pp. 512–515. [Google Scholar]
- Shirvanimoghaddam, M.; Shirvanimoghaddam, K.; Abolhasani, M.M.; Farhangi, M.; Barsari, V.Z.; Liu, H.; Dohler, M.; Naebe, M. Towards a green and self-powered Internet of Things using piezoelectric energy harvesting. IEEE Access 2019, 7, 94533–94556. [Google Scholar] [CrossRef]
- Clementi, G.; Cottone, F.; Di Michele, A.; Gammaitoni, L.; Mattarelli, M.; Perna, G.; López-Suárez, M.; Baglio, S.; Trigona, C.; Neri, I. Review on Innovative Piezoelectric Materials for Mechanical Energy Harvesting. Energies 2022, 15, 6227. [Google Scholar] [CrossRef]
- Haras, M.; Skotnicki, T. Thermoelectricity for IoT–A review. Nano Energy 2018, 54, 461–476. [Google Scholar] [CrossRef]
- Perera, S.M.H.D.; Putrus, G.; Conlon, M.; Narayana, M.; Sunderland, K. Wind Energy Harvesting and Conversion Systems: A Technical Review. Energies 2022, 15, 9299. [Google Scholar] [CrossRef]
- Ferdous, R.M.; Reza, A.W.; Siddiqui, M.F. Renewable energy harvesting for wireless sensors using passive RFID tag technology: A review. Renew. Sustain. Energy Rev. 2016, 58, 1114–1128. [Google Scholar] [CrossRef]
- Vougioukas, G.; Dimitriou, A.; Bletsas, A.; Sahalos, J. Practical Energy Harvesting for Batteryless Ambient Backscatter Sensors. Electronics 2018, 7, 95. [Google Scholar] [CrossRef]
- Vojtěch, L.; Kypus, L.; Kvarda, L.; Thiard, N.; Yannis, J. Solar and wireless energy harvesting semi-active UHF RFID tag design and prototyping. In Proceedings of the 16th International Conference on Mechatronics—Mechatronika 2014, Brno, Czech Republic, 3–5 December 2014; pp. 188–193. [Google Scholar] [CrossRef]
- Guo, J.; Durrani, S.; Zhou, X. Monostatic Backscatter System with Multi-Tag to Reader Communication. IEEE Trans. Veh. Technol. 2019, 68, 10320–10324. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, G.Y.; Marindra, A.M.J.; Sunny, A.I.; Zhao, A.B. A Review of Passive RFID Tag Antenna-Based Sensors and Systems for Structural Health Monitoring Applications. Sensors 2017, 17, 265. [Google Scholar] [CrossRef]
- Skrobacz, K.; Pyt, P.; Jankowski-Mihułowicz, P.; Węglarski, M. A New Concept of Determining the RFID Chip Impedance. IEEE Trans. Microw. Theory Tech. 2024, 1–12. [Google Scholar] [CrossRef]
- Rezaei, F.; Galappaththige, D.; Tellambura, C.; Herath, S. Coding Techniques for Backscatter Communications—A Contemporary Survey. IEEE Commun. Surv. Tutor. 2023, 25, 1020–1058. [Google Scholar] [CrossRef]
- Khaledian, S.; Farzami, F.; Soury, H.; Smida, B.; Erricolo, D. Active Two-Way Backscatter Modulation: An Analytical Study. IEEE Trans. Wirel. Commun. 2019, 18, 1874–1886. [Google Scholar] [CrossRef]
- Glidden, R.; Bockorick, C.; Cooper, S.; Diorio, C.; Dressler, D.; Gutnik, V.; Hagen, C.; Hara, D.; Hass, T.; Humes, T.; et al. Design of ultra-low-cost UHF RFID tags for supply chain applications. IEEE Commun. Mag. 2004, 42, 140–151. [Google Scholar] [CrossRef]
- Kimionis, J.; Georgiadis, A.; Collado, A.; Tentzeris, M.M. Enhancement of RF Tag Backscatter Efficiency With Low-Power Reflection Amplifiers. IEEE Trans. Microw. Theory Tech. 2014, 62, 3562–3571. [Google Scholar] [CrossRef]
- Goay, A.C.Y.; Mishra, D.; Seneviratne, A. Optimal Reflection Coefficients for ASK Modulated Backscattering from Passive Tags. IEEE Trans. Commun. 2024, 1. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley & Sons: New York, NY, USA, 2015. [Google Scholar]
- Schirosi, V.; Saccardi, F.; Giacomini, A.; Scattone, F.; Scialacqua, L.; Diamanti, A.; Tartaglino, E.; Foged, L.; Gross, N.; Kaverine, E.; et al. Accurate Antenna Characterisation at VHF/UHF Frequencies with Plane Wave Generator Systems. In Proceedings of the Antenna Measurement Techniques Association Symposium (AMTA), Renton, WA, USA, 8–13 October 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, Y. Differential Antennas: Fundamentals and Applications. Electromagn. Sci. 2023, 1, 1–17. [Google Scholar] [CrossRef]
- Rele, M.; Patil, D. RF Energy Harvesting System: Design of Antenna, Rectenna, and Improving Rectenna Conversion Efficiency. In Proceedings of the International Conference on Inventive Computation Technologies (ICICT), Lalitpur, Nepal, 20–22 July 2022; pp. 604–612. [Google Scholar] [CrossRef]
- Hussain Shah, S.I.; Radha, S.M.; Park, P.; Yoon, I.J. Recent Advancements in Quasi-Isotropic Antennas: A Review. IEEE Access 2021, 9, 146296–146317. [Google Scholar] [CrossRef]
- Chang, H.C.; Lin, H.T.; Wang, P.C. Wireless Energy Harvesting for Internet-of-Things Devices Using Directional Antennas. Future Internet 2023, 15, 301. [Google Scholar] [CrossRef]
- Odiamenhi, M.; Jahanbakhsh Basherlou, H.; Hwang See, C.; Ojaroudi Parchin, N.; Goh, K.; Yu, H. Advancements and Challenges in Antenna Design and Rectifying Circuits for Radio Frequency Energy Harvesting. Sensors 2024, 24, 6804. [Google Scholar] [CrossRef]
- Islam, S.; Zada, M.; Iman, U.R.; Yoo, H. Multibeam Circular Endfire Array Incorporating Highly Efficient Nona-Band Rectifiers for IoT Energy Harvesting Applications. IEEE Internet Things J. 2024, 11, 22768–22778. [Google Scholar] [CrossRef]
- Guo, R.; Yin, R.; Wang, G.; Xu, C.; Yuan, J. Ambient Backscatter-Based User Cooperation for mmWave Wireless-Powered Communication Networks with Lens Antenna Arrays. Electronics 2024, 13, 3485. [Google Scholar] [CrossRef]
- Boursianis, A.D.; Papadopoulou, M.S.; Pierezan, J.; Mariani, V.C.; Coelho, L.S.; Sarigiannidis, P.; Koulouridis, S.; Goudos, S.K. Multiband Patch Antenna Design Using Nature-Inspired Optimization Method. IEEE Open J. Antennas Propag. 2021, 2, 151–162. [Google Scholar] [CrossRef]
- Boursianis, A.D.; Papadopoulou, M.S.; Nikolaidis, S.; Goudos, S.K. Modified Printed Bow-Tie Antenna for RF Energy Harvesting Applications. In Proceedings of the 2020 IEEE Microwave Theory and Techniques in Wireless Communications (MTTW), Riga, Latvia, 1–2 October 2020; Volume 1, pp. 67–71. [Google Scholar] [CrossRef]
- Shen, S.; Zhang, Y.; Chiu, C.Y.; Murch, R. An Ambient RF Energy Harvesting System Where the Number of Antenna Ports is Dependent on Frequency. IEEE Trans. Microw. Theory Tech. 2019, 67, 3821–3832. [Google Scholar] [CrossRef]
- Khaliq, H.S.; Awais, M.; Ahmad, W.; Khan, W.T. A high gain six band frequency independent dual CP planar log periodic antenna for ambient RF energy harvesting. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium—Fall (PIERS—FALL), Singapore, 19–22 November 2017; pp. 3024–3028. [Google Scholar] [CrossRef]
- Zeng, M.; Andrenko, A.S.; Liu, X.; Li, Z.; Tan, H.Z. A Compact Fractal Loop Rectenna for RF Energy Harvesting. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2424–2427. [Google Scholar] [CrossRef]
- Agrawal, S.; Gupta, R.D.; Parihar, M.S.; Kondekar, P.N. A wideband high gain dielectric resonator antenna for RF energy harvesting application. AEU—Int. J. Electron. Commun. 2017, 78, 24–31. [Google Scholar] [CrossRef]
- Saghlatoon, H.; Björninen, T.; Sydänheimo, L.; Tentzeris, M.M.; Ukkonen, L. Inkjet-Printed Wideband Planar Monopole Antenna on Cardboard for RF Energy-Harvesting Applications. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 325–328. [Google Scholar] [CrossRef]
- Khang, S.T.; Yu, J.W.; Lee, W.S. Compact folded dipole rectenna with RF-based energy harvesting for IoT smart sensors. Electron. Lett. 2015, 51, 926–928. [Google Scholar] [CrossRef]
- Hameed, Z.; Moez, K. Design of impedance matching circuits for RF energy harvesting systems. Microelectron. J. 2017, 62, 49–56. [Google Scholar] [CrossRef]
- Khan, D.; Basim, M.; Ali, I.; Pu, Y.; Hwang, K.C.; Yang, Y.; Kim, D.I.; Lee, K.Y. A survey on RF energy harvesting system with high efficiency RF-DC converters. J. Semicond. Eng. 2020, 1, 13–30. [Google Scholar]
- Nijhuis, C.A.; Reus, W.F.; Siegel, A.C.; Whitesides, G.M. A molecular half-wave rectifier. J. Am. Chem. Soc. 2011, 133, 15397–15411. [Google Scholar] [CrossRef]
- Erkmen, F.; Almoneef, T.S.; Ramahi, O.M. Electromagnetic Energy Harvesting Using Full-Wave Rectification. IEEE Trans. Microw. Theory Tech. 2017, 65, 1843–1851. [Google Scholar] [CrossRef]
- Xu, Z.; Khalifa, A.; Mittal, A.; Nasrollahpourmotlaghzanjani, M.; Etienne-Cummings, R.; Xiang Sun, N.; Cash, S.S.; Shrivastava, A. Analysis and Design Methodology of RF Energy Harvesting Rectifier Circuit for Ultra-Low Power Applications. IEEE Open J. Circuits Syst. 2022, 3, 82–96. [Google Scholar] [CrossRef]
- Chaour, I.; Fakhfakh, A.; Kanoun, O. Enhanced Passive RF-DC Converter Circuit Efficiency for Low RF Energy Harvesting. Sensors 2017, 17, 546. [Google Scholar] [CrossRef]
- Barnett, R.E.; Liu, J.; Lazar, S. A RF to DC Voltage Conversion Model for Multi-Stage Rectifiers in UHF RFID Transponders. IEEE J. Solid-State Circuits 2009, 44, 354–370. [Google Scholar] [CrossRef]
- Halimi, M.A.; Khan, T.; Nasimuddin; Kishk, A.A.; Antar, Y.M. Rectifier Circuits for RF Energy Harvesting and Wireless Power Transfer Applications: A Comprehensive Review Based on Operating Conditions. IEEE Microw. Mag. 2023, 24, 46–61. [Google Scholar] [CrossRef]
- Paz, H.P.D.; Silva, V.S.D.; Diniz, R.; Trevisoli, R.; Capovilla, C.E.; Casella, I.R.S. Temperature Analysis of Schottky Diodes Rectifiers for Low-Power RF Energy Harvesting Applications. IEEE Access 2023, 11, 54122–54132. [Google Scholar] [CrossRef]
- Runton, D.W.; Trabert, B.; Shealy, J.B.; Vetury, R. History of GaN: High-Power RF Gallium Nitride (GaN) from Infancy to Manufacturable Process and Beyond. IEEE Microw. Mag. 2013, 14, 82–93. [Google Scholar] [CrossRef]
- Basim, M.; Khan, D.; Ain, Q.U.; Shehzad, K.; Shah, S.A.A.; Jang, B.G.; Pu, Y.G.; Yoo, J.M.; Kim, J.T.; Lee, K.Y. A Highly Efficient RF-DC Converter for Energy Harvesting Applications Using a Threshold Voltage Cancellation Scheme. Sensors 2022, 22, 2659. [Google Scholar] [CrossRef] [PubMed]
- Sahel, Z.; Habibi, S.; Bendali, A.; El Wardi, A.R.; Benkhadda, K.; Zarrik, S.; El Abassi, H.; ALtalqi, F.; Mouhib, O.; Habibi, M. High-efficiency rectifier achieves 63% power conversion in low start-up voltage for UHF RFID tags in 180 nm CMOS technology. TELKOMNIKA (Telecommun. Comput. Electron. Control) 2024, 22, 1331–1343. [Google Scholar] [CrossRef]
- Zeng, Z.; Shen, S.; Zhong, X.; Li, X.; Tsui, C.Y.; Bermak, A.; Murch, R.; Sánchez-Sinencio, E. Design of Sub-Gigahertz Reconfigurable RF Energy Harvester From -22 to 4 dBm With 99.8% Peak MPPT Power Efficiency. IEEE J. Solid-State Circuits 2019, 54, 2601–2613. [Google Scholar] [CrossRef]
- Mansour, M.M.; Kanaya, H. High-Efficient Broadband CPW RF Rectifier for Wireless Energy Harvesting. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 288–290. [Google Scholar] [CrossRef]
- Jolly, A.; Peer, M.; Bohara, V.A.; Verma, S. Design and development of dual-band multi-stage RF energy harvesting circuit for low power applications. In Proceedings of the 2017 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), Bhubaneswar, India, 17–20 December 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Almansouri, A.S.; Ouda, M.H.; Salama, K.N. A CMOS RF-to-DC Power Converter With 86% Efficiency and -19.2-dBm Sensitivity. IEEE Trans. Microw. Theory Tech. 2018, 66, 2409–2415. [Google Scholar] [CrossRef]
- Chaour, I.; Bdiri, S.; Fakhfakh, A.; Kanoun, O. Modified rectifier circuit for high efficiency and low power RF energy harvester. In Proceedings of the 2016 13th International Multi-Conference on Systems, Signals & Devices (SSD), Leipzig, Germany, 21–24 March 2016; pp. 619–623. [Google Scholar] [CrossRef]
- Yaldi, I.R.H.; Rahim, S.K.A.; Ramli, M.R. Compact rectifier design for RF energy harvesting. In Proceedings of the 2016 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), Langkawi, Malaysia, 11–13 December 2016; pp. 258–262. [Google Scholar] [CrossRef]
- Visser, H.J.; Vullers, R.J.M. RF Energy Harvesting and Transport for Wireless Sensor Network Applications: Principles and Requirements. Proc. IEEE 2013, 101, 1410–1423. [Google Scholar] [CrossRef]
- Kumar, Y.A.; Roy, N.; Ramachandran, T.; Hussien, M.; Moniruzzaman, M.; Joo, S.W. Shaping the future of energy: The rise of supercapacitors progress in the last five years. J. Energy Storage 2024, 98, 113040. [Google Scholar] [CrossRef]
- Detka, K.; Górecki, K. Selected Technologies of Electrochemical Energy Storage—A Review. Energies 2023, 16, 5034. [Google Scholar] [CrossRef]
- Boyer, C.; Roy, S. Coded QAM Backscatter Modulation for RFID. IEEE Trans. Commun. 2012, 60, 1925–1934. [Google Scholar] [CrossRef]
- Thomas, S.J.; Reynolds, M.S. A 96 Mbit/sec, 15.5 pJ/bit 16-QAM modulator for UHF backscatter communication. In Proceedings of the 2012 IEEE International Conference on RFID (RFID), Nice, France, 5–7 November 2012; pp. 185–190. [Google Scholar] [CrossRef]
- Ensworth, J.F.; Reynolds, M.S. Every smart phone is a backscatter reader: Modulated backscatter compatibility with Bluetooth 4.0 Low Energy (BLE) devices. In Proceedings of the 2015 IEEE International Conference on RFID (RFID), San Diego, CA, USA, 15–17 April 2015; pp. 78–85. [Google Scholar] [CrossRef]
- Correia, R.; Carvalho, N.B. Ultrafast Backscatter Modulator With Low-Power Consumption and Wireless Power Transmission Capabilities. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 1152–1154. [Google Scholar] [CrossRef]
- Correia, R.; Boaventura, A.; Borges Carvalho, N. Quadrature Amplitude Backscatter Modulator for Passive Wireless Sensors in IoT Applications. IEEE Trans. Microw. Theory Tech. 2017, 65, 1103–1110. [Google Scholar] [CrossRef]
- Reed, R.; Pour, F.L.; Ha, D.S. An Energy Efficient RF Backscatter Modulator for IoT Applications. In Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Republic of Korea, 22–28 May 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Rosenthal, J.D.; Reynolds, M.S. Hardware-Efficient All-Digital Architectures for OFDM Backscatter Modulators. IEEE Trans. Microw. Theory Tech. 2021, 69, 803–811. [Google Scholar] [CrossRef]
- Lin, J.; Wang, G.; Xu, R.; Xu, Y.; Wei, X.; Qin, F.; Zhang, Y. Versatile-Modulation and Megabit-Rate Backscatter System: Design, Implementation, and Experimental Results. IEEE Internet Things J. 2024, 11, 8240–8252. [Google Scholar] [CrossRef]
- Knight, C.; Davidson, J.; Behrens, S. Energy Options for Wireless Sensor Nodes. Sensors 2008, 8, 8037–8066. [Google Scholar] [CrossRef]
- Liao, J.; Wang, X.; Koskinen, K.; Zhang, T.; Ruttik, K.; Jäntti, R.; Phan-Huy, D.T. Indoor Backscattering Communication by Using Commercial LTE Pilots. In Proceedings of the IEEE VTC2024-Spring, Singapore, 24–27 June 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Konstantopoulos, C.; Kampianakis, E.; Koutroulis, E.; Bletsas, A. Wireless sensor node for backscattering electrical signals generated by plants. In Proceedings of the 2013 IEEE SENSORS, Baltimore, MR, USA, 3–6 November 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Vougioukas, G.; Ntantidakis, N.; Karatarakis, E.; Apostolakis, G.; Bletsas, A. Batteryless Backscatter Sensor Networks—Part II: Lessons From Scalable Deployment. IEEE Commun. Lett. 2023, 27, 768–772. [Google Scholar] [CrossRef]
- Been Sayeed, S.Y.; Navaz, H.V.; Volakis, J.L.; Raj, P.M. Wireless Fully Passive Package-Embedded Seismocardiogram With RF Backscattering. IEEE Trans. Compon. Packag. Manuf. Technol. 2023, 13, 1516–1519. [Google Scholar] [CrossRef]
- Tang, N.; Liu, Y.; Chu, X.; Akyildiz, I.F. Design, Modelling and Analysis of Underwater Acoustic Backscatter Communications. In Proceedings of the ICC 2024—IEEE International Conference on Communications, Denver, CO, USA, 9–13 June June 2024; pp. 4227–4232. [Google Scholar] [CrossRef]
- Belcastro, K.D.; Ergen, O. Digitize the Human Body by Backscattering Based Nano-Tattoos: Battery-Free Sensing. IEEE Electron Device Lett. 2023, 44, 849–852. [Google Scholar] [CrossRef]
- Abbasi, F.R.; Buono, A.; Migliaccio, M.; Bignami, C. A Time-Series of SAR Measurements to Analyze C-Band Backscattering of Offshore Wind Farms. In Proceedings of the IGARSS 2024—2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024; pp. 1764–1767. [Google Scholar] [CrossRef]
- Buono, A.; Inserra, G.; Abbasi, F.; Migliaccio, M. Multi-Frequency and Multi-Polarisation Analysis of the Scattering From Offshore Wind Turbines. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 17–21 July 2023; pp. 1692–1695. [Google Scholar] [CrossRef]
- Hoang, D.T.; Niyato, D.; Wang, P.; Kim, D.I.; Han, Z. Ambient Backscatter: A New Approach to Improve Network Performance for RF-Powered Cognitive Radio Networks. IEEE Trans. Commun. 2017, 65, 3659–3674. [Google Scholar] [CrossRef]
- Lu, X.; Niyato, D.; Jiang, H.; Kim, D.I.; Xiao, Y.; Han, Z. Ambient Backscatter Assisted Wireless Powered Communications. IEEE Wirel. Commun. 2018, 25, 170–177. [Google Scholar] [CrossRef]
- Lu, X.; Jiang, H.; Niyato, D.; Kim, D.I.; Han, Z. Wireless-Powered Device-to-Device Communications With Ambient Backscattering: Performance Modeling and Analysis. IEEE Trans. Wirel. Commun. 2018, 17, 1528–1544. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, Q.; Liang, Y.C. Cooperative Ambient Backscatter Communications for Green Internet-of-Things. IEEE Internet Things J. 2018, 5, 1116–1130. [Google Scholar] [CrossRef]
- Sodhro, A.H.; Pirbhulal, S.; Sodhro, G.H.; Gurtov, A.; Muzammal, M.; Luo, Z. A Joint Transmission Power Control and Duty-Cycle Approach for Smart Healthcare System. IEEE Sens. J. 2019, 19, 8479–8486. [Google Scholar] [CrossRef]
- Lin, C.; Li, G.Y. Adaptive Beamforming With Resource Allocation for Distance-Aware Multi-User Indoor Terahertz Communications. IEEE Trans. Commun. 2015, 63, 2985–2995. [Google Scholar] [CrossRef]
- Gan, O.P.; Aw, L.L.; Sheng, H. Reliable RFID bulk reading using adaptive time and power control. In Proceedings of the 2016 IEEE Region 10 Conference (TENCON), Singapore, 22–25 November 2016; pp. 130–134. [Google Scholar] [CrossRef]
- Rodoshi, R.T.; Kim, T.; Choi, W. Resource Management in Cloud Radio Access Network: Conventional and New Approaches. Sensors 2020, 20, 2708. [Google Scholar] [CrossRef]
- Mahmood, M.R.; Matin, M.A.; Sarigiannidis, P.; Goudos, S.K. A Comprehensive Review on Artificial Intelligence/Machine Learning Algorithms for Empowering the Future IoT Toward 6G Era. IEEE Access 2022, 10, 87535–87562. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, R.; Li, D.; Yang, G.; Wang, G.; Yuen, C.; Zhou, J. Robust Resource Allocation for Wireless-Powered Backscatter Communication Systems With NOMA. IEEE Trans. Veh. Technol. 2023, 72, 12288–12299. [Google Scholar] [CrossRef]
- Iqbal, A.; Lee, T.J. Opportunistic Backscatter Communication Protocol Underlying Energy Harvesting IoT Networks. IEEE Access 2023, 11, 89568–89580. [Google Scholar] [CrossRef]
- Kishore, R.; Gurugopinath, S.; Sofotasios, P.C.; Muhaidat, S.; Al-Dhahir, N. Opportunistic Ambient Backscatter Communication in RF-Powered Cognitive Radio Networks. IEEE Trans. Cogn. Commun. Netw. 2019, 5, 413–426. [Google Scholar] [CrossRef]
- Ye, Y.; Shi, L.; Chu, X.; Lu, G. Throughput Fairness Guarantee in Wireless Powered Backscatter Communications With HTT. IEEE Wirel. Commun. Lett. 2021, 10, 449–453. [Google Scholar] [CrossRef]
- Yang, H.; Ye, Y.; Liang, K.; Chu, X. Energy Efficiency Maximization for Symbiotic Radio Networks With Multiple Backscatter Devices. IEEE Open J. Commun. Soc. 2021, 2, 1431–1444. [Google Scholar] [CrossRef]
- Lyu, B.; You, C.; Yang, Z.; Gui, G. The Optimal Control Policy for RF-Powered Backscatter Communication Networks. IEEE Trans. Veh. Technol. 2018, 67, 2804–2808. [Google Scholar] [CrossRef]
- Wang, W.J.; Xu, K.; Yan, Y.; Chen, L. Relay Selection-Based Cooperative Backscatter Transmission With Energy Harvesting: Throughput Maximization. IEEE Wirel. Commun. Lett. 2022, 11, 1533–1537. [Google Scholar] [CrossRef]
- Zou, Y.; Na, X.; Sun, Y.; He, Y. Trident: Interference Avoidance in Multi-Reader Backscatter Network via Frequency-Space Division. IEEE/ACM Trans. Netw. 2024, 1–13. [Google Scholar] [CrossRef]
- Zou, Y.; Na, X.; Guo, X.; Sun, Y.; He, Y. Trident: Interference Avoidance in Multi-reader Backscatter Network via Frequency-space Division. In Proceedings of the IEEE INFOCOM 2024—IEEE Conference on Computer Communications, Vancouver, Canada, 20–23 May 2024; pp. 1761–1770. [Google Scholar] [CrossRef]
- Long, R.; Yang, G.; Pei, Y.; Zhang, R. Transmit Beamforming for Cooperative Ambient Backscatter Communication Systems. In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Xu, Y.; Gu, B.; Hu, R.Q.; Li, D.; Zhang, H. Joint Computation Offloading and Radio Resource Allocation in MEC-Based Wireless-Powered Backscatter Communication Networks. IEEE Trans. Veh. Technol. 2021, 70, 6200–6205. [Google Scholar] [CrossRef]
- Gong, S.; Xie, Y.; Xu, J.; Niyato, D.; Liang, Y.C. Deep Reinforcement Learning for Backscatter-Aided Data Offloading in Mobile Edge Computing. IEEE Netw. 2020, 34, 106–113. [Google Scholar] [CrossRef]
- Zeng, J.; Mishra, D.; Gharakheili, H.H.; Seneviratne, A. Fairness aware secure energy efficiency maximization for UAV-assisted data collection in backscattering networks. Veh. Commun. 2025, 52, 100881. [Google Scholar] [CrossRef]
- Clerckx, B.; Bayani Zawawi, Z.; Huang, K. Wirelessly Powered Backscatter Communications: Waveform Design and SNR-Energy Tradeoff. IEEE Commun. Lett. 2017, 21, 2234–2237. [Google Scholar] [CrossRef]
- Wang, P.; Yan, Z.; Wang, N.; Zeng, K. Resource Allocation Optimization for Secure Multidevice Wirelessly Powered Backscatter Communication With Artificial Noise. IEEE Trans. Wirel. Commun. 2022, 21, 7794–7809. [Google Scholar] [CrossRef]
- Xia, F.; Fei, Z.; Wang, X.; Liu, P.; Guo, J.; Wu, Q. Joint Waveform and Reflection Design for Sensing-Assisted Secure RIS-Based Backscatter Communication. IEEE Wirel. Commun. Lett. 2024, 13, 1523–1527. [Google Scholar] [CrossRef]
- Kobuchi, D.; Moore, G.E.; Narusue, Y.; Smith, J.R. Suppression of Receiver Harmonic Currents in Wireless Power Transfer Systems. In Proceedings of the 2023 IEEE Wireless Power Technology Conference and Expo (WPTCE), San Diego, CA, USA, 4–8 June 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Feng, P.; Maslik, M.; Constandinou, T.G. EM-Lens Enhanced Power Transfer and Multi-Node Data Transmission for Implantable Medical Devices. In Proceedings of the 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), Nara, Japan, 17–19 October 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Gu, B.; Xu, Y.; Huang, C.; Hu, R.Q. Energy-Efficient Resource Allocation for OFDMA-based Wireless-Powered Backscatter Communications. In Proceedings of the ICC 2021—IEEE International Conference on Communications, Montreal, QC, Canada, 17–23 June 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Kim, T.Y.; Kim, D.I. Sparse-Coded Ambient Backscatter Communication for Massive OFDM-Induced IoT Networks. In Proceedings of the 2018 IEEE International Conference on Communication Systems (ICCS), Chengdu, China, 19–21 December 2018; pp. 78–82. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, L.; Yu, J.; Fang, Y.; Gong, W. Energy-Efficient WiFi Backscatter Communication for Green IoTs. In Proceedings of the GLOBECOM 2023—2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 4—8 December 2023; pp. 6207–6212. [Google Scholar] [CrossRef]
- Yang, C.; Gummeson, J.; Sample, A. Riding the airways: Ultra-wideband ambient backscatter via commercial broadcast systems. In Proceedings of the IEEE INFOCOM 2017—IEEE Conference on Computer Communications, Atlanta, GA, USA, 1–4 May 2017; pp. 1–9. [Google Scholar] [CrossRef]
- Yang, Y.; Li, J.; Luo, N.; Yan, Z.; Zhang, Y.; Zeng, K. BatchAuth: A Physical Layer Batch Authentication Scheme for Multiple Backscatter Devices. IEEE Trans. Inf. Forensics Secur. 2024, 19, 9452–9466. [Google Scholar] [CrossRef]
- Le, C.B.; Do, D.T.; Silva, A.; Khan, W.U.; Khalid, W.; Yu, H.; Nguyen, N.D. Joint Design of Improved Spectrum and Energy Efficiency With Backscatter NOMA for IoT. IEEE Access 2022, 10, 7504–7519. [Google Scholar] [CrossRef]
- El Hassani, H.; Savard, A.; Belmega, E.V.; Lamare, R.C.d. Multi-User Downlink NOMA Systems Aided by Ambient Backscattering: Achievable Rate Regions and Energy-Efficiency Maximization. IEEE Trans. Green Commun. Netw. 2023, 7, 1135–1148. [Google Scholar] [CrossRef]
- Wang, C.; Pang, M.; Cui, G.; Chang, X.; Jiang, F.; Yao, Y.; Wang, W. Joint Waveform Design and Detection in Symbiotic Ambient Backscatter NOMA Systems. IEEE Internet Things J. 2023, 10, 19507–19517. [Google Scholar] [CrossRef]
- Ahmed, M.; Shahwar, M.; Khan, F.; Ullah Khan, W.; Ihsan, A.; Sadiq Khan, U.; Xu, F.; Chatzinotas, S. NOMA-Based Backscatter Communications: Fundamentals, Applications, and Advancements. IEEE Internet Things J. 2024, 11, 19303–19327. [Google Scholar] [CrossRef]
- Yang, G.; Dai, R.; Liang, Y.C. Energy-Efficient UAV Backscatter Communication With Joint Trajectory Design and Resource Optimization. IEEE Trans. Wirel. Commun. 2021, 20, 926–941. [Google Scholar] [CrossRef]
- Yang, G.; Dai, R.; Liang, Y.C. Energy-Efficient UAV Backscatter Communication with Joint Trajectory and Resource Optimization. In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Nie, Y.; Zhao, J.; Liu, J.; Jiang, J.; Ding, R. Energy-efficient UAV trajectory design for backscatter communication: A deep reinforcement learning approach. China Commun. 2020, 17, 129–141. [Google Scholar] [CrossRef]
- Sun, Z.; Wu, J.; Yen, G.G.; Lu, Z.; Yang, J. Performance Analysis and System Implementation for Energy-Efficient Passive UAV Radar Imaging System. IEEE Trans. Veh. Technol. 2023, 72, 9938–9955. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, H.; Yu, F.; Dang, R.; Wang, L.; Liu, C. Energy Efficient Maximization for Backscatter-Assisted UAV-Powered MEC with Reconfigurable Intelligent Surface. In Proceedings of the 2023 International Conference on Ubiquitous Communication (Ucom), Xi’an, China, 7–9 July 2023; pp. 121–126. [Google Scholar] [CrossRef]
- Solanki, S.; Gautam, S.; Singh, V.; Sharma, S.K.; Chatzinotas, S. Symbiotic Radio based Spectrum Sharing in Cooperative UAV-IRS Wireless Networks. In Proceedings of the 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), Helsinki, Finland, 19–22 June 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Jin, N.; Liao, Y.; Yang, G.; Liang, Y.C.; Chen, X. Energy-Efficient Symbiotic Cellular-UAV Communication via aerial RIS: Joint Trajectory Design and Resource Optimization. In Proceedings of the 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall), London, UK, 26–29 September 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Yang, S.; Deng, Y.; Tang, X.; Ding, Y.; Zhou, J. Energy Efficiency Optimization for UAV-Assisted Backscatter Communications. IEEE Commun. Lett. 2019, 23, 2041–2045. [Google Scholar] [CrossRef]
- Fu, Z.; Shi, L.; Ye, Y.; Zhang, Y.; Zheng, G. Computation EE Fairness for a UAV-Enabled Wireless Powered MEC Network With Hybrid Passive and Active Transmissions. IEEE Internet Things J. 2024, 11, 20152–20164. [Google Scholar] [CrossRef]
- Zeng, J.; Mishra, D.; Gharakheili, H.H.; Seneviratne, A. Secure Energy Efficiency Fairness Maximization in Backscatter Throughput Constrained UAV-Assisted Data Collection. In Proceedings of the ICASSP 2024—2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic of Korea, 14–19 April 2024; pp. 9041–9045. [Google Scholar] [CrossRef]
- Goel, A.; Varshney, N.; De, S. Efficient Charging and Data Collection in UAV-Aided Backscatter Sensor Networks. IEEE Trans. Green Commun. Netw. 2024, 1. [Google Scholar] [CrossRef]
- Sun, Z.; He, Y.; Chen, T.; An, H.; Wu, J.; Yang, J. Energy-Efficient Passive UAV SAR: System Concept and Performance Analysis. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 8261–8264. [Google Scholar] [CrossRef]
- Asiedu, D.K.P.; Menanor, S.K.; Anokye, P.; Benjillali, M.; Lee, K.J.; Saoudi, S. A Comparative Analysis of MU-NOMA IRS- and Relay-Assisted Symbiotic Radio IoT Networks. In Proceedings of the 2023 IEEE Globecom Workshops (GC Wkshps), Lumpur, Malaysia, 4–8 December 2023; pp. 1982–1987. [Google Scholar] [CrossRef]
- Zhuang, Y.; Li, X.; Ji, H.; Zhang, H. Exploiting Intelligent Reflecting Surface for Energy Efficiency in Ambient Backscatter Communication-Enabled NOMA Networks. IEEE Trans. Green Commun. Netw. 2022, 6, 163–174. [Google Scholar] [CrossRef]
- Asiedu, D.; Menanor, S.; Benjillali, M.; Lee, K.J.; Yun, J.H.; Saoudi, S. An Energy-Efficient MU-MIMO and IRS BackCom Symbiotic Radio Network Resource Allocation. In Proceedings of the 2024 IEEE Wireless Communications and Networking Conference (WCNC), Dubai, United Arab Emirates, 21–24 April 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Cao, K.; Tang, Q. Energy Efficiency Maximization for RIS-Assisted MISO Symbiotic Radio Systems Based on Deep Reinforcement Learning. IEEE Commun. Lett. 2024, 28, 88–92. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, J.; Han, S.; Li, J. A Self-Sustainable Wireless Powered IRS-Based Backscatter Communication System. In Proceedings of the ICC 2022—IEEE International Conference on Communications, Seoul, Republic of Korea, 16–20 May 2022; pp. 2260–2265. [Google Scholar] [CrossRef]
- Jafari, R.; Fapojuwo, A.O. Energy Efficient Design for Backscatter-Assisted Wireless Powered IRS-NOMA Networks. In Proceedings of the 2024 IEEE Wireless Communications and Networking Conference (WCNC), Dubai, United Arab Emirates, 21–24 April 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Xu, Y.; Bai, Y.; Jia, Y.; Zhang, H.; Wu, Q.; Yuen, C. Robust Energy Efficiency Optimization for Double-RIS-Assisted Wireless-Powered Backscatter Communications. IEEE Trans. Cogn. Commun. Netw. 2024, 10, 1718–1729. [Google Scholar] [CrossRef]
- Solanki, S.; Gautam, S.; Sharma, S.K.; Chatzinotas, S. Ambient Backscatter Assisted Co-Existence in Aerial-IRS Wireless Networks. IEEE Open J. Commun. Soc. 2022, 3, 608–621. [Google Scholar] [CrossRef]
- Lu, Z.; Zhao, Y.; Li, X.; Xu, C.Z. Randomized Passive Energy Beamforming for Cooperative Localization in Reconfigurable Intelligent Surface-Assisted Wireless Backscattered Sensor Network. IEEE Internet Things J. 2024, 11, 9693–9707. [Google Scholar] [CrossRef]
- Wang, S.; Xu, J.; Zeng, Y. On the Energy-Efficiency Trade-off Between Active and Passive Communications With RIS-Based Symbiotic Radio. IEEE Trans. Green Commun. Netw. 2024, 1. [Google Scholar] [CrossRef]
- Zargari, S.; Tellambura, C.; Herath, S. Energy-Efficient Hybrid Offloading for Backscatter-Assisted Wirelessly Powered MEC With Reconfigurable Intelligent Surfaces. IEEE Trans. Mob. Comput. 2023, 22, 5262–5279. [Google Scholar] [CrossRef]
- Xu, Y.; Tian, Q.; Zhang, H.; Wu, Q.; Zhang, H.; Yuen, C. RIS-Enhanced Cognitive BackCom Networks: Robust Resource Allocation and Passive Beamforming Design. IEEE Internet Things J. 2024, 11, 38815–38828. [Google Scholar] [CrossRef]
- Yuan, Y.; Xu, X.; Han, S.; Sun, M.; Liu, C.; Zhang, P. Energy Efficiency Aware Computation Offloading in RIS-Enhanced Symbiotic Radio Systems. IEEE Trans. Green Commun. Netw. 2023, 7, 1823–1835. [Google Scholar] [CrossRef]
- Zou, Y.; Xie, Y.; Zhang, C.; Gong, S.; Hoang, D.T.; Niyato, D. Optimization-driven Hierarchical Deep Reinforcement Learning for Hybrid Relaying Communications. In Proceedings of the 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Republic of Korea, 25–28 May 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Mannan, E.M.A.; E, N.; Moinuddin, M.M.; Vathsal, S. Bio-Inspired Optimization Algorithm in Optimum Relay Selection for Cooperative Transmission Networks. In Proceedings of the 2022 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS), Chennai, Indiam, 8–9 December 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Peng, H.; Hsia, C.C.; Han, Z.; Wang, L.C. A Generalized Delay and Backlog Analysis for Multiplexing URLLC and eMBB: Reconfigurable Intelligent Surfaces or Decode-and-Forward? IEEE Trans. Wirel. Commun. 2024, 23, 4049–4068. [Google Scholar] [CrossRef]
- Sun, W. Destructive Full Duplex Relay for Commodity RFID System. In Proceedings of the 2020 IEEE International Conference on RFID (RFID), Orlando, FL, USA, 28 September–16 October 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Sun, W. Destructive and Constructive Full Duplex Relaying for Commodity RFID System. IEEE J. Radio Freq. Identif. 2021, 5, 417–426. [Google Scholar] [CrossRef]
- Jia, X.; Zhou, X. Performance Characterization of Relaying Using Backscatter Devices. IEEE Open J. Commun. Soc. 2020, 1, 819–834. [Google Scholar] [CrossRef]
- Lu, X.; Niyato, D.; Jiang, H.; Hossain, E.; Wang, P. Ambient Backscatter-Assisted Wireless-Powered Relaying. IEEE Trans. Green Commun. Netw. 2019, 3, 1087–1105. [Google Scholar] [CrossRef]
- Chen, W.; Ding, H.; Wang, S.; da Costa, D.B.; Gong, F.; Juliano Nardelli, P.H. Backscatter Cooperation in NOMA Communications Systems. IEEE Trans. Wirel. Commun. 2021, 20, 3458–3474. [Google Scholar] [CrossRef]
- Gbadamosi, S.A.; Hancke, G.P.; Abu-Mahfouz, A.M. Building Upon NB-IoT Networks: A Roadmap Towards 5G New Radio Networks. IEEE Access 2020, 8, 188641–188672. [Google Scholar] [CrossRef]
- Asif, M.; Ihsan, A.; Khan, W.U.; Ranjha, A.; Zhang, S.; Wu, S.X. Energy-Efficient Backscatter-Assisted Coded Cooperative NOMA for B5G Wireless Communications. IEEE Trans. Green Commun. Netw. 2023, 7, 70–83. [Google Scholar] [CrossRef]
- Zhuang, Y.; Li, X.; Ji, H.; Zhang, H. Exploiting Hybrid SWIPT in Ambient Backscatter Communication-Enabled Relay Networks: Optimize Power Allocation and Time Scheduling. IEEE Internet Things J. 2022, 9, 24655–24668. [Google Scholar] [CrossRef]
- Li, L.; Chen, G.; Huang, X.; Zhang, J.; Cao, J. Meta-BackCom: Hybrid Reflect-Decode-Forward Online Relaying in Metasurface-Enhanced Backscatter Networks. IEEE Netw. 2024, 38, 146–153. [Google Scholar] [CrossRef]
- Xu, Y.; Jia, S.; Li, X.; Liu, L.; Zhang, Z. Mutualistic Relaying NOMA Transmission for Green Cellular IoT With Backscatter Sensors. IEEE Sens. J. 2024, 24, 31228–31244. [Google Scholar] [CrossRef]
- Lyu, B.; Yang, Z.; Xie, T.; Gui, G.; Adachi, F. Optimal Time Allocation in Relay Assisted Backscatter Communication Systems. In Proceedings of the IEEE VTC-Spring), Porto, Portugal, 3–6 June 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Kabiri, C.; Ntirenganya, E. Outage Analysis in Wireless-Powered CCRN Networks with Ambient Backscattering. In Proceedings of the 2018 International Conference on Advanced Technologies for Communications (ATC), Ho Chi Minh City, Vietnam, 18–20 October 2018; pp. 152–156. [Google Scholar] [CrossRef]
- Ghosh, P.; Yenna, H.; Roy, S.D.; Kundu, S. Outage Analysis of an EH Relay aided Network with Ambient-Backscattering. In Proceedings of the 2024 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 12–14 September 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Nguyen, T.L.N.; Shin, Y. Outage Probability Analysis for SWIPT Systems with Nonlinear Energy Harvesting Model. In Proceedings of the 2019 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic Korea, 16–18 October 2019; pp. 196–199. [Google Scholar] [CrossRef]
- Shah, S.T.; Choi, K.W.; Lee, T.J.; Chung, M.Y. Outage Probability and Throughput Analysis of SWIPT Enabled Cognitive Relay Network With Ambient Backscatter. IEEE Internet Things J. 2018, 5, 3198–3208. [Google Scholar] [CrossRef]
- Zhou, J.; Luo, L.; Zhou, M. Performance Analysis of SWIPT Cooperative Relay Network with Ambient Backscatter. In Proceedings of the 2023 5th International Conference on Electronics and Communication Technologies (ECT), Nanning, China, 21–23 July 2023; pp. 41–47. [Google Scholar] [CrossRef]
- Li, X.; Jiang, J.; Wang, H.; Han, C.; Chen, G.; Du, J.; Hu, C.; Mumtaz, S. Physical Layer Security for Wireless-Powered Ambient Backscatter Cooperative Communication Networks. IEEE Trans. Cogn. Commun. Netw. 2023, 9, 927–939. [Google Scholar] [CrossRef]
- Lyu, B.; Yang, Z.; Guo, H.; Tian, F.; Gui, G. Relay Cooperation Enhanced Backscatter Communication for Internet-of-Things. IEEE Internet Things J. 2019, 6, 2860–2871. [Google Scholar] [CrossRef]
- Lu, X.; Wang, P.; Li, G.; Niyato, D.; Li, Z. Short-Packet Backscatter Assisted Wireless-Powered Relaying With NOMA: Mode Selection With Performance Estimation. IEEE Trans. Cogn. Commun. Netw. 2022, 8, 216–231. [Google Scholar] [CrossRef]
- Goay, A.C.Y.; Mishra, D.; Shi, Y.; Seneviratne, A. Throughput and Energy Aware Range Maximization in Cooperative Backscatter Communication Systems. In Proceedings of the 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), Helsinki, Finland, 19–22 June 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, W.J.; Xu, K.; Zhen, L.; Yu, K.; Bashir, A.K.; Garg, S. Throughput Maximization for Energy Harvesting based Relay Cooperative Backscattering Transmission. In Proceedings of the 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, QC, Canada, 14–23 June 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Lyu, B.; Hoang, D.T.; Yang, Z. User Cooperation in Wireless-Powered Backscatter Communication Networks. Ieee Wirel. Commun. Lett. 2019, 8, 632–635. [Google Scholar] [CrossRef]
- Xu, R.; Ye, Y.; Sun, H.; Lu, G. Wireless Powered Opportunistic Cooperative Backscatter Communications: To Relay or Not? In Proceedings of the 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), Helsinki, Finland, 19–22 June 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Chen, Z.; Quek, T.Q.S.; Liang, Y.C. Spectral Efficiency and Relay Energy Efficiency of Full-Duplex Relay Channel. IEEE Trans. Wirel. Commun. 2017, 16, 3162–3175. [Google Scholar] [CrossRef]
- Sirojuddin, A.; Nzima, V.; Singh, K.; Biswas, S.; Huang, W.J. Backscatter-Aided Relaying for Next-Generation Wireless Communications With SWIPT. IEEE Access 2021, 9, 159093–159104. [Google Scholar] [CrossRef]
- Mohammadi, M.; Mobini, Z.; Galappaththige, D.; Tellambura, C. A Comprehensive Survey on Full-Duplex Communication: Current Solutions, Future Trends, and Open Issues. Ieee Commun. Surv. Tutor. 2023, 25, 2190–2244. [Google Scholar] [CrossRef]
- Gong, S.; Zou, Y.; Xu, J.; Hoang, D.T.; Lyu, B.; Niyato, D. Optimization-Driven Hierarchical Learning Framework for Wireless Powered Backscatter-Aided Relay Communications. IEEE Trans. Wirel. Commun. 2022, 21, 1378–1391. [Google Scholar] [CrossRef]
- Sarma, S.; Ishibashi, K. Time-to-Recharge Analysis for Energy-Relay-Assisted Energy Harvesting. IEEE Access 2019, 7, 139924–139937. [Google Scholar] [CrossRef]
- Kim, D.Y.; Park, J.; Kim, S. Data Transmission in Backscatter IoT Networks for Smart City Applications. J. Sens. 2022, 2022, 4973782. [Google Scholar] [CrossRef]
- Toro, U.S.; Wu, K.; Leung, V.C.M. Backscatter Wireless Communications and Sensing in Green Internet of Things. IEEE Trans. Green Commun. Netw. 2022, 6, 37–55. [Google Scholar] [CrossRef]
- Xu, F.; Hussain, T.; Ahmed, M.; Ali, K.; Mirza, M.A.; Khan, W.U.; Ihsan, A.; Han, Z. The State of AI-Empowered Backscatter Communications: A Comprehensive Survey. IEEE Internet Things J. 2023, 10, 21763–21786. [Google Scholar] [CrossRef]
- Toro, U.S.; ElHalawany, B.M.; Wong, A.B.; Wang, L.; Wu, K. Machine-Learning-Assisted Signal Detection in Ambient Backscatter Communication Networks. IEEE Netw. 2021, 35, 120–125. [Google Scholar] [CrossRef]
- Jameel, F.; Khan, W.U.; Shah, S.T.; Ristaniemi, T. Towards Intelligent IoT Networks: Reinforcement Learning for Reliable Backscatter Communications. In Proceedings of the 2019 IEEE Globecom Workshops (GC Wkshps), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Perez-Ramirez, D.F.; Pérez-Penichet, C.; Tsiftes, N.; Voigt, T.; Kostić, D.; Boman, M. DeepGANTT: A Scalable Deep Learning Scheduler for Backscatter Networks. In Proceedings of the 22nd International Conference on Information Processing in Sensor Networks, New York, NY, USA, 9–12 May 2023; IPSN ’23. pp. 163–176. [Google Scholar] [CrossRef]
- Lundager, K.; Zeinali, B.; Tohidi, M.; Madsen, J.K.; Moradi, F. Low Power Design for Future Wearable and Implantable Devices. J. Low Power Electron. Appl. 2016, 6, 20. [Google Scholar] [CrossRef]
- Alevizos, P.N.; Vougioukas, G.; Bletsas, A. Batteryless Backscatter Sensor Networks—Part I: Challenges With (Really) Simple Tags. IEEE Commun. Lett. 2023, 27, 763–767. [Google Scholar] [CrossRef]
- Yang, R.; Hou, Z.; Zhuang, X.; Chen, H. Trajectory Planning via Region-Constrained Searching and Path-Based Collision Avoidance. In Proceedings of the IEEE International Conference on Unmanned Systems (ICUS), Hefei, China, 13–15 October 2023; pp. 439–444. [Google Scholar]
- Li, X.; Zheng, Y.; Khan, W.U.; Zeng, M.; Li, D.; Ragesh, G.K.; Li, L. Physical Layer Security of Cognitive Ambient Backscatter Communications for Green Internet-of-Things. IEEE Trans. Green Commun. Netw. 2021, 5, 1066–1076. [Google Scholar] [CrossRef]
- Mishra, D.; Larsson, E.G. Multi-Tag Backscattering to MIMO Reader: Channel Estimation and Throughput Fairness. IEEE Trans. Wirel. Commun. 2019, 18, 5584–5599. [Google Scholar] [CrossRef]
- Mishra, D.; Larsson, E.G. Optimal Channel Estimation for Reciprocity-Based Backscattering With a Full-Duplex MIMO Reader. IEEE Trans. Signal Process. 2019, 67, 1662–1677. [Google Scholar] [CrossRef]
- Qu, L.; Mishra, D.; Yuan, J. Channel Estimation Protocol for Bistatic Backscattering using Multiantenna Transceiver. In Proceedings of the 2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Kyoto, Japan, 12–16 September 2022; pp. 439–444. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, G.; Atapattu, S.; He, R.; Liang, Y.C. Channel Estimation for Ambient Backscatter Communication Systems With Massive-Antenna Reader. IEEE Trans. Veh. Technol. 2019, 68, 8254–8258. [Google Scholar] [CrossRef]
- Saad, W.; Zhou, X.; Han, Z.; Poor, H.V. On the Physical Layer Security of Backscatter Wireless Systems. IEEE Trans. Wirel. Commun. 2014, 13, 3442–3451. [Google Scholar] [CrossRef]
- Li, M.; Yang, X.; Khan, F.; Jan, M.A.; Chen, W.; Han, Z. Improving Physical Layer Security in Vehicles and Pedestrians Networks With Ambient Backscatter Communication. IEEE Trans. Intell. Transp. Syst. 2022, 23, 9380–9390. [Google Scholar] [CrossRef]
- Hu, J.; Cai, X.; Yang, K. Joint Trajectory and Scheduling Design for UAV Aided Secure Backscatter Communications. Ieee Wirel. Commun. Lett. 2020, 9, 2168–2172. [Google Scholar] [CrossRef]
- Wang, P.; Yan, Z.; Zeng, K. BCAuth: Physical Layer Enhanced Authentication and Attack Tracing for Backscatter Communications. IEEE Trans. Inf. Forensics Secur. 2022, 17, 2818–2834. [Google Scholar] [CrossRef]
- Wei, Z.; Qu, H.; Wang, Y.; Yuan, X.; Wu, H.; Du, Y.; Han, K.; Zhang, N.; Feng, Z. Integrated Sensing and Communication Signals Toward 5G-A and 6G: A Survey. IEEE Internet Things J. 2023, 10, 11068–11092. [Google Scholar] [CrossRef]
- Galappaththige, D.; Tellambura, C.; Maaref, A. Integrated Sensing and Backscatter Communication. IEEE Wirel. Commun. Lett. 2023, 12, 2043–2047. [Google Scholar] [CrossRef]
- Wang, X.; Fei, Z.; Wu, Q. Integrated Sensing and Communication for RIS-Assisted Backscatter Systems. IEEE Internet Things J. 2023, 10, 13716–13726. [Google Scholar] [CrossRef]
- Mazaheri, M.H.; Chen, A.; Abari, O. Mmtag: A millimeter wave backscatter network. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference, virtual, 23–27 August 2021; pp. 463–474. [Google Scholar]
- Chen, W.; Yang, W.; Gong, W. A survey of millimeter wave backscatter communication systems. Comput. Netw. 2024, 242, 110235. [Google Scholar] [CrossRef]
- Chae, Y.; Bae, K.M.; Pathak, P.; Kim, S.M. On the feasibility of millimeter-wave backscatter using commodity 802.11 ad 60 GHz radios. In Proceedings of the 14th International Workshop on Wireless Network Testbeds, Experimental Evaluation & Characterization, London, UK, 25 September 2020; pp. 56–63. [Google Scholar]
- Elhoushy, S.; Ibrahim, M.; Hamouda, W. Cell-Free Massive MIMO: A Survey. Ieee Commun. Surv. Tutor. 2022, 24, 492–523. [Google Scholar] [CrossRef]
- Kaplan, A.; Osorio, D.P.M.; Larsson, E.G. Access Point Selection for Bistatic Backscatter Communication in Cell-Free MIMO. In Proceedings of the ICC 2024—IEEE International Conference on Communications, Denver, CO, USA, 9–13 June 2024; pp. 3214–3219. [Google Scholar] [CrossRef]
- Galappaththige, D.; Rezaei, F.; Tellambura, C.; Maaref, A. Cell-Free Bistatic Backscatter Communication: Channel Estimation, Optimization, and Performance Analysis. IEEE Trans. Commun. 2024, 72, 6617–6632. [Google Scholar] [CrossRef]
- Wu, D.; Zhu, H.; Lan, Y. A Method for Designated Target Anti-Interference Tracking Combining YOLOv5 and SiamRPN for UAV Tracking and Landing Control. Remote Sens. 2022, 14, 2825. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, Z.; Mogos, G.; Gao, Z. Quantum key distribution by drone. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; Volume 2095, p. 012080. [Google Scholar]
- Wang, Y.; Hua, C.; Ding, W.; Wu, R. Real-time detection of flame and smoke using an improved YOLOv4 network. Signal Image Video Process. 2022, 16, 1109–1116. [Google Scholar] [CrossRef]
- Zhang, T.; Lu, C.; Goay, A.C.Y.; Mishra, D.; Seneviratne, A.; Yuan, J. Securing RFID Backscattering Against Jamming: Modelling, Simulations and Experimental Validation. In Proceedings of the Press. IEEE GLOBECOM, Cape Town, South Africa, 16 December 2024; pp. 1–6. [Google Scholar]
- Zhao, Y.; Liu, X.; Chen, L.; Li, Q.; Han, P. Salaft: An RFID-Based Item-Level Localization Algorithm With Fluctuation Textures. IEEE Sens. J. 2024, 24, 8870–8884. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, X.; Lin, P.; Zhang, Y.; Zhang, Z.; Wu, J.; Hua, H. Relative Positioning of the Inspection Robot Based on RFID Tag Array in Complex GNSS-Denied Environments. IEEE Trans. Instrum. Meas. 2024, 73, 5503214. [Google Scholar] [CrossRef]
- Khan, M.Z.; Usman, M.; Tahir, A.; Farooq, M.; Qayyum, A.; Ahmad, J.; Abbas, H.; Imran, M.; Abbasi, Q.H. Transparent RFID tag wall enabled by artificial intelligence for assisted living. Sci. Rep. 2024, 14, 18896. [Google Scholar] [CrossRef]
- Tuti, A.N.; Astawa, I.G.P.; Nadziroh, F.; Budikarso, A.; Aswoyo, B.; Gulo, M.M. Combining Clipping and Channel Coding for Effective PAPR Reduction in OFDM System with GNU Radio-USRP. In Proceedings of the 2024 International Electronics Symposium (IES), Denpasar, Indonesia, 6–8 August 2024; pp. 228–233. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, J.; Gong, W. PilotScatter: High-Throughput OFDM Backscatter via Pilot Tones. IEEE Trans. Wirel. Commun. 2024, 23, 16248–16260. [Google Scholar] [CrossRef]
- Mitsugi, J.; Tokumasu, O.; Kawakita, Y. Wireless Modal Testing With Multiple Battery-Free Backscatter Sensors. IEEE J. Radio Freq. Identif. 2022, 6, 299–306. [Google Scholar] [CrossRef]
- TMYTEK. XRifle Dynamic RIS. 2024. Available online: https://tmytek.com/products/components/xrifle-dynamic-ris (accessed on 17 December 2024).
Reference | Main Contributions | Limitations | Year |
---|---|---|---|
[13] | The content reviews existing BackCom for battery-free IoT prototypes, addressing key issues including link performance enhancement, multidevice concurrent transmission, and security issues. | Overlooked the EE and sustainability of battery-free BackCom IoT. | 2023 |
[21] | This content introduces the fundamentals of ambient BackCom, including its architecture, techniques, and ambient signal basics. It then presents a new classification system based on signal types, reviews various systems in the literature under this taxonomy, and explores potential applications. | The EH efficiency and sustainability of BackCom have not been highlighted in this paper. | 2022 |
[14] | This content shows key aspects of wireless-powered networks and BackCom, including their principles, architectures, advancements, and challenges, with how they enable energy-efficient, sustainable wireless communication and IoT systems. | Only summarized wireless-powered BackCom, did not focus on the EE of EH BackCom, lack of literature review on the structure of EH tags. | 2020 |
[18] | This paper highlights the progress made over the past 70 years and explores emerging technologies like quantum backscatter. | Although BackCom is summarized, it failed to provide a more detailed summary and description of EH. | 2019 |
[20] | This content discusses BackCom communication modes, modulation schemes, and multiple access techniques for accommodating maximum users with high throughput. It also reviews the strategies for data and power transfer to enhance network EE, along with considerations for reliability, security, and range extension. | Although the problem of limited energy is emphasized, it does not consider EH BackCom EE. | 2019 |
[15] | This article provides a background of ABCS on the basic concepts, operation methods, mechanisms, and applications, summarizes advanced design techniques, and discusses challenges, open issues, and future research directions. | Lack of summary of ABCS energy efficiency. | 2018 |
Reference | Design/Type | Frequency Bands | Year |
---|---|---|---|
[64] | Lens Antenna Arrays | 30 GHz | 2024 |
[65] | Microstrip Patch Antenna | 890–960 MHz, GSM-900, GSM-1800, UMTS-2100, (NB-IoT), EGSM-900, GSM-1800, UMTS | 2021 |
[66] | Bowtie Antenna | 845 MHz, 3.5 GHz, EGSM-1800 | 2020 |
[67] | Planar Inverted-F Antenna | GSM-900, GSM-1800 | 2019 |
[68] | Log-Periodic Dipole Antenna | 1800 MHz, 2100 MHz | 2017 |
[69] | Loop Antenna | 600 MHz–1500 MHz, GSM-1800 | 2017 |
[70] | Dielectric Resonator Antenna | GSM-900, GSM-1800 | 2017 |
[71] | Monopole Antenna | 902 MHz–928 MHz | 2015 |
[72] | Dipole Antenna | 650 MHz–2500 MHz | 2015 |
Reference | Design/Type | Diodes | Frequency | Efficiency () | Year |
---|---|---|---|---|---|
[84] | CMOS Rectifier | NMOS transistor | 900 MHz | 63% | 2024 |
[77] | Half-Wave and Multistage NMOS Rectifier | NMOS transistor | 1.05 GHz | 45% | 2022 |
[85] | CMOS Reconfigurable System | - | 915 MHz | 99.8% | 2019 |
[86] | Voltage Multiplier | Schottky diodes | 0.1 GHz to 2.5 GHz | 75% | 2019 |
[87] | 3-Stage Voltage Multiplier | Schottky diodes | 915 MHz | 80% | 2018 |
[88] | CMOS Rectifier | transistor | 900 MHz | 86% | 2017 |
[89] | Voltage Doubler | Schottky diodes | 868 MHz | 81.65% | 2016 |
[90] | Voltage Quadrupler | Schottky diodes | 2.4 GHz, 5.8 GHz | 75.108% | 2016 |
[91] | Greinacher Rectifier with Rat-Race Coupler | Schottky diodes | Schottky Diodes | 71% | 2013 |
Literature | Modulation Type | Modulation EE () | Years |
---|---|---|---|
[101] | 3 Mbps Versatile Modulation | µW ( pJ/bit) | 2024 |
[100] | 1.25 Mbps MFM | 160 pJ/bit | 2021 |
[99] | 96 Mbps 64 QAM | 21.4 fJ/bit with an EVM of 1.73% | 2021 |
[98] | 120 Mbps M-quadrature Amplitude Modulation | 6.7 pJ/bit with an EVM of 16.7% | 2017 |
[97] | 960 Mbps 16 QAM | 61.5 fJ with an EVM of 8.37% | 2017 |
[96] | 1 Mbps FSK | 28.4 pJ/bit | 2015 |
[95] | 96 Mbps 16 QAM | 1.49 mW (15.5 pJ/bit) | 2012 |
Key Design Aspects | Literature | Key Focus and Strategies |
---|---|---|
EH from Renewable Sources | [102,103,104,105,106,107,108,109,110] | Leverages solar, wind, and mechanical vibration energy to power BackCom readers and RF sources, reducing reliance on non-renewable supplies and lowering the carbon footprint. The harvested energy can be stored in capacitors or batteries to ensure consistent operation in dynamic environments, enabling efficient carrier wave generation for tag communication. |
Utilization of Ambient RF Sources | [15,111,112,113,114] | Leverages existing RF signals from TV towers, cellular stations, or WiFi to power tags, thus reducing reliance on dedicated transmissions. Readers function as low-power receivers, tapping into abundant ambient signals via backscatter. By intelligently selecting the strongest or most stable ambient source, energy consumption is minimized without compromising reliability, making this approach sustainable for both urban and resource-constrained environments. |
Resource Allocation | [115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132] | Encompasses power, time, frequency, and computing resource allocation strategies to optimize energy usage and communication reliability in BackCom. These include adaptive power control and fairness-aware scheduling, dynamic time slot allocation, frequency selection or reuse to reduce interference, and real-time beamforming for targeted energy delivery, ensuring minimal waste and heightened overall efficiency. |
Carrier Waveform Design for BackCom | [133,134,135,136] | Leverages multitone waveforms to distribute energy across multiple frequencies, improving both EH efficiency and communication performance. Techniques such as amplitude-phase optimization, harmonic shaping, and frequency spacing minimize power loss and distortion, ensuring stable, energy-efficient transmissions. By tailoring waveforms to varying device distances and demands, these methods enhance overall BackCom system performance while maintaining low power consumption. |
Coding and Multiple Access Techniques | [124,137,138,139,140,141,142,143,144,145,146] | Leverage TDMA, OFDM, CDMA, and NOMA to reduce interference and power consumption and enable scalable green BackCom. By dynamically allocating time slots or sub-carriers, these techniques adapt to real-time channel conditions and device requirements, optimizing EE. Combined with EH and waveform design, they help maintain low carbon footprints while supporting reliable, large-scale deployments. |
Main Cooperative Aspects | Literature | Main Focus and Approaches |
---|---|---|
UAV-Assisted EE BackCom | [147,148,149,150,151,152,153,154,155,156,157,158] | UAVs substantially expand coverage and boost energy efficiency in BackCom, especially in large-scale IoT and data collection scenarios. Key innovations revolve around dynamic trajectory optimization that adapts flight paths and system parameters to minimize power consumption. Hybrid energy harvesting designs further optimize active and passive operations, enabling UAVs to operate efficiently under various conditions. By coordinating resource allocation in real time, these cooperative UAV-based approaches also address fairness, security, and interference challenges, underscoring their potential for robust, sustainable, and wide-ranging BackCom networks. |
IRS-Assisted EE BackCom | [151,152,153,159,160,161,162,163,164,165,166,167,168,169,170,171] | Employs IRSs to smartly reflect and shape electromagnetic waves, thereby minimizing path loss and optimizing energy transfer. Innovations include phase-shift and beamforming refinements and ML-driven approaches that adapt to varying channel conditions. This cooperative design is highly scalable in dense or mobile settings, supports partial or fully harvested energy, and reinforces overall system sustainability and throughput. |
Efficient Relaying Techniques in BackCom | [159,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202] | Implements AaF, DaF, CaF, and hybrid relay modes to overcome distance, energy, and reliability constraints. Through decoding, compressing, or adaptively switching between backscatter and active transmission, these designs could achieve notable gains in EE and system capacity. ML-based scheduling, FD relaying, and SWIPT integration further enhance coverage and reduce power demands, underscoring the benefits of cooperative relaying for green BackCom systems. |
New Application | Literature | Main Focus |
---|---|---|
Urban Management in the Era of Smart Cities | [203,204] | Green EH BackCom will provide low-cost and low-energy solutions for smart cities. |
AI-Empowered EH BackCom-Enabled IoT | [205,206,207,208] | AI-driven BackCom has created new opportunities for low-cost and energy-saving IoT. After training the AI model, it can allocate resources to the BackCom system to improve energy efficiency. |
Applications of BackCom in Healthcare | [209] | EH BackCom enables implantable or wearable healthcare devices to be powered by RF energy instead of batteries. |
Sustainable BackCom-Enabled Sensor Networks | [210] | Sensors integrated with BackCom technology can obtain energy through EH from RF signals to complete sensing and data upload without batteries. |
Open Challenges | Main Problem | Potential Solution |
---|---|---|
Channel Capacity and Coverage Limitations | The current backscatter system has a short communication distance and a low data rate, and precious time resources need to be used to harvest energy. | UAV-assisted BackCom can increase the coverage, mmWave BackCom can increase the data rate. |
Ensuring Security in BackCom Systems | Ensuring privacy and security within BackCom systems remains a significant challenge, particularly concerning interference and eavesdropping. | Physical layer security (PLS) has emerged as a promising strategy to enhance data security and against jamming. |
Limitations of BackCom Models with Dynamic Readers | Most existing studies focus on theoretical energy-saving techniques, often neglecting practical applicability and real-world reliability. | Future research must reduce the reliance on overly idealized assumptions and prioritize the development of realistic communication models validated through empirical testing. |
Trade-off Between Computational Complexity and EE in BackCom Relay Systems | Different types of relays inherently involve trade-offs between computational complexity and EE, which must be carefully managed to optimize system performance. | Algorithms are developed for adaptive relay selection and dynamic operation to ensure optimal performance. |
Ensuring Full Compatibility with Existing Standards and Network Protocols | Full compatibility with existing communication systems, such as 5G, WiFi, and other standards is one of the main challenges BackCom faces today. | Develop network standards and protocols compatible with EH BackCom. |
Channel Estimation | Monostatic and bistatic BackCom face secondary fading during estimation, which reduces the accuracy of channel estimation and requires more time slot resources. With ambient BackCom, it is difficult to estimate the channel between the tag and receiver due to the uncontrollable environmental energy source. | Develop a channel estimation protocol dedicated to BackCom and optimize its performance. |
The Trade-off on Cost-Effectiveness in EH BackCom | Although BackCom technology is low-cost, in many applications, additional equipment is often required to form the system to solve the problems of BackCom, which incurs additional expenditures. | Develop resource allocation algorithms to maximize the usage of already existing devices, thus reducing the need for additional components. Ambient BackCom can rely on ambient RF energy for power to reduce the need for the reader and RF source. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, J.; Zhang, T.; Mishra, D.; Yuan, J.; Seneviratne, A. A Survey on Green Designs for Energy Harvesting Backscatter Communications to Enable Sustainable IoT. Energies 2025, 18, 840. https://doi.org/10.3390/en18040840
Zeng J, Zhang T, Mishra D, Yuan J, Seneviratne A. A Survey on Green Designs for Energy Harvesting Backscatter Communications to Enable Sustainable IoT. Energies. 2025; 18(4):840. https://doi.org/10.3390/en18040840
Chicago/Turabian StyleZeng, Jiawang, Tianyi Zhang, Deepak Mishra, Jinhong Yuan, and Aruna Seneviratne. 2025. "A Survey on Green Designs for Energy Harvesting Backscatter Communications to Enable Sustainable IoT" Energies 18, no. 4: 840. https://doi.org/10.3390/en18040840
APA StyleZeng, J., Zhang, T., Mishra, D., Yuan, J., & Seneviratne, A. (2025). A Survey on Green Designs for Energy Harvesting Backscatter Communications to Enable Sustainable IoT. Energies, 18(4), 840. https://doi.org/10.3390/en18040840