Advancing AI-Enabled Techniques in Energy System Modeling: A Review of Data-Driven, Mechanism-Driven, and Hybrid Modeling Approaches
Abstract
:1. Introduction
2. Global Policy Review for AI in Energy Systems
3. Main Modeling Approaches in Energy System Modeling
3.1. Data-Driven Energy System Modeling
3.1.1. Supervised Learning
3.1.2. Unsupervised Learning
3.1.3. Reinforcement Learning
3.1.4. Deep Learning
3.2. Mechanism-Driven Energy System Modeling
3.2.1. Energy Flow Models
3.2.2. Energy Simulation Models
3.2.3. Energy Optimization Models
3.3. Hybrid Energy System Modeling
3.3.1. Energy Demand Forecasting
3.3.2. Intelligent Building Systems
3.3.3. Renewable Energy Integration
3.3.4. Smart Grid Operations
4. Future Avenues for Integrating AI-Enabled Techniques in Multidimensional Energy System Modeling
- Integration and optimization for renewable energy systems;
- Real-time optimization and predictive maintenance through digital twins;
- Advanced demand-side management for optimal energy use;
- Hybrid simulation of energy markets and business behavior.
4.1. Integration and Optimization of Renewable Energy Systems
4.2. Real-Time Optimization and Predictive Maintenance Through Digital Twins
4.3. Advanced Demand-Side Management for Optimal Energy Use
4.4. Hybrid Simulation of Energy Markets and Business Behavior
4.5. Key Challenges
4.5.1. Data Quality and Availability
4.5.2. Computational Complexity
4.5.3. Model Compatibility and Integration
4.5.4. Interdisciplinary Expertise
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Olatunde, T.M.; Okwandu, A.C.; Akande, D.O. Reviewing the role of artificial intelligence in energy efficiency optimization. Eng. Sci. Technol. J. 2024, 5, 1243–1256. [Google Scholar] [CrossRef]
- Thirunavukkarasu, M.; Sawle, Y.; Lala, H. A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques. Renew. Sustain. Energy Rev. 2023, 176, 113192. [Google Scholar] [CrossRef]
- Stecyk, A.; Miciuła, I. Harnessing the Power of Artificial Intelligence for Collaborative Energy Optimization Platforms. Energies 2023, 16, 5210. [Google Scholar] [CrossRef]
- Bassey, K.E.; Juliet, A.R.; Stephen, A.O. AI-Enhanced lifecycle assessment of renewable energy systems. Eng. Sci. Technol. J. 2024, 5, 2082–2099. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abdelghafar, A.A.; Maghrabie, H.M. Application of artificial intelligence for prediction, optimization, and control of thermal energy storage systems. Therm. Sci. Eng. Prog. 2023, 39, 101730. [Google Scholar] [CrossRef]
- Manuel, H.N.N.; Kehinde, H.M.; Agupugo, C.P. The impact of AI on boosting renewable energy utilization and visual power plant efficiency in contemporary construction. World J. Adv. Res. Rev. 2024, 23, 1333–1348. [Google Scholar] [CrossRef]
- Wei, P.; Bamisile, O.; Adun, H.; Cai, D. Bibliographical progress in hybrid renewable energy systems’ integration, modelling, optimization, and artificial intelligence applications. Energy Sources Part A Recovery Util. Environ. Eff. 2023, 45, 2058–2088. [Google Scholar]
- Zhu, X.; Zhang, X.; Gong, P.; Li, Y. A review of distributed energy system optimization for building decarbonization. J. Build. Eng. 2023, 73, 106735. [Google Scholar] [CrossRef]
- Dudek, G.; Piotrowski, P.; Baczyński, D. Intelligent forecasting and optimization in electrical power systems. Energies 2023, 16, 3024. [Google Scholar] [CrossRef]
- Nutakki, M.; Mandava, S. Review on optimization techniques and role of Artificial Intelligence in home energy management systems. Eng. Appl. Artif. Intell. 2023, 119, 105721. [Google Scholar] [CrossRef]
- Hamdan, A.; Ibekwe, K.I. AI in renewable energy: A review of predictive maintenance and energy optimization. Int. J. Sci. Adv. Technol. 2024, 11, 718–729. [Google Scholar]
- Ohalete, N.C.; Aderibigbe, A.O. AI-driven solutions in renewable energy: A review of data science applications in solar and wind energy optimization. World J. Adv. Res. Rev. 2023, 20, 401–417. [Google Scholar] [CrossRef]
- Sankarananth, S.; Karthiga, M.; Suganya, E. AI-enabled metaheuristic optimization for predictive management of renewable energy production in smart grids. Energy Rep. 2023, 10, 1299–1312. [Google Scholar] [CrossRef]
- Sayed, E.T.; Olabi, A.G.; Elsaid, K. Application of artificial intelligence techniques for modeling, optimizing, and controlling desalination systems powered by renewable energy resources. J. Clean. Prod. 2023, 413, 137486. [Google Scholar] [CrossRef]
- Gao, Y.; Ai, Q.; He, X.; Fan, S. Coordination for regional integrated energy system through target cascade optimization. Energy 2023, 276, 127606. [Google Scholar] [CrossRef]
- Bassey, K.E. Hybrid renewable energy systems modeling. Eng. Sci. Technol. J. 2023, 4, 571–588. [Google Scholar] [CrossRef]
- Vandana, C.P.; Chaturvedi, A.; Ambala, S.; Dineshkumar, R. Optimizing residential DC microgrid energy management system using artificial intelligence. Soft Comput. 2023, 28, 681. [Google Scholar] [CrossRef]
- Alabi, T.M.; Aghimien, E.I.; Agbajor, F.D.; Yang, Z.; Lu, L. A review on the integrated optimization techniques and machine learning approaches for modeling, prediction, and decision making on integrated energy systems. Renew. Energy 2022, 194, 822–849. [Google Scholar] [CrossRef]
- Nurhaeni, H.; Delhi, A.; Daeli, O.P.M. Optimizing electrical energy use through AI: An integrated approach for efficiency and sustainability. J. Artif. Intell. 2024, 2, 106–113. [Google Scholar] [CrossRef]
- Kanase-Patil, A.B.; Kaldate, A.P. A review of artificial intelligence-based optimization techniques for the sizing of integrated renewable energy systems in smart cities. Environ. Technol. Rev. 2020, 9, 111–136. [Google Scholar] [CrossRef]
- European Commission. Action Plan on Digitalising the Energy System [R/OL]. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2022%3A552%3AFIN (accessed on 4 December 2024).
- European Commission. The European Green Deal [R/OL]. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 4 December 2024).
- European Commission. Fit for 55 Package [R/OL]. Available online: https://ec.europa.eu/commission/presscorner/detail/en/IP_21_3541 (accessed on 4 December 2024).
- The White House. Bipartisan Infrastructure Law [R/OL]. Available online: https://bidenwhitehouse.archives.gov/build/guidebook/ (accessed on 4 December 2024).
- US Congress. Energy Act of 2020 [R/OL]. Available online: https://www.congress.gov/116/bills/s2657/BILLS-116s2657enr.pdf (accessed on 4 December 2024).
- US Congress. Inflation Reduction Act of 2022 [R/OL]. Available online: https://www.congress.gov/bill/117th-congress/house-bill/5376 (accessed on 4 December 2024).
- NITT Aayog. National Strategy for Artificial Intelligence [R/OL]. Available online: https://www.niti.gov.in/sites/default/files/2023-03/National-Strategy-for-Artificial-Intelligence.pdf (accessed on 21 January 2025).
- EBIA Summary of the Brazilian Artificial Intelligence Strategy [R/OL]. Available online: https://www.gov.br/mcti/pt-br/acompanhe-o-mcti/transformacaodigital/arquivosinteligenciaartificial/ebia-summary_brazilian_4-979_2021.pdf (accessed on 21 January 2025).
- National Development and Reform Commission. The 14th Five-Year Plan for Energy Development [R/OL]. Available online: https://www.ndrc.gov.cn (accessed on 4 December 2024).
- Ministry of Industry and Information Technology. The 14th Five-Year Plan for Digital Economy Development (2021–2025) [R/OL]. Available online: https://www.miit.gov.cn (accessed on 4 December 2024).
- The State Council. Action Plan for Peak Carbon Emissions by 2030 [R/OL]. Available online: http://www.gov.cn (accessed on 4 December 2024).
- Rätz, M.; Javadi, A.P.; Baranski, M.; Finkbeiner, K. Automated data-driven modeling of building energy systems via machine learning algorithms. Energy Build. 2019, 202, 109384. [Google Scholar] [CrossRef]
- Ahmad, T.; Madonski, R.; Zhang, D.; Huang, C. Data-driven probabilistic machine learning in sustainable smart energy systems: Key developments, challenges, and future research opportunities. Renew. Sustain. Energy Rev. 2022, 160, 112128. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, M.; Chen, Z.; Ji, Y. Physical energy and data-driven models in building energy prediction: A review. Energy Rep. 2022, 8, 2656–2671. [Google Scholar] [CrossRef]
- Schreiber, T.; Netsch, C.; Eschweiler, S.; Wang, T.; Storek, T. Application of data-driven methods for energy system modelling demonstrated on an adaptive cooling supply system. Energy 2021, 230, 120894. [Google Scholar] [CrossRef]
- Zaki, A.; Métwalli, A.; Aly, M.H.; Badawi, W.K. Enhanced feature selection method based on regularization and kernel trick for 5G applications and beyond. Alex. Eng. J. 2022, 61, 11589–11600. [Google Scholar] [CrossRef]
- Setitra, M.A.; Fan, M. Detection of DDoS attacks in SDN-based VANET using optimized TabNet. Comput. Stand. Interfaces 2024, 90, 103845. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.; Dehestani, M.; Hosseinzadeh, A. Prediction of mechanical properties of recycled aggregate fly ash concrete employing machine learning algorithms. J. Build. Eng. 2023, 76, 107006. [Google Scholar] [CrossRef]
- Pouyanfar, N.; Ahmadi, M.; Ayyoubzadeh, S.M.; Ghorbani-Bidkorpeh, F. Drug Delivery System Tailoring via Metal-organic Framework Property Prediction using Machine Learning: A Disregarded Approach. Mater. Today Commun. 2023, 38, 107938. [Google Scholar] [CrossRef]
- Danish, M.S.S.; Senjyu, T. Shaping the future of sustainable energy through AI-enabled circular economy policies. Circ. Econ. 2023, 2, 100040. [Google Scholar] [CrossRef]
- Ahmad, T.; Chen, H. A review on machine learning forecasting growth trends and their real-time applications in different energy systems. Sustain. Cities Soc. 2020, 54, 102010. [Google Scholar] [CrossRef]
- Peirelinck, T.; Kazmi, H.; Mbuwir, B.V.; Hermans, C.; Spiessens, F.; Suykens, J.; Deconinck, G. Transfer learning in demand response: A review of algorithms for data-efficient modelling and control. Energy AI 2022, 7, 100126. [Google Scholar] [CrossRef]
- Rangel-Martinez, D.; Nigam, K.D.P.; Ricardez-Sandoval, L.A. Machine learning on sustainable energy: A review and outlook on renewable energy systems, catalysis, smart grid and energy storage. Chem. Eng. Res. Des. 2021, 174, 414–441. [Google Scholar] [CrossRef]
- Yazici, İ.; Shayea, I.; Din, J. A survey of applications of artificial intelligence and machine learning in future mobile networks-enabled systems. Eng. Sci. Technol. Int. J. 2023, 44, 101455. [Google Scholar] [CrossRef]
- Bourdeau, M.; Qiang Zhai, X.; Nefzaoui, E.; Guo, X.; Chatellier, P. Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustain. Cities Soc. 2019, 48, 101533. [Google Scholar] [CrossRef]
- Maleki, N.; Lundström, O.; Musaddiq, A.; Jeansson, J.; Olsson, T.; Ahlgren, F. Future energy insights: Time-series and deep learning models for city load forecasting. Appl. Energy 2024, 374, 124067. [Google Scholar] [CrossRef]
- Tajdinian, M.; Mohammadpourfard, M.; Weng, Y.; Genc, I. Preserving microgrid sustainability through robust islanding detection scheme ensuring cyber-situational awareness. Sustain. Cities Soc. 2023, 96, 104592. [Google Scholar] [CrossRef]
- Elabbassi, I.; Khala, M.; Eloutassi, O. Evaluating and comparing machine learning approaches for effective decision making in renewable microgrid systems. Results Eng. 2024, 21, 101888. [Google Scholar] [CrossRef]
- Attri, I.; Awasthi, L.K.; Sharma, T.P.; Rathee, P. A review of deep learning techniques used in agriculture. Ecol. Inform. 2023, 77, 102217. [Google Scholar] [CrossRef]
- Ribeiro, A.L.; Araújo, O.R.; Oliveira, L.B.; Inácio, M. The Executive Branch decisions in Brazil: A study of administrative decrees through machine learning and network analysis. PLoS ONE 2022, 17, e0271741. [Google Scholar] [CrossRef]
- Li, J.; Herdem, M.S.; Nathwani, J.; Wen, J.Z. Methods and applications for Artificial Intelligence, Big Data, Internet of Things, and Blockchain in smart energy management. Energy AI 2023, 11, 100208. [Google Scholar] [CrossRef]
- Salehmin, M.N.I.; Kiong, T.S.; Mohamed, H.; Umar, D.A.; Yu, K.L.; Ong, H.C.; Nomanbhay, S.; Lim, S.S. Navigating challenges and opportunities of machine learning in hydrogen catalysis and production processes: Beyond algorithm development. J. Energy Chem. 2024, 99, 223–252. [Google Scholar] [CrossRef]
- Zhou, H.; Genez TA, L.; Brintrup, A.; Parlikad, A.K. A hybrid-learning decomposition algorithm for competing risk identification within fleets of complex engineering systems. Reliab. Eng. Syst. Saf. 2022, 217, 107992. [Google Scholar] [CrossRef]
- Es-haghi, M.S.; Anitescu, C.; Rabczuk, T. Methods for enabling real-time analysis in digital twins: A literature review. Comput. Struct. 2024, 297, 107342. [Google Scholar] [CrossRef]
- Pinthurat, W.; Surinkaew, T.; Hredzak, B. An overview of reinforcement learning-based approaches for smart home energy management systems with energy storages. Renew. Sustain. Energy Rev. 2024, 202, 114648. [Google Scholar] [CrossRef]
- Liu, C.; Yang, R.J.; Yu, X.; Sun, C.; Rosengarten, G.; Liebman, A.; Wakefield, R.; Wong, P.S.; Wang, K. Supporting virtual power plants decision-making in complex urban environments using reinforcement learning. Sustain. Cities Soc. 2023, 99, 104915. [Google Scholar] [CrossRef]
- Zhou, Y. Advances of machine learning in multi-energy district communities–mechanisms, applications and perspectives. Energy AI 2022, 10, 100187. [Google Scholar] [CrossRef]
- Zheng, X.; Ju, C.; Yang, G.; Chu, J. Multi-agent modeling for energy storage charging station scheduling strategies in the electricity market: A cooperative learning approach. J. Energy Storage 2025, 106, 114226. [Google Scholar] [CrossRef]
- Maki, S.; Fujii, M.; Fujita, T.; Shiraishi, Y.; Ashina, S.; Gomi, K.; Sun, L.; Nugroho, S.B.; Nakano, R.; Osawa, T.; et al. A deep reinforced learning spatiotemporal energy demand estimation system using deep learning and electricity demand monitoring data. Appl. Energy 2022, 324, 119652. [Google Scholar] [CrossRef]
- Mason, K.; Grijalva, S. A review of reinforcement learning for autonomous building energy management. Comput. Electr. Eng. 2019, 78, 300–312. [Google Scholar] [CrossRef]
- Bousnina, D.; Guerassimoff, G. Optimal energy management in smart energy systems: A deep reinforcement learning approach and a digital twin case-study. Smart Energy 2024, 16, 100163. [Google Scholar] [CrossRef]
- Zhu, Y.; Newbrook, D.W.; Dai, P.; de Groot, C.K.; Huang, R. Artificial neural network enabled accurate geometrical design and optimisation of thermoelectric generator. Appl. Energy 2022, 305, 117800. [Google Scholar] [CrossRef]
- Huang, T.E.; Guo, Q.; Sun, H.; Tan, C.W.; Hu, T. A deep spatial-temporal data-driven approach considering microclimates for power system security assessment. Appl. Energy 2019, 237, 36–48. [Google Scholar] [CrossRef]
- Alghanmi, A.; Yunusa-Kaltungo, A.; Edwards, R.E. Investigating the influence of maintenance strategies on building energy performance: A systematic literature review. Energy Rep. 2022, 8, 14673–14698. [Google Scholar] [CrossRef]
- Mlakić, D.; Nikolovski, S.; Baus, Z. Detection of faults in electrical panels using deep learning method. In Proceedings of the 2017 International Conference on Smart Systems and Technologies (SST), Osijek, Croatia, 18–20 October 2017; pp. 55–61. [Google Scholar]
- Han, Y.; Wu, H.; Geng, Z.; Zhu, Q.; Gu, X.; Yu, B. Energy efficiency evaluation of complex petrochemical industries. Energy 2020, 203, 117893. [Google Scholar] [CrossRef]
- Peng, J.; Kimmig, A.; Niu, Z.; Wang, J.; Liu, X.; Ovtcharova, J. A flexible potential-flow model based high resolution spatiotemporal energy demand forecasting framework. Appl. Energy 2021, 299, 117321. [Google Scholar] [CrossRef]
- Ying, C.; Wang, W.; Yu, J.; Li, Q.; Yu, D.; Liu, J. Deep learning for renewable energy forecasting: A taxonomy, and systematic literature review. J. Clean. Prod. 2023, 384, 135414. [Google Scholar] [CrossRef]
- Bouktif, S.; Fiaz, A.; Ouni, A.; Serhani, M.A. Multi-sequence LSTM-RNN deep learning and metaheuristics for electric load forecasting. Energies 2020, 13, 391. [Google Scholar] [CrossRef]
- Li, N.; Tian, X.; Lu, Z.; Han, L. Multicomponent load forecasting of integrated energy system based on deep learning under low-carbon background. Int. J. Low-Carbon Technol. 2024, 19, 1468–1476. [Google Scholar] [CrossRef]
- Gomathi, S.; Kannan, E.; Belinda MC, M.; Giri, J.; Nagaraju, V.; Kumar, J.A.; Praveenkumar, T.R. Solar energy prediction with synergistic adversarial energy forecasting system (Solar-SAFS): Harnessing advanced hybrid techniques. Case Stud. Therm. Eng. 2024, 63, 105197. [Google Scholar] [CrossRef]
- Machlev, R.; Perl, M.; Caciularu, A.; Belikov, J.; Levy, K.Y.; Levron, Y. Explaining the decisions of power quality disturbance classifiers using latent space features. Int. J. Electr. Power Energy Syst. 2023, 148, 108949. [Google Scholar] [CrossRef]
- Cullen, J.M.; Allwood, J.M. The efficient use of energy: Tracing the global flow of energy from fuel to service. Energy Policy 2010, 38, 75–81. [Google Scholar] [CrossRef]
- Ma, L.; Allwood, J.M.; Cullen, J.M.; Li, Z. The use of energy in China: Tracing the flow of energy from primary source to demand drivers. Energy 2012, 40, 174–188. [Google Scholar] [CrossRef]
- Chong, C.; Ni, W.; Ma, L.; Liu, P.; Li, Z. The use of energy in Malaysia: Tracing energy flows from primary source to end use. Energies 2015, 8, 2828–2866. [Google Scholar] [CrossRef]
- Ji, S.; Zhang, Z.; Meng, F.; Luo, H.; Yang, M.; Wang, D.; Tan, Q.; Deng, Y.; Gong, Z. Scenario simulation and synergistic effect analysis of CO2 and atmospheric pollutant emission reduction in urban transport sector: A case study of Chengdu, China. J. Clean. Prod. 2024, 438, 140841. [Google Scholar] [CrossRef]
- Cai, L.; Luo, J.; Wang, M.; Guo, J.; Duan, J.; Li, J.; Li, S.; Liu, L.; Ren, D. Pathways for municipalities to achieve carbon emission peak and carbon neutrality: A study based on the LEAP model. Energy 2023, 262, 125435. [Google Scholar] [CrossRef]
- Zheng, J.; Hou, X.; Yang, J.; Jiao, L.; Coffman, D.M.; Wang, S. The energy system transition pathway towards carbon reduction using a model-coupling approach. Glob. Environ. Change 2024, 89, 102945. [Google Scholar] [CrossRef]
- Lin, Y.; Ma, L.; Li, Z.; Ni, W. The carbon reduction potential by improving technical efficiency from energy sources to final services in China: An extended Kaya identity analysis. Energy 2023, 263, 125963. [Google Scholar] [CrossRef]
- Chong, C.H.; Tan, W.X.; Ting, Z.J.; Liu, P.; Ma, L.; Li, Z.; Ni, W. The driving factors of energy-related CO2 emission growth in Malaysia: The LMDI decomposition method based on energy allocation analysis. Renew. Sustain. Energy Rev. 2019, 115, 109356. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, L.; Li, Z.; Ni, W. A calculation and decomposition method embedding sectoral energy structure for embodied carbon: A case study of China’s 28 sectors. Sustainability 2022, 14, 2593. [Google Scholar] [CrossRef]
- Lin, Y.; Chong, C.; Ma, L.; Li, Z.; Ni, W. Analysis of Changes in the Aggregate Exergy Efficiency of China’s Energy System from 2005 to 2015. Energies 2021, 14, 2304. [Google Scholar] [CrossRef]
- Soundararajan, K.; Ho, H.K.; Su, B. Sankey diagram framework for energy and exergy flows. Appl. Energy 2014, 136, 1035–1042. [Google Scholar] [CrossRef]
- Lin, Y.; Chong, C.H.; Ma, L.; Li, Z.; Ni, W. Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model. Energy 2022, 261, 125194. [Google Scholar] [CrossRef]
- Yang, H.; Ma, L.; Li, Z. Tracing China’s steel use from steel flows in the production system to steel footprints in the consumption system. Renew. Sustain. Energy Rev. 2023, 172, 113040. [Google Scholar] [CrossRef]
- Lin, Y.; Ma, L.; Li, Z.; Ni, W. Understanding the drivers of CO2 growth in China's iron and steel sector: An integrated analysis of the energy–material–economy nexus. J. Clean. Prod. 2023, 425, 138849. [Google Scholar] [CrossRef]
- Lin, Y.; Ma, L.; Li, Z.; Ni, W. Coordinating energy and material efficiency strategies for decarbonizing China's iron and steel sector. J. Clean. Prod. 2023, 425, 139038. [Google Scholar] [CrossRef]
- Lin, Y.; Ma, L.; Li, Z.; Ni, W. How will China’s steel demand develop under the investment-driven patterns? Integrating extended input-output model with dynamic steel flow analysis. J. Clean. Prod. 2023, 421, 138536. [Google Scholar] [CrossRef]
- Mundu, M.M.; Nnamchi, S.N.; Sempewo, J.I.; Uti, D.E. Simulation modeling for energy systems analysis: A critical review. Energy Inform. 2024, 7, 75. [Google Scholar] [CrossRef]
- Farrokhifar, M.; Nie, Y.; Pozo, D. Energy systems planning: A survey on models for integrated power and natural gas networks coordination. Appl. Energy 2020, 262, 114567. [Google Scholar] [CrossRef]
- Yu, J.; Liu, P.; Li, Z. Data reconciliation of the thermal system of a double reheat power plant for thermal calculation. Renew. Sustain. Energy Rev. 2021, 148, 111283. [Google Scholar] [CrossRef]
- Yu, J.; Han, W.; Chen, K.; Liu, P.; Li, Z. Gross error detection in steam turbine measurements based on data reconciliation of inequality constraints. Energy 2022, 253, 124009. [Google Scholar] [CrossRef]
- Jia, C.; Liu, P.; Li, Z. Performance analysis of ceramic membrane tube modules for water and heat recovery in coal-fired power plants. J. Clean. Prod. 2021, 306, 127237. [Google Scholar] [CrossRef]
- Jin, H.; Liu, P.; Li, Z. Energy-efficient process intensification for post-combustion CO2 capture: A modeling approach. Energy 2018, 158, 471–483. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, P.; Li, Z. Multi-timescale hierarchical scheduling of an integrated energy system considering system inertia. Renew. Sustain. Energy Rev. 2022, 169, 112911. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, P.; Li, Z. Enhancing accuracy of flexibility characterization in integrated energy system design: A variable temporal resolution optimization method. Energy 2024, 288, 129804. [Google Scholar] [CrossRef]
- Li, J.; Liu, P.; Li, Z. Optimal design and techno-economic analysis of a solar-wind-biomass off-grid hybrid power system for remote rural electrification: A case study of west China. Energy 2020, 208, 118387. [Google Scholar] [CrossRef]
- Tsala, S.; Koronaki, I.P.; Orfanos, G. Utilizing weather forecast meteorological models for building energy simulations: A case study of a multi-unit residential complex. Energy Build. 2024, 305, 113848. [Google Scholar] [CrossRef]
- Huang, S.; Fernandez, N.; Katipamula, S.; Parsons, A.; Bleeker, A. Rooftop unit comparison calculator: A framework for comparing performance of rooftop units with building energy simulation. J. Build. Perform. Simul. 2024, 17, 293–305. [Google Scholar] [CrossRef]
- Li, H.; Zhang, J. Improving IFC-based interoperability between BIM and BEM using invariant signatures of HVAC objects. J. Comput. Civ. Eng. 2023, 37, 04022059. [Google Scholar] [CrossRef]
- Yu, J.; Chen, L.; Wang, Q.; Zhang, X.; Sun, Q. Towards sustainable regional energy solutions: An optimized operational model for integrated energy systems with price-responsive planning. Energy 2024, 305, 132278. [Google Scholar] [CrossRef]
- Liu, Z.; Luo, H.; Zhang, Y.; Luo, T.; Yang, X. A review of simulation software for energy systems: Design, functionality, and applications. Therm. Sci. Eng. Prog. 2024, 53, 102760. [Google Scholar] [CrossRef]
- Ibrahim, O.; Aziz, M.J.A.; Ayop, R.; Dahiru, A.T.; Low, W.Y.; Sulaiman, M.H.; Amosa, T.I. Fuzzy logic-based particle swarm optimization for integrated energy management system considering battery storage degradation. Results in Eng. 2024, 24, 102816. [Google Scholar] [CrossRef]
- Li, T.; Liu, P.; Li, Z. Quantitative relationship between low-carbon pathways and system transition costs based on a multi-period and multi-regional energy infrastructure planning approach: A case study of China. Renew. Sustain. Energy Rev. 2020, 134, 110159. [Google Scholar] [CrossRef]
- Song, S.; Li, T.; Liu, P.; Li, Z. The transition pathway of energy supply systems towards carbon neutrality based on a multi-regional energy infrastructure planning approach: A case study of China. Energy 2022, 238, 122037. [Google Scholar] [CrossRef]
- Li, T.; Liu, P.; Li, Z. Optimal scale of natural gas reserves in China under increasing and fluctuating demand: A quantitative analysis. Energy Policy 2021, 152, 112221. [Google Scholar] [CrossRef]
- Chen, S.; Liu, P.; Li, Z. Multi-regional power generation expansion planning with air pollutants emission constraints. Renew. Sustain. Energy Rev. 2019, 112, 382–394. [Google Scholar] [CrossRef]
- Chen, S.; Liu, P.; Li, Z. Low carbon transition pathway of power sector with high penetration of renewable energy. Renew. Sustain. Energy Rev. 2020, 130, 109985. [Google Scholar] [CrossRef]
- Song, S.; Liu, P.; Li, Z. Low carbon transition of China’s electric and heating sector considering reliability: A modelling and optimization approach. Renew. Sustain. Energy Rev. 2022, 169, 112904. [Google Scholar] [CrossRef]
- Li, Z.; Du, B.; Petersen, N.; Liu, P.; Wirsum, M. Potential of hydrogen and thermal storage in the long-term transition of the power sector: A case study of China. Energy 2024, 307, 132512. [Google Scholar] [CrossRef]
- Lin, X.J.; Zhang, N.; Mao, Y.H.; Chen, J.Y.; Tian, X.T.; Zhong, W. A review of the transformation from urban centralized heating system to integrated energy system in smart city. Appl. Therm. Eng. 2023, 240, 122272. [Google Scholar] [CrossRef]
- Shimoda, Y.; Yamaguchi, Y.; Iwafune, Y.; Hidaka, K.; Meier, A.; Yagita, Y.; Kawamoto, H.; Nishikiori, S. Energy demand science for a decarbonized society in the context of the residential sector. Renew. Sustain. Energy Rev. 2020, 132, 110051. [Google Scholar] [CrossRef]
- Nikseresht, A.; Amindavar, H. Energy demand forecasting using adaptive ARFIMA based on a novel dynamic structural break detection framework. Appl. Energy 2024, 353, 122069. [Google Scholar] [CrossRef]
- Mittakola, R.T.; Ciais, P.; Zhou, C. Short-to-medium range forecast of natural gas use in the United States residential buildings. J. Clean. Prod. 2024, 437, 140687. [Google Scholar] [CrossRef]
- Bakare, M.S.; Abdulkarim, A.; Shuaibu, A.N.; Muhamad, M.M. A hybrid long-term industrial electrical load forecasting model using optimized ANFIS with gene expression programming. Energy Rep. 2024, 11, 5831–5844. [Google Scholar] [CrossRef]
- Tian, H.; Zhao, H.; Li, H.; Huang, X.; Qian, X.; Huang, X. Digital twins of multiple energy networks based on real-time simulation using holomorphic embedding method, Part II: Data-driven simulation. Int. J. Electr. Power Energy Syst. 2023, 153, 109325. [Google Scholar] [CrossRef]
- Xiong, L.; Tang, Y.; Mao, S.; Liu, H.; Meng, K.; Dong, Z.; Qian, F. A two-level energy management strategy for multi-microgrid systems with interval prediction and reinforcement learning. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 1788–1799. [Google Scholar] [CrossRef]
- Chen, S.; Gong, F.; Zhang, M.; Yuan, J.; Liao, S.; Chen, H.; Li, D.; Tian, S.; Hu, X. Planning and scheduling for industrial demand-side management: State of the art, opportunities and challenges under integration of energy internet and industrial internet. Sustainability 2021, 13, 7753. [Google Scholar] [CrossRef]
- Lipu, M.H.; Miah, M.S.; Ansari, S.; Hannan, M.A.; Hasan, K.; Sarker, M.R.; Mahmud, M.S.; Hussain, A.; Mansor, M. Data-driven hybrid approaches for renewable power prediction toward grid decarbonization: Applications, issues and suggestions. J. Clean. Prod. 2021, 328, 129476. [Google Scholar] [CrossRef]
- Zhang, W.; Maleki, A.; Rosen, M.A.; Liu, J. Sizing a stand-alone solar-wind-hydrogen energy system using weather forecasting and a hybrid search optimization algorithm. Energy Convers. Manag. 2019, 180, 609–621. [Google Scholar] [CrossRef]
- Tian, H.; Zhao, H.; Liu, C.; Chen, J.; Wu, Q.; Terzija, V. A dual-driven linear modeling approach for multiple energy flow calculation in electricity–heat system. Appl. Energy 2022, 314, 118872. [Google Scholar] [CrossRef]
- Alvarez, G.; Kröhling, D.; Martinez, E. A data-driven model for the operation and management of prosumer markets in electric smart grids. Comput. Ind. Eng. 2024, 196, 110492. [Google Scholar] [CrossRef]
- Gui, Y.; Nainar, K.; Ciontea, C.I.; Bendtsen, J.D.; Iov, F.; Shahid, K.; Stoustrup, J. Automatic voltage regulation application for PV inverters in low-voltage distribution grids–A digital twin approach. Int. J. Electr. Power Energy Syst. 2023, 149, 109022. [Google Scholar] [CrossRef]
- Chen, X.; Li, M.; Chen, Z. Meta rule-based energy management strategy for battery/supercapacitor hybrid electric vehicles. Energy 2023, 285, 129365. [Google Scholar] [CrossRef]
- Mu, Y.; Xu, Y.; Cao, Y.; Chen, W.; Jia, H.; Yu, X.; Jin, X. A two-stage scheduling method for integrated community energy system based on a hybrid mechanism and data-driven model. Appl. Energy 2022, 323, 119683. [Google Scholar] [CrossRef]
- Guo, S.; Ji, W.; Wang, C.; Song, T.; Wang, J. Hydraulic-thermal coupling dynamic models based on mechanism and data-driven methods of the heating networks in integrated energy systems. Energy Convers. Manag. 2023, 292, 117353. [Google Scholar] [CrossRef]
- Tian, H.; Zhao, H.; Xin, S.; Li, H.; Wang, R.; Liu, S. A Mechanism-based Data-driven Interval Energy Flow Calculation Method for Integrated Energy Systems via Affine Arithmetic-based Optimization. IEEE Trans. Sustain. Energy 2024, 15, 1562–1575. [Google Scholar] [CrossRef]
- He, Q.; Wu, M.; Liu, C.; Jin, D.; Zhao, M. Management and real-time monitoring of interconnected energy hubs using digital twin: Machine learning based approach. Sol. Energy 2023, 250, 173–181. [Google Scholar] [CrossRef]
- Das, O.; Zafar, M.H.; Sanfilippo, F.; Rudra, S.; Kolhe, M.L. Advancements in digital twin technology and machine learning for energy systems: A comprehensive review of applications in smart grids, renewable energy, and electric vehicle optimisation. Energy Convers. Manag. X 2024, 24, 100715. [Google Scholar] [CrossRef]
- You, M.; Wang, Q.; Sun, H.; Castro, I.; Jiang, J. Digital twins based day-ahead integrated energy system scheduling under load and renewable energy uncertainties. Appl. Energy 2022, 305, 117899. [Google Scholar] [CrossRef]
- Yu, J.; Liu, P.; Li, Z. Hybrid modelling and digital twin development of a steam turbine control stage for online performance monitoring. Renew. Sustain. Energy Rev. 2020, 133, 110077. [Google Scholar] [CrossRef]
- Falekas, G.; Karlis, A. Digital twin in electrical machine control and predictive maintenance: State-of-the-art and future prospects. Energies 2021, 14, 5933. [Google Scholar] [CrossRef]
- Bányai, Á.; Bányai, T. Real-time maintenance policy optimization in manufacturing systems: An energy efficiency and emission-based approach. Sustainability 2022, 14, 10725. [Google Scholar] [CrossRef]
- Sarker, E.; Halder, P.; Seyedmahmoudian, M.; Jamei, E.; Horan, B.; Mekhilef, S.; Stojcevski, A. Progress on the demand side management in smart grid and optimization approaches. Int. J. Energy Res. 2021, 45, 36–64. [Google Scholar] [CrossRef]
- Whittle, C.; Jones, C.R.; While, A. Empowering householders: Identifying predictors of intentions to use a home energy management system in the United Kingdom. Energy Policy 2020, 139, 111343. [Google Scholar] [CrossRef]
- Kumar, P.P.; Nuvvula, R.S.; Hossain, M.A.; Shezan, S.A.; Suresh, V.; Jasinski, M.; Gono, R.; Leonowicz, Z. Optimal operation of an integrated hybrid renewable energy system with demand-side management in a rural context. Energies 2022, 15, 5176. [Google Scholar] [CrossRef]
- Dranka, G.G.; Ferreira, P.; Vaz, A.I.F. Integrating supply and demand-side management in renewable-based energy systems. Energy 2021, 232, 120978. [Google Scholar] [CrossRef]
- Rehman, S.; Habib HU, R.; Wang, S.; Büker, M.S.; Alhems, L.M.; Al Garni, H.Z. Optimal design and model predictive control of standalone HRES: A real case study for residential demand side management. IEEE Access 2020, 8, 29767–29814. [Google Scholar] [CrossRef]
- Hussain, H.M.; Javaid, N.; Iqbal, S.; Hasan, Q.U.; Aurangzeb, K.; Alhussein, M. An efficient demand side management system with a new optimized home energy management controller in smart grid. Energies 2018, 11, 190. [Google Scholar] [CrossRef]
- Chakir, A.; Abid, M.; Tabaa, M.; Hachimi, H. Demand-side management strategy in a smart home using electric vehicle and hybrid renewable energy system. Energy Rep. 2022, 8, 383–393. [Google Scholar] [CrossRef]
- Beugin, D.; Jaccard, M. Statistical simulation to estimate uncertain behavioral parameters of hybrid energy-economy models. Environ. Model. Assess. 2012, 17, 77–90. [Google Scholar] [CrossRef]
- Krysiak, F.C.; Weigt, H. The demand side in economic models of energy markets: The challenge of representing consumer behavior. Front. Energy Res. 2015, 3, 24. [Google Scholar] [CrossRef]
- Negahban, A.; Giabbanelli, P.J. Hybrid agent-based simulation of adoption behavior and social interactions: Alternatives, opportunities, and pitfalls. IEEE Trans. Comput. Soc. Syst. 2021, 9, 770–780. [Google Scholar] [CrossRef]
- Mansour-Saatloo, A.; Mirzaei, M.A.; Mohammadi-Ivatloo, B.; Zare, K. A risk-averse hybrid approach for optimal participation of power-to-hydrogen technology-based multi-energy microgrid in multi-energy markets. Sustain. Cities Soc. 2020, 63, 102421. [Google Scholar] [CrossRef]
- Gulay, E.; Duru, O. Hybrid modeling in the predictive analytics of energy systems and prices. Appl. Energy 2020, 268, 114985. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, Y.; Kharrazi, A.; Ma, T. How would sustainable transformations in the electricity sector of megacities impact employment levels? A case study of Beijing. Energy 2023, 270, 126862. [Google Scholar] [CrossRef]
- Abdin, Z.; Al Khafaf, N.; McGrath, B. Feasibility of hydrogen hybrid energy systems for sustainable on-and off-grid integration: An Australian REZs case study. Int. J. Hydrogen Energy 2024, 57, 1197–1207. [Google Scholar] [CrossRef]
- Ramadan, A.I.H.A.; Sikder, S.K.; Behnisch, M.; Leone, A.; Longo, A. An Experimental Hybrid Modelling Approach in Urban Energy Optimization: A Case Study in South Italy. In Proceedings of the 2024 IEEE Smart Cities Futures Summit (SCFC), Marrakech, Morocco, 29–31 May 2024; pp. 33–36. [Google Scholar]
- Onile, A.E.; Petlenkov, E.; Levron, Y.; Belikov, J. Smartgrid-based hybrid digital twins framework for demand side recommendation service provision in distributed power systems. Future Gener. Comput. Syst. 2024, 156, 142–156. [Google Scholar] [CrossRef]
- McGookin, C.; Süsser, D.; Xexakis, G.; Trutnevyte, E.; McDowall, W.; Nikas, A.; Koasidis, K.; Few, S.; Andersen, P.D.; Demski, C.; et al. Advancing participatory energy systems modelling. Energy Strategy Rev. 2024, 52, 101319. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, N.; Shao, S.; Huang, C.; Zhang, Z.; Li, X.; Wang, Y. A review on hybrid physics and data-driven modeling methods applied in air source heat pump systems for energy efficiency improvement. Renew. Sustain. Energy Rev. 2024, 204, 114804. [Google Scholar] [CrossRef]
Country | Policy Name | Key Contents |
---|---|---|
European Union | Action Plan on Digitalising the Energy System [21] |
|
| ||
| ||
European Green Deal [22] |
| |
| ||
| ||
Fit for 55 Package [23] |
| |
| ||
| ||
United States | Bipartisan Infrastructure Law [24] |
|
| ||
| ||
Energy Act of 2020 [25] |
| |
| ||
| ||
Inflation Reduction Act [26] |
| |
| ||
| ||
India | National AI Strategy (NITI Aayog) [27] |
|
| ||
| ||
Brazil | National AI Strategy (Estratégia Brasileira de IA) [28] |
|
| ||
| ||
| ||
China | 14th Five-Year Plan for Energy Development [29] |
|
| ||
| ||
14th Five-Year Plan for Digital Economy Development (2021–2025) [30] |
| |
| ||
| ||
State Council’s Action Plan for Peak Carbon Emissions by 2030 [31] |
| |
| ||
|
Supervised Learning | Unsupervised Learning | Reinforcement Learning | Deep Learning | |
---|---|---|---|---|
Input Data | Labeled data | Unlabeled data | States and reward feedback | Complex high-dimensional data |
Objective | Learn the mapping from input to output | Discover patterns in data | Find the optimal strategy for maximizing reward | Learn complex features |
Data Interaction | Static | Static | Dynamic (interaction with the environment) | Static or dynamic |
Core Algorithms | Linear regression; SVM; Decision Trees | K-means; PCA | Q-learning; policy gradient | CNN; MLP; LSTM |
Typical Tasks | Classification; regression | Clustering; dimensionality reduction | Dynamic optimization and control | Analyzing large, complex datasets for prediction, classification, and optimization |
Main Applications in Energy Systems | Energy consumption forecasting; demand response | Anomaly detection; energy efficiency optimization | Energy scheduling; resource allocation | Energy prediction; fault diagnosis; renewable energy integration |
Limitations | Requires labeled data; sensitive to overfitting. | Results are harder to evaluate; lacks interpretability. | Computationally expensive; slow convergence. | Needs large datasets; lacks transparency; resource-intensive. |
Energy Flow Models | Energy Simulation Models | Energy Optimization Models | |
---|---|---|---|
Description | Tracks energy flows and losses across production and use | Simulates energy system operations and behavior | Optimizes energy systems for cost, efficiency, and policy |
Key Techniques/Tools | LEAP; EFA; Sankey diagrams | Aspen Plus; Thermoflex | LP; NLP; MILP; GAMS |
Applications | Energy planning; industrial efficiency; building analysis | Power plants; microgrids; building energy retrofits | Grid planning; renewable integration; demand response |
Strengths | Identifies inefficiencies; supports sustainability | High precision; real-time evaluations | Prescriptive; handles trade-offs; aligns with goals |
Limitations | Limited scope; ignores economic/social factors | Computationally intensive; input-dependent | Sensitive to input and uncertainties; resource-heavy |
Topic | Description | Key Approaches |
---|---|---|
Integration and Optimization for Renewable Energy Systems | Dynamically optimizing renewable energy production, distribution, and storage strategies | Machine learning algorithms and energy flow/optimization models |
Real-Time Optimization and Predictive Maintenance through Digital Twins | Real-time monitoring, simulation, and predictive maintenance of energy systems | Machine learning algorithms and energy simulation model |
Advanced Demand-Side Management for Optimal Energy Use | Managing consumer energy use, optimizing grid stability, and enhancing energy efficiency | Machine learning algorithms and energy simulation/optimization model |
Hybrid Simulation of Energy Markets and Business Behavior | Predicting market behavior, business strategies, and regulatory impacts | Machine learning algorithms, mechanism-driven models, and behavioral economics |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.; Tang, J.; Guo, J.; Wu, S.; Li, Z. Advancing AI-Enabled Techniques in Energy System Modeling: A Review of Data-Driven, Mechanism-Driven, and Hybrid Modeling Approaches. Energies 2025, 18, 845. https://doi.org/10.3390/en18040845
Lin Y, Tang J, Guo J, Wu S, Li Z. Advancing AI-Enabled Techniques in Energy System Modeling: A Review of Data-Driven, Mechanism-Driven, and Hybrid Modeling Approaches. Energies. 2025; 18(4):845. https://doi.org/10.3390/en18040845
Chicago/Turabian StyleLin, Yuancheng, Junlong Tang, Jing Guo, Shidong Wu, and Zheng Li. 2025. "Advancing AI-Enabled Techniques in Energy System Modeling: A Review of Data-Driven, Mechanism-Driven, and Hybrid Modeling Approaches" Energies 18, no. 4: 845. https://doi.org/10.3390/en18040845
APA StyleLin, Y., Tang, J., Guo, J., Wu, S., & Li, Z. (2025). Advancing AI-Enabled Techniques in Energy System Modeling: A Review of Data-Driven, Mechanism-Driven, and Hybrid Modeling Approaches. Energies, 18(4), 845. https://doi.org/10.3390/en18040845