Effect of Dynamic Injection Velocity and Mixed Wettability on Two-Phase Flow Behavior in Porous Media: A Numerical Study
Abstract
:1. Introduction
2. Mathematical Model and Verification
2.1. Mathematical Model
2.2. Capillary Tube Verification
2.3. Gas Bubble Formation Verification
3. Physical Model and Parameter Setting
3.1. Physical Model and Mesh
3.2. Case Settings
3.3. Boundary and Simulation Parameter Settings
3.4. Grid Independence Test
4. Results and Discussion
4.1. Dynamic Injection Velocity and Microscale Flow Mechanism
4.2. Mixed Wettability
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, B.; Macminn, C.W.; Primkulov, B.K.; Chen, Y.; Valocchi, A.J.; Zhao, J.; Kang, Q.; Bruning, K.; McClure, J.E.; Miller, C.T.; et al. Comprehensive Comparison of Pore-Scale Models for Multiphase Flow in Porous Media. Proc. Natl. Acad. Sci. USA 2019, 116, 13799–13806. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.H.; Kumar, S. Capillary Filling in Open Rectangular Microchannels with a Spatially Varying Contact Angle. Langmuir 2023, 39, 18526–18536. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, D.; Goyeau, B. Numerical Analysis of the Pore-Scale Mechanisms Controlling the Efficiency of Immiscible Displacement of a Pollutant Phase by a Shear-Thinning Fluid. Chem. Eng. Sci. 2022, 251, 117462. [Google Scholar] [CrossRef]
- Saraf, S.; Bera, A. A Review on Pore-Scale Modeling and CT Scan Technique to Characterize the Trapped Carbon Dioxide in Impermeable Reservoir Rocks during Sequestration. Renew. Sustain. Energy Rev. 2021, 144, 110986. [Google Scholar] [CrossRef]
- Yang, Y.; Cai, S.; Yao, J.; Zhong, J.; Zhang, K.; Song, W.; Zhang, L.; Sun, H.; Lisitsa, V. Pore-Scale Simulation of Remaining Oil Distribution in 3D Porous Media Affected by Wettability and Capillarity Based on Volume of Fluid Method. Int. J. Multiph. Flow 2021, 143, 103746. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, L.; Min, T.; Kang, Q.; Tao, W.-Q. Pore-Scale Modeling of Effects of Multiphase Reactive Transport on Solid Dissolution in Porous Media with Structural Heterogeneity. Chem. Eng. Sci. 2024, 295, 120127. [Google Scholar] [CrossRef]
- Maksim, L.; Geir, E.; Martin, F. Pore-Scale Dynamics for Underground Porous Media Hydrogen Storage. Adv. Water Resour. 2022, 163, 104167. [Google Scholar]
- Woerner, M. Numerical Modeling of Multiphase Flows in Microfluidics and Micro Process Engineering: A Review of Methods and Applications. Microfluid. Nanofluid. 2012, 12, 841–886. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, J.; Min, J.; Zhang, X. Homogenized color-gradient lattice Boltzmann model for immiscible two-phase flow in multiscale porous media. J. Appl. Phys. 2024, 135, 184701. [Google Scholar] [CrossRef]
- Sheikholeslam Noori, S.M.; Taeibi Rahni, M.; Shams Taleghani, S.A. Multiple-relaxation time color-gradient lattice Boltzmann model for simulating contact angle in two-phase flows with high density ratio. Eur. Phys. J. Plus 2019, 134, 023310. [Google Scholar] [CrossRef]
- Ben-Noah, I.; Friedman, S.P.; Berkowitz, B. Dynamics of Air Flow in Partially Water-Saturated Porous Media. Rev. Geophys. 2023, 61, e2022RG000798. [Google Scholar] [CrossRef]
- Armstrong, R.T.; Evseev, N.; Koroteev, D.; Berg, S. Modeling the Velocity Field during Haines Jumps in Porous Media. Adv. Water Resour. 2015, 77, 57–68. [Google Scholar] [CrossRef]
- Zakirov, T.R.; Khramchenkov, M.G. Wettability Effect on the Invasion Patterns during Immiscible Displacement in Heterogeneous Porous Media under Dynamic Conditions: A Numerical Study. J. Pet. Sci. Eng. 2021, 206, 109049. [Google Scholar] [CrossRef]
- Zotelle, A.C.; Siqueira, R.d.N.; Soares, E.J.; Deoclecio, L.H.P. Numerical Study of Liquid–Liquid Displacement in Homogeneous and Heterogeneous Porous Media. Phys. Fluids 2023, 35, 083303. [Google Scholar] [CrossRef]
- Li, G.-Y.; Zhan, L.-T.; Chen, Y.-M.; Feng, S.; Zhang, Z.-H.; Du, X.-L. Effects of Flow Rate and Pore Size Variability on Capillary Barrier Effects: A Microfluidic Investigation. Can. Geotech. J. 2023, 60, 902–916. [Google Scholar] [CrossRef]
- O’Brien, A.; Afkhami, S.; Bussmann, M. Pore-Scale Direct Numerical Simulation of Haines Jumps in a Porous Media Model. Eur. Phys. J. Spec. Top. 2020, 229, 1785–1798. [Google Scholar] [CrossRef]
- Pavuluri, S.; Maes, J.; Doster, F. Spontaneous Imbibition in a Microchannel: Analytical Solution and Assessment of Volume of Fluid Formulations. Microfluid. Nanofluid. 2018, 22, 90. [Google Scholar] [CrossRef]
- Lei, W.H.; Lu, X.; Gong, W.; Wang, M. Triggering Interfacial Instabilities during Forced Imbibition by Adjusting the Aspect Ratio in Depth-Variable Microfluidic Porous Media. Proc. Natl. Acad. Sci. USA 2023, 120, e2310584120. [Google Scholar] [CrossRef]
- Ambekar, A.S.; Mattey, P.; Buwa, V.V. Pore-Resolved Two-Phase Flow in a Pseudo-3D Porous Medium: Measurements and Volume-of-Fluid Simulations. Chem. Eng. Sci. 2021, 230, 116128. [Google Scholar] [CrossRef]
- Malakoutikhah, M.; Siavashi, J.; Fahimpour, J.; Sharifi, M. Pore-scale Investigation of Low Salinity Water Flooding in a Heterogeneous-wet Porous Medium. Heliyon 2024, 10, e33303. [Google Scholar] [CrossRef]
- Yin, X.; Zarikos, I.; Karadimitriou, N.K.; Raoof, A.; Hassanizadeh, S. Direct Simulations of Two-Phase Flow Experiments of Different Geometry Complexities Using Volume-of-Fluid (VOF) Method. Chem. Eng. Sci. 2019, 195, 820–827. [Google Scholar] [CrossRef]
- Maes, J.; Geiger, S. Direct Pore-Scale Reactive Transport Modelling of Dynamic Wettability Changes Induced by Surface Complexation. Adv. Water Resour. 2018, 111, 6–19. [Google Scholar] [CrossRef]
- Rabbani, H.S.; Or, D.; Liu, Y.; Lai, C.Y.; Lu, N.B.; Datta, S.S.; Stone, H.A.; Shokri, N. Suppressing Viscous Fingering in Structured Porous Media. Proc. Natl. Acad. Sci. USA 2018, 115, 4833–4838. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.; Kuipers, J.A.M.; Peters, E.A.J.F. Effect of Flow and Fluid Properties on the Mobility of Multiphase Flows through Porous Media. Chem. Eng. Sci. 2019, 193, 243–254. [Google Scholar] [CrossRef]
- Fu, T.; Ma, Y.; Li, H.Z. Hydrodynamic Feedback on Bubble Breakup at a T-Junction within an Asymmetric Loop. AIChE J. 2014, 60, 1920–1929. [Google Scholar] [CrossRef]
- Guo, X.; Yan, H.; Liu, H. New Insights into the Haines Jump in Immiscible Two-Phase Flow Displacement. Phys. Fluids 2023, 35, 013311. [Google Scholar] [CrossRef]
- Pavuluri, S.; Maes, J.; Yang, J.; Regaieg, M.; Moncorgé, A.; Doster, F. Towards Pore Network Modelling of Spontaneous Imbibition: Contact Angle Dependent Invasion Patterns and the Occurrence of Dynamic Capillary Barriers. Comput. Geosci. 2020, 24, 951–969. [Google Scholar] [CrossRef]
- Zhang, L.; Ping, J.; Tang, B.; Kang, L.; Imani, G.; Yang, Y.; Sun, H.; Zhong, J.; Yao, J.; Fan, D. Mathematical Model of Two-Phase Spontaneous Imbibition with Dynamic Contact Angle. Transp. Porous Media 2023, 148, 157–172. [Google Scholar] [CrossRef]
- Mansouri-Boroujeni, M.; Soulaine, C.; Azaroual, M.; Roman, S. How Interfacial Dynamics Controls Drainage Pore-Invasion Patterns in Porous Media. Adv. Water Resour. 2023, 171, 104353. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B.D. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Francois, M.M.; Cummins, S.J.; Dendy, E.D.; Kothe, D.B.; Sicilian, J.M.; Williams, M.W. A Balanced-Force Algorithm for Continuous and Sharp Interfacial Surface Tension Models within a Volume Tracking Framework. J. Comput. Phys. 2006, 213, 141–173. [Google Scholar] [CrossRef]
- Brackbill, J.U.; Kothe, D.B.; Zemach, C. A Continuum Method for Modeling Surface Tension. J. Comput. Phys. 1992, 100, 335–354. [Google Scholar] [CrossRef]
- Iyi, D.; Balogun, Y.; Oyeneyin, B.; Faisal, N. Numerical Modelling of the Effect of Wettability, Interfacial Tension and Temperature on Oil Recovery at Pore-Scale Level. J. Pet. Sci. Eng. 2021, 201, 108453. [Google Scholar] [CrossRef]
- Minakov, A.V.; Guzei, D.V.; Pryazhnikov, M.I.; Filimonov, S.A.; Voronenkova, Y.O. 3D Pore-Scale Modeling of Nanofluids-Enhanced Oil Recovery. Pet. Explor. Develop. 2021, 48, 956–967. [Google Scholar] [CrossRef]
- Wang, L.; Wu, H.; Cao, Z.; Fang, S.; Duan, S.; Wang, Y. Influence of Different Redevelopment Measures on Water–Oil Immiscible Displacement and Mechanism Analysis. Energies 2023, 16, 5047. [Google Scholar] [CrossRef]
- Horgue, P.; Augier, F.; Duru, P.; Prat, M.; Quintard, M. Experimental and Numerical Study of Two-Phase Flow in Arrays of Cylinders. Chem. Eng. Sci. 2013, 102, 335–345. [Google Scholar] [CrossRef]
- Raeini, A.; Blunt, M.J.; Bijeljic, B. Direct Simulations of Two-Phase Flow on MicroCT Images of Porous Media and Upscaling of Pore-Scale Forces. Adv. Water Resour. 2014, 74, 116–126. [Google Scholar] [CrossRef]
- Ferrari, A.; Jimenez-Martinez, J.; Borgne, T.L.; Meheust, Y.; Lunati, I. Challenges in Modeling Unstable Two-Phase Flow Experiments in Porous Micromodels. Water Resour. Res. 2015, 51, 1381–1400. [Google Scholar] [CrossRef]
- Walters, J.K.; Davidson, J.F. The initial motion of a gas bubble formed in an inviscid liquid Part 1. The two-dimensional bubble. J. Fluid Mech. 1962, 12, 408–416. [Google Scholar] [CrossRef]
- Jasak, H.; Weller, H.G.; Gosman, A.D. High Resolution NVD Differencing Scheme for Arbitrarily Unstructured Meshes. Int. J. Numer. Methods Fluids 1999, 31, 431–449. [Google Scholar] [CrossRef]
- Crank, J.; Phyllis, N. A Practical Method for Numerical Evaluation of Solutions of Partial Differential Equations of the Heat-Conduction Type. Math. Proc. Camb. Philos. Soc. 1947, 43, 50–67. [Google Scholar] [CrossRef]
- Bakhshian, S.; Hosseini, S.A.; Shokri, N. Pore-Scale Characteristics of Multiphase Flow in Heterogeneous Porous Media Using the Lattice Boltzmann Method. Sci. Rep. 2019, 9, 3377. [Google Scholar] [CrossRef]
- Zakirov, T.R.; Galeev, A.A.; Khramchenkov, M.G. Pore-Scale Investigation of Two Phase Flows in Three-Dimensional Digital Models of Natural Sandstones. Fluid Dyn. 2018, 53, 76–91. [Google Scholar] [CrossRef]
- Cottin, C.; Bodiguel, H.; Colin, A. Drainage in Two-Dimensional Porous Media: From Capillary Fingering to Viscous Flow. Phys. Rev. E 2010, 82, 046315. [Google Scholar] [CrossRef] [PubMed]
- Maløy, K.J.; Furuberg, L.; Feder, J.; Jøssang, T. Dynamics of Slow Drainage in Porous Media. Phys. Rev. Lett. 1991, 68, 2161–2164. [Google Scholar] [CrossRef]
- Zacharoudiou, I.; Boek, E.S.; Crawshaw, J. The Impact of Drainage Displacement Patterns and Haines Jumps on CO2 Storage Efficiency. Sci. Rep. 2018, 8, 15561. [Google Scholar] [CrossRef]
- Guo, R.; Dalton, L.; Crandall, D.; McClure, J.; Wang, H.; Li, Z.; Chen, C. Role of Heterogeneous Surface Wettability on Dynamic Immiscible Displacement, Capillary Pressure, and Relative Permeability in a CO2-water-rock System. Adv. Water Resour. 2022, 165, 104226. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, R.; Jha, N.K.; Sarmadivaleh, M.; Lebedev, M.; Al-Yaseri, A.; McClure, J.; Chen, C. Using X-ray Computed Tomography and Pore-scale Numerical Modeling to Study the Role of Heterogeneous Rock Surface Wettability on Hydrogen-brine Two-phase Flow in Underground Hydrogen Storage. Fuel 2024, 366, 131414. [Google Scholar] [CrossRef]
Wetting Angle | 26° | 36° | 46° | 56° | 66° |
---|---|---|---|---|---|
Maximum height value | 0.01177 m | 0.01061 m | 0.00911 m | 0.00733 m | 0.00533 m |
Analytical solution | 0.01261 m | 0.01115 m | 0.00956 m | 0.00771 m | 0.00558 m |
error | 7.12% | 5.09% | 4.89% | 5.17% | 4.62% |
No. | Initial Velocity (m/s) | Initial Injection Volume | Final Velocity (m/s) | Final Injection Volume | Velocity Change Mode | Wetting Angle (White) | Wetting Angle (Gray) |
---|---|---|---|---|---|---|---|
Case a | 0.003 | 0.5 PV | - | - | constant | 45 | |
Case b | 0.0005 | 0.05 PV | 0.0055 | 0.05 PV | step-wise | 45 | |
Case c | 0.001 | 0.05 PV | 0.005 | 0.05 PV | step-wise | 45 | |
Case d | 0.002 | 0.05 PV | 0.004 | 0.05 PV | step-wise | 45 | |
Case e | 0.0005 | - | 0.0055 | 0.05 PV | piecewise linear | 45 | |
Case f | 0.001 | - | 0.005 | 0.05 PV | piecewise linear | 45 | |
Case g | 0.002 | - | 0.004 | 0.05 PV | piecewise linear | 45 | |
Case h | 0.003 | 0.5 PV | - | - | constant | 45 | 30 |
Case i | 0.003 | 0.5 PV | - | - | constant | 45 | 60 |
Case j | 0.003 | 0.5 PV | - | - | constant | 45 | 90 |
Case k | 0.003 | 0.5 PV | - | - | constant | 45 | 120 |
Case l | 0.003 | 0.5 PV | - | - | constant | 45 | 150 |
Physical Boundary | Inlet | Outlet | Others | |
---|---|---|---|---|
Physical Quantity | ||||
Pressure | FixedFluxPressure | fixedValue | FixedFluxPressure | |
Volume fraction | FixedValue | zeroGradient | constantAlphaContactAngle | |
Velocity | FixedValue | ZeroGradient | FixedValue |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hui, W.; Wang, L.; Liu, X.; Wang, Y. Effect of Dynamic Injection Velocity and Mixed Wettability on Two-Phase Flow Behavior in Porous Media: A Numerical Study. Energies 2025, 18, 879. https://doi.org/10.3390/en18040879
Hui W, Wang L, Liu X, Wang Y. Effect of Dynamic Injection Velocity and Mixed Wettability on Two-Phase Flow Behavior in Porous Media: A Numerical Study. Energies. 2025; 18(4):879. https://doi.org/10.3390/en18040879
Chicago/Turabian StyleHui, Wei, Le Wang, Xurui Liu, and Yueshe Wang. 2025. "Effect of Dynamic Injection Velocity and Mixed Wettability on Two-Phase Flow Behavior in Porous Media: A Numerical Study" Energies 18, no. 4: 879. https://doi.org/10.3390/en18040879
APA StyleHui, W., Wang, L., Liu, X., & Wang, Y. (2025). Effect of Dynamic Injection Velocity and Mixed Wettability on Two-Phase Flow Behavior in Porous Media: A Numerical Study. Energies, 18(4), 879. https://doi.org/10.3390/en18040879