Critical Concerns Regarding the Transition from E5 to E10 Gasoline in the European Union, Particularly in Poland in 2024—A Theoretical and Experimental Analysis of the Problem of Controlling the Air–Fuel Mixture Composition (AFR) and the λ Coefficient
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. Regulations Introducing E10 Fuels in the EU
2.2. Lambda (λ) Control at Different AFR Values Resulting from Fuel Changes
- n—number of carbon atoms in the fuel molecule,
- m—number of hydrogen atoms in the fuel molecule.
- —molar mass of air (approximately 28.97 g/mol),
- —molar mass of the fuel CnHm (calculated from its composition).
- ωgasoline—mass fraction of gasoline in the fuel (0.95 for E5),
- ωethanol—mass fraction of ethanol in the fuel (0.05 for E5),
- AFRgasoline—AFR for pure gasoline (14.7),
- AFRethanol—AFR for pure ethanol (9.0).
2.3. The Importance of Fuel Change Without Adjusting the Stoichiometric Air–Fuel Ratio (AFR) in the ECU Control Process and Its Correlation with Improper Exhaust Emissions
2.4. Recommendations for Correcting Lambda Sensor Signals in Emulators or Controllers in Systems Modifying Signals for the ECU
2.5. The Number of Vehicles Potentially Unsuitable for E10 Fuel in Poland
3. Experimental Analysis
3.1. Materials and Methods
3.2. Results and Analysis
4. Recommendations for Improvement
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Umerenkova, K.; Borysenko, V.; Kondratenko, O.; Lievtierov, A. Determination of Thermophysical Properties of Alternative Motor Fuels as an Environmental Aspect of Internal Combustion Engines. Eng. Innov. 2023, 7, 51–59. [Google Scholar] [CrossRef]
- Warguła, Ł.; Kukla, M.; Krawiec, P.; Wieczorek, B. Reduction in Operating Costs and Environmental Impact Consisting in the Modernization of the Low-Power Cylindrical Wood Chipper Power Unit by Using Alternative Fuel. Energies 2020, 13, 2995. [Google Scholar] [CrossRef]
- Bembenek, M.; Melnyk, V.; Karwat, B.; Rokita, T.; Hnyp, M.; Mosora, Y.; Warguła, Ł. Study of the Technical and Operational Parameters of Injectors Using Biogas Fuel. Energies 2024, 17, 5445. [Google Scholar] [CrossRef]
- Kim, S.; Dale, B. Ethanol Fuels: E10 or E85—Life Cycle Perspectives (5 pp). Int. J. Life Cycle Assess. 2006, 11, 117–121. [Google Scholar] [CrossRef]
- González-García, S.; Gasol, C.M.; Gabarrell, X.; Rieradevall, J.; Moreira, M.T.; Feijoo, G. Environmental Aspects of Ethanol-Based Fuels from Brassica carinata: A Case Study of Second Generation Ethanol. Renew. Sustain. Energy Rev. 2009, 13, 2613–2620. [Google Scholar] [CrossRef]
- Holechek, J.L.; Geli, H.M.E.; Sawalhah, M.N.; Valdez, R. A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability 2022, 14, 4792. [Google Scholar] [CrossRef]
- Silveira, S.; Khatiwada, D. Ethanol Production and Fuel Substitution in Nepal—Opportunity to Promote Sustainable Development and Climate Change Mitigation. Renew. Sustain. Energy Rev. 2010, 14, 1644–1652. [Google Scholar] [CrossRef]
- Raboni, M.; Viotti, P.; Capodaglio, A.G. A Comprehensive Analysis of the Current and Future Role of Biofuels for Transport in the European Union (EU). Rev. Ambiente Água 2015, 10, 9–21. [Google Scholar] [CrossRef]
- Sathish Kumar, T.; Ashok, B.; Saravanan, B.; Tamilvanan, A.; Szpica, D. Development of Optimal Engine Control Map for Flex Fuel Application in Ethanol Powered Direct Injection Spark Ignition Engine. Fuel 2025, 384, 133934. [Google Scholar] [CrossRef]
- Tosun, J. The Behaviour of Suppliers and Consumers in Mandated Markets: The Introduction of the Ethanol–Petrol Blend E10 in Germany. J. Environ. Policy Plan. 2018, 20, 1–15. [Google Scholar] [CrossRef]
- Khan, A.M.; Askari, G.H.; Ahmed, Z. The Performance and Cost Analysis on Bio Fuel Blends for Internal Combustion Engine. MATEC Web Conf. 2023, 381, 01012. [Google Scholar] [CrossRef]
- Dhande, D.Y.; Sinaga, N.; Dahe, K.B. Study on Combustion, Performance and Exhaust Emissions of Bioethanol-Gasoline Blended Spark Ignition Engine. Heliyon 2021, 7, e06380. [Google Scholar] [CrossRef] [PubMed]
- Rimkus, A.; Mejeras, G.; Matijošius, J. The Influence of Hydrogen and Oxygen (HHO) Gas on Engine Characteristics under the Effect of the Lean Mixtures of Gasoline and Bioethanol. Int. J. Hydrogen Energy 2023, 48, 39612–39624. [Google Scholar] [CrossRef]
- Lotko, W.; Smigins, R.; Tziourtzioumis, D.; Górska, M. Environmental Aspects of a Common Rail Diesel Engine Fuelled with Biodiesel/Diesel Blends. Adv. Sci. Technol. Res. J. 2022, 16, 192–201. [Google Scholar] [CrossRef]
- Siadkowska, K.; Barański, G.; Sochaczewski, R.; Wendeker, M. Experimental Investigation on Indicated Pressure and Heat Release for Direct Hydrogen Injection in a Dual Fuel Diesel Engine. Adv. Sci. Technol. Res. J. 2022, 16, 54–66. [Google Scholar] [CrossRef]
- Matzen, M.; Demirel, Y. Methanol and Dimethyl Ether from Renewable Hydrogen and Carbon Dioxide: Alternative Fuels Production and Life-Cycle Assessment. J. Clean. Prod. 2016, 139, 1068–1077. [Google Scholar] [CrossRef]
- von Blottnitz, H.; Curran, M.A. A Review of Assessments Conducted on Bio-Ethanol as a Transportation Fuel from a Net Energy, Greenhouse Gas, and Environmental Life Cycle Perspective. J. Clean. Prod. 2007, 15, 607–619. [Google Scholar] [CrossRef]
- Rokicki, T.; Bórawski, P.; Szeberényi, A. The Impact of the 2020–2022 Crises on EU Countries’ Independence from Energy Imports, Particularly from Russia. Energies 2023, 16, 6629. [Google Scholar] [CrossRef]
- Yan, L. Analysis of the International Oil Price Fluctuations and Its Influencing Factors. Am. J. Ind. Bus. Manag. 2012, 2, 39–46. [Google Scholar] [CrossRef]
- Su, G.; Ong, H.C.; Mofijur, M.; Mahlia, T.M.I.; Ok, Y.S. Pyrolysis of Waste Oils for the Production of Biofuels: A Critical Review. J. Hazard. Mater. 2022, 424, 127396. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Purohit, P.; Rana, S.; Kandpal, T.C. An Approach to the Estimation of the Value of Agricultural Residues Used as Biofuels. Biomass Bioenergy 2002, 22, 195–203. [Google Scholar] [CrossRef]
- Paul, S.; Mazumder, C.; Mukherjee, S. Challenges Faced in Commercialization of Biofuel from Biomass Energy Resources. Biocatal. Agric. Biotechnol. 2024, 60, 103312. [Google Scholar] [CrossRef]
- Valeika, G.; Matijošius, J.; Orynycz, O.; Rimkus, A.; Kilikevičius, A.; Tucki, K. Compression Ignition Internal Combustion Engine’s Energy Parameter Research Using Variable (HVO) Biodiesel and Biobutanol Fuel Blends. Energies 2024, 17, 262. [Google Scholar] [CrossRef]
- Ovaere, M.; Proost, S. Cost-Effective Reduction of Fossil Energy Use in the European Transport Sector: An Assessment of the Fit for 55 Package. Energy Policy 2022, 168, 113085. [Google Scholar] [CrossRef]
- Arabadjieva, K.; Bogojević, S. The European Green Deal: Climate Action, Social Impacts and Just Transition Safeguards. Yearb. Eur. Law 2024, yeae004. [Google Scholar] [CrossRef]
- Azhaganathan, G.; Bragadeshwaran, A. Critical Review on Recent Progress of Ethanol Fuelled Flex-Fuel Engine Characteristics. Int. J. Energy Res. 2022, 46, 5646–5677. [Google Scholar] [CrossRef]
- Green, Y. The Application of Ethanol Fuel: Taking the United States as An Example. Biol. Evid. 2024, 14, 1–10. [Google Scholar] [CrossRef]
- Hossain, N.; Mahlia, T.M.I.; Miskat, M.I.; Chowdhury, T.; Barua, P.; Chowdhury, H.; Nizamuddin, S.; Ahmad, N.B.; Zaharin, N.A.B.; Mazari, S.A.; et al. Bioethanol Production from Forest Residues and Life Cycle Cost Analysis of Bioethanol-Gasoline Blend on Transportation Sector. J. Environ. Chem. Eng. 2021, 9, 105542. [Google Scholar] [CrossRef]
- Yadav, V.; Sherly, M.A.; Ranjan, P.; Tinoco, R.O.; Boldrin, A.; Damgaard, A.; Laurent, A. Framework for Quantifying Environmental Losses of Plastics from Landfills. Resour. Conserv. Recycl. 2020, 161, 104914. [Google Scholar] [CrossRef]
- Warguła, Ł.; Lijewski, P.; Kukla, M. Influence of Non-Commercial Fuel Supply Systems on Small Engine SI Exhaust Emissions in Relation to European Approval Regulations. Environ. Sci. Pollut. Res. 2022, 29, 55928–55943. [Google Scholar] [CrossRef] [PubMed]
- Al-Arkawazi, S.A.F. Analyzing and Predicting the Relation between Air–Fuel Ratio (AFR), Lambda (λ) and the Exhaust Emissions Percentages and Values of Gasoline-Fueled Vehicles Using Versatile and Portable Emissions Measurement System Tool. SN Appl. Sci. 2019, 1, 1370. [Google Scholar] [CrossRef]
- Warguła, Ł.; Lijewski, P.; Kukla, M. Effects of Changing Drive Control Method of Idling Wood Size Reduction Machines on Fuel Consumption and Exhaust Emissions. Croat. J. For. Eng. 2023, 44, 137–151. [Google Scholar] [CrossRef]
- Waluś, K.J.; Warguła, Ł.; Krawiec, P.; Adamiec, J.M. The Impact of the Modernization of the Injection-Ignition System on the Parameters of Motion of the Motorcycle. Procedia Eng. 2017, 177, 393–398. [Google Scholar] [CrossRef]
- Caban, J.; Seńko, J.; Słowik, T.; Dowkontt, S.; Górnicka, D. Analysis of the Influence of Fuel Dose on the Electrical Parameters of the Starting Process of a Single-Cylinder Diesel Engine. Adv. Sci. Technol. Res. J. 2024, 18, 55–65. [Google Scholar] [CrossRef]
- Eickenhorst, R.; Koch, T. An Experimental Study on Aging Effects of the Air–Fuel Ratio Swing on Modern Gasoline Three-Way Catalysts. Automot. Engine Technol. 2023, 8, 177–192. [Google Scholar] [CrossRef]
- Herner, H.; Riehl, H.-J. Electrical Engineering and Electronics in Motor Vehicles (Elektrotechnika i Elektronika w Pojazdach Samochodowych); WKŁ: Warszawa, Poland, 2013; ISBN 978-83-206-1921-8. (In Polish) [Google Scholar]
- Tucki, K.; Orynycz, O.A.; Mruk, R.; Kulesza, E.; Ruchała, P.; Wąsowicz, G. Analytical, Computer and Laboratory Modelling of the Effect of the Fuel Used in the Spark Ignition Engine of the Selected Vehicle on the Operating Parameters and Exhaust Gas Composition. Adv. Sci. Technol. Res. J. 2024, 18, 96–112. [Google Scholar] [CrossRef]
- Bradley, D. Chapter 2—Fundamentals of Lean Combustion. In Lean Combustion; Dunn-Rankin, D., Ed.; Academic Press: Burlington, MA, USA, 2008; pp. 19–54. ISBN 978-0-12-370619-5. [Google Scholar]
- Khrulev, A.E.; Saraiev, O.V. The Method of Expert Assessment of the Technical Condition of an Automobile Engine after Overheating. Автомобільний Транспорт 2021, 48, 5–16. [Google Scholar] [CrossRef]
- Fuć, P.; Sokolnicka-Popis, B.; Ziółkowski, A.; Bednarek, M.; Jagielski, A.; Michałowska, A. Technology for Manufacturing Catalytic Systems Using a Pilot Line for Precious Metal Recovery. Combust. Engines 2023, 193, 89–96. [Google Scholar] [CrossRef]
- Porsin, A.V.; Bubnov, K.V.; Moskalets, Y.A.; Nadareishvili, G.G.; Terenchenko, A.S.; Alikin, E.A.; Ushenin, A.V. A Destruction Mechanism of a Three-Way Catalyst Due to a Failure of Fuel Supply in a Spark Ignition Engine. Emiss. Control Sci. Technol. 2021, 7, 163–173. [Google Scholar] [CrossRef]
- Yamin, J.A.; Sheet, E.A.E.; Rida, K.S. Relative Change in SI Engine Performance Using Hydrogen and Alcohol as Fuel Supplements to Gasoline. Adv. Sci. Technol. Res. J. 2021, 15, 144–155. [Google Scholar] [CrossRef]
- Ijaz Malik, M.A.; Usman, M.; Akhtar, M.; Farooq, M.; Saleem Iqbal, H.M.; Irshad, M.; Shah, M.H. Response Surface Methodology Application on Lubricant Oil Degradation, Performance, and Emissions in SI Engine: A Novel Optimization of Alcoholic Fuel Blends. Sci. Prog. 2023, 106, 1–42. [Google Scholar] [CrossRef]
- Kalghatgi, G.T. Developments in Internal Combustion Engines and Implications for Combustion Science and Future Transport Fuels. Proc. Combust. Inst. 2015, 35, 101–115. [Google Scholar] [CrossRef]
- Saha, A.; Ojanperä, A.-M.; Hyvonen, J.; Aengeby, J.; Tidholm, J.; Andersson, O.; Tunestal, P. The Influence of Ignition Control Parameters on Combustion Stability and Spark Plug Wear in a Large Bore Gas Engine; SAE International: Warrendale, PA, USA, 2023. [Google Scholar]
- Dziubak, T.; Karczewski, M. Operational Malfunctions of Turbochargers—Reasons and Consequences. Combust. Engines 2016, 164, 13–21. [Google Scholar] [CrossRef]
- Pokluda, J.; Kianicová, M. Assessment of Performance Capability of Turbine Blades with Protective Coatings after Overheating Events. Eng. Fail. Anal. 2010, 17, 1389–1396. [Google Scholar] [CrossRef]
- Warguła, Ł.; Waluś, K.J.; Wieczorek, B.; Zakaria, R. The Impact of the Modernization of the Ignition and Injection System in the Dniepr MT 11 Motorcycle on the Frequency of Service Operations. Mater. Mech. Eng. Technol. 2023, 2023, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Yoo, Y.H.; Park, I.J.; Kim, J.G.; Kwak, D.H.; Ji, W.S. Corrosion Characteristics of Aluminum Alloy in Bio-Ethanol Blended Gasoline Fuel: Part 1. The Corrosion Properties of Aluminum Alloy in High Temperature Fuels. Fuel 2011, 90, 1208–1214. [Google Scholar] [CrossRef]
- Davis, G.; Hoff, C. The Effect of Using Ethanol-Blended Gasoline on the Performance and Durability of Fuel Delivery Systems in Classic Automobiles; SAE International: Warrendale, PA, USA, 2010. [Google Scholar]
- Deng, B.; Li, Q.; Chen, Y.; Li, M.; Liu, A.; Ran, J.; Xu, Y.; Liu, X.; Fu, J.; Feng, R. The Effect of Air/Fuel Ratio on the CO and NOx Emissions for a Twin-Spark Motorcycle Gasoline Engine under Wide Range of Operating Conditions. Energy 2019, 169, 1202–1213. [Google Scholar] [CrossRef]
- Altun, S.; Oztop, H.F.; Oner, C.; Varol, Y. Exhaust Emissions of Methanol and Ethanol-Unleaded Gasoline Blends in a Spark Ignition Engine. Therm. Sci. 2013, 17, 291–297. [Google Scholar] [CrossRef]
- Çakmak, A.; Kapusuz, M.; Özcan, H. Experimental Research on Ethyl Acetate as Novel Oxygenated Fuel in the Spark-Ignition (SI) Engine. Energy Sources Part A Recovery Util. Environ. Eff. 2023, 45, 178–193. [Google Scholar] [CrossRef]
- Wu, C.-W.; Chen, R.-H.; Pu, J.-Y.; Lin, T.-H. The Influence of Air–Fuel Ratio on Engine Performance and Pollutant Emission of an SI Engine Using Ethanol–Gasoline-Blended Fuels. Atmos. Environ. 2004, 38, 7093–7100. [Google Scholar] [CrossRef]
- Sharma, N.; Agarwal, A.K. Effect of the Fuel Injection Pressure on Particulate Emissions from a Gasohol (E15 and M15)-Fueled Gasoline Direct Injection Engine. Energy Fuels 2017, 31, 4155–4164. [Google Scholar] [CrossRef]
- Masum, B.M.; Masjuki, H.H.; Kalam, M.A.; Palash, S.M.; Habibullah, M. Effect of Alcohol–Gasoline Blends Optimization on Fuel Properties, Performance and Emissions of a SI Engine. J. Clean. Prod. 2015, 86, 230–237. [Google Scholar] [CrossRef]
Properties | Characteristics |
---|---|
Swept volume | 389 cm3 |
Engine maximal power at 3600 rpm | 9.56 kW/13 HP |
Engine maximal torque at 2500 rpm | 26.5 Nm |
Bore/stroke | 88 mm/64 mm |
Engine type | Four-stroke, OHV (overhead valve) |
Number of cylinders | 1 |
Ignition | Electronic, without ignition timing adjustment |
Properties | E5 | E10 |
---|---|---|
Ethanol content | Up to 5% | Up to 10% |
Octane Number MON (RON) | 85 (95) | 85 (95) |
Density under reference conditions (liquid phase) (kg/m3) | 745–760 | 750–765 |
Calorific value (MJ/kg) | 42.7 | 42.0 |
Boiling temperature (°C) | 25–225 | 25–225 |
Air–fuel ratio (AFR) for stoichiometric mixture (mass) | 14.25:1 | 13.82:1 |
Tested Component | Measuring Range | Resolution |
---|---|---|
CO | 0–15% | 0.001% |
CO2 | 0–20% | 0.1% |
HC | 0–20.000 ppm | 1 ppm |
O2 | 0–21.7% | 0.01% (O2 < 4%) 0.1% (O2 > 4%) |
NOx | 0–5.000 ppm | 1 ppm |
λ | 0.8–1.2 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warguła, Ł.; Wieczorek, B.; Gierz, Ł.; Karwat, B. Critical Concerns Regarding the Transition from E5 to E10 Gasoline in the European Union, Particularly in Poland in 2024—A Theoretical and Experimental Analysis of the Problem of Controlling the Air–Fuel Mixture Composition (AFR) and the λ Coefficient. Energies 2025, 18, 852. https://doi.org/10.3390/en18040852
Warguła Ł, Wieczorek B, Gierz Ł, Karwat B. Critical Concerns Regarding the Transition from E5 to E10 Gasoline in the European Union, Particularly in Poland in 2024—A Theoretical and Experimental Analysis of the Problem of Controlling the Air–Fuel Mixture Composition (AFR) and the λ Coefficient. Energies. 2025; 18(4):852. https://doi.org/10.3390/en18040852
Chicago/Turabian StyleWarguła, Łukasz, Bartosz Wieczorek, Łukasz Gierz, and Bolesław Karwat. 2025. "Critical Concerns Regarding the Transition from E5 to E10 Gasoline in the European Union, Particularly in Poland in 2024—A Theoretical and Experimental Analysis of the Problem of Controlling the Air–Fuel Mixture Composition (AFR) and the λ Coefficient" Energies 18, no. 4: 852. https://doi.org/10.3390/en18040852
APA StyleWarguła, Ł., Wieczorek, B., Gierz, Ł., & Karwat, B. (2025). Critical Concerns Regarding the Transition from E5 to E10 Gasoline in the European Union, Particularly in Poland in 2024—A Theoretical and Experimental Analysis of the Problem of Controlling the Air–Fuel Mixture Composition (AFR) and the λ Coefficient. Energies, 18(4), 852. https://doi.org/10.3390/en18040852