The Global Electricity Grid: A Comprehensive Review
Abstract
:1. Introduction
2. Literature Review
2.1. Global Grid
2.2. Renewable Energy Site Selection
2.3. Global Energy Treading
2.4. HVDC Technology and Transmission Line Development
3. Initiatives in a Global Grid
4. Benefits and Challenges in Developing a Global Grid
4.1. Benefits in Developing a Global Grid
4.2. Challenges in Developing a Global Grid
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seddon, A.W.R.; Macias-Fauria, M.; Long, P.R.; Benz, D.; Willis, K.J. Sensitivity of Global Terrestrial Ecosystems to Climate Variability. Nature 2016, 531, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Rogelj, J.; Luderer, G.; Pietzcker, R.C.; Kriegler, E.; Schaeffer, M.; Krey, V.; Riahi, K. Energy System Transformations for Limiting End-of-Century Warming to below 1.5 °C. Nat. Clim. Change 2015, 5, 519–527. [Google Scholar] [CrossRef]
- Edenhofer, O. Climate Change 2014: Mitigation of Climate Change: Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2015; ISBN 9781107654815. [Google Scholar]
- McCollum, D.L.; Zhou, W.; Bertram, C.; De Boer, H.S.; Bosetti, V.; Busch, S.; Després, J.; Drouet, L.; Emmerling, J.; Fay, M.; et al. Energy Investment Needs for Fulfilling the Paris Agreement and Achieving the Sustainable Development Goals. Nat. Energy 2018, 3, 589–599. [Google Scholar] [CrossRef]
- International Energy Agency. World Energy Outlook 2022; IEA: Paris, France, 2022. [Google Scholar]
- Dora, B.K.; Bhat, S.; Halder, S.; Srivastava, I. A Solution to Multi Objective Stochastic Optimal Power Flow Problem Using Mutualism and Elite Strategy Based Pelican Optimization Algorithm. Appl. Soft. Comput. 2024, 158, 111548. [Google Scholar] [CrossRef]
- Lacal Arantegui, R.; Jäger-Waldau, A. Photovoltaics and Wind Status in the European Union after the Paris Agreement. Renew. Sustain. Energy Rev. 2018, 81, 2460–2471. [Google Scholar] [CrossRef]
- Shao, M.; Han, Z.; Sun, J.; Xiao, C.; Zhang, S.; Zhao, Y. A Review of Multi-Criteria Decision Making Applications for Renewable Energy Site Selection. Renew. Energy 2020, 157, 377–403. [Google Scholar] [CrossRef]
- International Energy Agency. Net Zero by 2050—A Roadmap for the Global Energy Sector; IEA: Paris, France, 2021. [Google Scholar]
- Chatzivasileiadis, S.; Ernst, D.; Andersson, G. The Global Grid. Renew. Energy 2013, 57, 372–383. [Google Scholar] [CrossRef]
- Zhu, G.; Dui, X.; Zhang, C. Optimisation of Reactive Power Compensation of HVAC Cable in Off-Shore Wind Power Plant. IET Renew. Power Gener. 2015, 9, 857–863. [Google Scholar] [CrossRef]
- Vakulchuk, R.; Overland, I.; Scholten, D. Renewable Energy and Geopolitics: A Review. Renew. Sustain. Energy Rev. 2020, 122, 109547. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.; Hu, P.; Khare, V.; Hamaguchi, Y.; Thakur, B.K.; Rahman, M.K. Economic Feasibility of Marine Renewable Energy: Review. Front. Mar. Sci. 2022, 9, 988513. [Google Scholar] [CrossRef]
- Soto, E.A.; Bosman, L.B.; Wollega, E.; Leon-Salas, W.D. Peer-to-Peer Energy Trading: A Review of the Literature. Appl. Energy 2021, 283, 116268. [Google Scholar] [CrossRef]
- Imdadullah; Alamri, B.; Hossain, M.A.; Jamil Asghar, M.S. Electric Power Network Interconnection: A Review on Current Status, Future Prospects and Research Direction. Electronics 2021, 10, 2179. [Google Scholar] [CrossRef]
- Arora, N.K.; Mishra, I. United Nations Sustainable Development Goals 2030 and Environmental Sustainability: Race against Time. Environ. Sustain. 2019, 2, 339–342. [Google Scholar] [CrossRef]
- Mircea, A.; Philip, M. HVDC Submarine Power Cables in the World: State-of-the-Art Knowledge; Publications Office: Luxembourg, 2015; ISBN 9789279527852. [Google Scholar]
- International Renewable Energy Agency. Available online: https://www.irena.org/data (accessed on 9 November 2024).
- Our World in Data. Available online: https://ourworldindata.org/explorers/energy (accessed on 9 November 2024).
- IEA 50. Available online: https://www.iea.org/data-and-statistics/data-product/electricity-information#data-sets (accessed on 9 November 2024).
- Kaundinya, D.P.; Balachandra, P.; Ravindranath, N.H. Grid-Connected versus Stand-Alone Energy Systems for Decentralized Power-A Review of Literature. Renew. Sustain. Energy Rev. 2009, 13, 2041–2050. [Google Scholar] [CrossRef]
- Shang, Y.; Liu, M.; Shao, Z.; Jian, L. Internet of Smart Charging Points with Photovoltaic Integration: A High-Efficiency Scheme Enabling Optimal Dispatching between Electric Vehicles and Power Grids. Appl. Energy 2020, 278, 115640. [Google Scholar] [CrossRef]
- Denholm, P.; Margolis, R.M. Evaluating the Limits of Solar Photovoltaics (PV) in Traditional Electric Power Systems. Energy Policy 2007, 35, 2852–2861. [Google Scholar] [CrossRef]
- Brinkerink, M.; Shivakumar, A. System Dynamics within Typical Days of a High Variable 2030 European Power System. Energy Strategy Rev. 2018, 22, 94–105. [Google Scholar] [CrossRef]
- Collins, S.; Deane, J.P.; Ó Gallachóir, B. Adding Value to EU Energy Policy Analysis Using a Multi-Model Approach with an EU-28 Electricity Dispatch Model. Energy 2017, 130, 433–447. [Google Scholar] [CrossRef]
- Heard, B.P.; Brook, B.W.; Wigley, T.M.L.; Bradshaw, C.J.A. Burden of Proof: A Comprehensive Review of the Feasibility of 100% Renewable-Electricity Systems. Renew. Sustain. Energy Rev. 2017, 76, 1122–1133. [Google Scholar] [CrossRef]
- MacDonald, A.E.; Clack, C.T.M.; Alexander, A.; Dunbar, A.; Wilczak, J.; Xie, Y. Future Cost-Competitive Electricity Systems and Their Impact on US CO2 Emissions. Nat. Clim. Change 2016, 6, 526–531. [Google Scholar] [CrossRef]
- Lund, H.; Mathiesen, B.V. Energy System Analysis of 100% Renewable Energy Systems-The Case of Denmark in Years 2030 and 2050. Energy 2009, 34, 524–531. [Google Scholar] [CrossRef]
- Connolly, D.; Lund, H.; Mathiesen, B.V.; Leahy, M. The First Step towards a 100% Renewable Energy-System for Ireland. Appl. Energy 2011, 88, 502–507. [Google Scholar] [CrossRef]
- Esteban, M.; Zhang, Q.; Utama, A. Estimation of the Energy Storage Requirement of a Future 100% Renewable Energy System in Japan. Energy Policy 2012, 47, 22–31. [Google Scholar] [CrossRef]
- Pleßmann, G.; Erdmann, M.; Hlusiak, M.; Breyer, C. Global Energy Storage Demand for a 100% Renewable Electricity Supply. Energy Procedia 2014, 46, 22–31. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, X.P.; Sterling, M.J.H. Global Electricity Interconnection with 100% Renewable Energy Generation. IEEE Access 2021, 9, 113169–113186. [Google Scholar] [CrossRef]
- Chaharsooghi, S.K.; Rezaei, M.; Alipour, M. Iran’s Energy Scenarios on a 20-Year Vision. Int. J. Environ. Sci. Technol. 2015, 12, 3701–3718. [Google Scholar] [CrossRef]
- Mohamed, A.M.A.; Al-Habaibeh, A.; Abdo, H. Future Prospects of the Renewable Energy Sector in Libya. In Proceedings of the SBE16, Dubai, United Arab Emirates, 17–19 January 2016. [Google Scholar]
- Brand, B. The Renewable Energy Targets of the MENA Countries: Objectives, Achievability, and Relevance for the Mediterranean Energy Collaboration. In Regulation and Investments in Energy Markets: Solutions for the Mediterranean; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 89–100. ISBN 9780128044360. [Google Scholar]
- Aghahosseini, A.; Bogdanov, D.; Breyer, C. Towards Sustainable Development in the MENA Region: Analysing the Feasibility of a 100% Renewable Electricity System in 2030. Energy Strategy Rev. 2020, 28, 100466. [Google Scholar] [CrossRef]
- Heuberger, C.F.; Mac Dowell, N. Real-World Challenges with a Rapid Transition to 100% Renewable Power Systems. Joule 2018, 2, 367–370. [Google Scholar] [CrossRef]
- Cole, W.J.; Greer, D.; Denholm, P.; Frazier, A.W.; Machen, S.; Mai, T.; Vincent, N.; Baldwin, S.F. Quantifying the Challenge of Reaching a 100% Renewable Energy Power System for the United States. Joule 2021, 5, 1732–1748. [Google Scholar] [CrossRef]
- Ghosh, S.; Roy, J.N.; Chakraborty, C. Exploring the Merits of Geographical Diversification of Solar PV Power Plants for a Resilient PV-Dominated Electricity Grid in India. Clean Energy 2023, 7, 885–910. [Google Scholar] [CrossRef]
- Shiradkar, N.; Arya, R.; Chaubal, A.; Deshmukh, K.; Ghosh, P.; Kottantharayil, A.; Kumar, S.; Vasi, J. Recent Developments in Solar Manufacturing in India. Sol. Compass 2022, 1, 100009. [Google Scholar] [CrossRef]
- Shuai, J.; Leng, Z.; Cheng, J.; Shi, Z. China’s Renewable Energy Trade Potential in the “Belt-and-Road” Countries: A Gravity Model Analysis. Renew Energy 2020, 161, 1025–1035. [Google Scholar] [CrossRef]
- Mathiesen, B.V.; Lund, H.; Karlsson, K. 100% Renewable Energy Systems, Climate Mitigation and Economic Growth. Appl. Energy 2011, 88, 488–501. [Google Scholar] [CrossRef]
- Elliston, B.; Diesendorf, M.; MacGill, I. Simulations of Scenarios with 100% Renewable Electricity in the Australian National Electricity Market. Energy Policy 2012, 45, 606–613. [Google Scholar] [CrossRef]
- Ćosić, B.; Krajačić, G.; Duić, N. A 100% Renewable Energy System in the Year 2050: The Case of Macedonia. Energy 2012, 48, 80–87. [Google Scholar] [CrossRef]
- Bussar, C.; Moos, M.; Alvarez, R.; Wolf, P.; Thien, T.; Chen, H.; Cai, Z.; Leuthold, M.; Sauer, D.U.; Moser, A. Optimal Allocation and Capacity of Energy Storage Systems in a Future European Power System with 100% Renewable Energy Generation. Energy Procedia 2014, 46, 40–47. [Google Scholar] [CrossRef]
- Charles, A. How Is 100% Renewable Energy Possible for Nigeria? Global Energy Network Institute: San Diego, CA, USA, 2014. [Google Scholar]
- Connolly, D.; Mathiesen, B.V. A Technical and Economic Analysis of One Potential Pathway to a 100% Renewable Energy System. Int. J. Sustain. Energy Plan. Manag. 2014, 1, 7–28. [Google Scholar] [CrossRef]
- Bogdanov, D.; Breyer, C. North-East Asian Super Grid for 100% Renewable Energy Supply: Optimal Mix of Energy Technologies for Electricity, Gas and Heat Supply Options. Energy Convers. Manag. 2016, 112, 176–190. [Google Scholar] [CrossRef]
- Krakowski, V.; Assoumou, E.; Mazauric, V.; Maïzi, N. Reprint of Feasible Path toward 40–100% Renewable Energy Shares for Power Supply in France by 2050: A Prospective Analysis. Appl. Energy 2016, 184, 1529–1550. [Google Scholar] [CrossRef]
- Kilickaplan, A.; Bogdanov, D.; Peker, O.; Caldera, U.; Aghahosseini, A.; Breyer, C. An Energy Transition Pathway for Turkey to Achieve 100% Renewable Energy Powered Electricity, Desalination and Non-Energetic Industrial Gas Demand Sectors by 2050. Sol. Energy 2017, 158, 218–235. [Google Scholar] [CrossRef]
- Gils, H.C.; Simon, S. Carbon Neutral Archipelago—100% Renewable Energy Supply for the Canary Islands. Appl. Energy 2017, 188, 342–355. [Google Scholar] [CrossRef]
- Uyar, T.S.; Beşikci, D. Integration of Hydrogen Energy Systems into Renewable Energy Systems for Better Design of 100% Renewable Energy Communities. Int. J. Hydrogen Energy 2017, 42, 2453–2456. [Google Scholar] [CrossRef]
- Blakers, A.; Lu, B.; Stocks, M. 100% Renewable Electricity in Australia. Energy 2017, 133, 471–482. [Google Scholar] [CrossRef]
- Khoodaruth, A.; Oree, V.; Elahee, M.K.; Clark, W.W. Exploring Options for a 100% Renewable Energy System in Mauritius by 2050. Util. Policy 2017, 44, 38–49. [Google Scholar] [CrossRef]
- Akuru, U.B.; Onukwube, I.E.; Okoro, O.I.; Obe, E.S. Towards 100% Renewable Energy in Nigeria. Renew. Sustain. Energy Rev. 2017, 71, 943–953. [Google Scholar] [CrossRef]
- Gulagi, A.; Bogdanov, D.; Breyer, C. The Demand for Storage Technologies in Energy Transition Pathways Towards 100% Renewable Energy for India. Energy Procedia 2017, 135, 37–50. [Google Scholar] [CrossRef]
- Chatzivasileiadis, S.; Ernst, D. The State of Play in Cross-Border Electricity Trade and the Challenges towards a Global Electricity Market Environment. Available online: http://chatziva.com/publications/ChatzivasileiadisErnst_StateOfPlayMarkets.pdf (accessed on 17 October 2024).
- Gils, H.C.; Simon, S.; Soria, R. 100% Renewable Energy Supply for Brazil-The Role of Sector Coupling and Regional Development. Energies 2017, 10, 1859. [Google Scholar] [CrossRef]
- Gulagi, A.; Choudhary, P.; Bogdanov, D.; Breyer, C. Electricity System Based on 100% Renewable Energy for India and SAARC. PLoS ONE 2017, 12, e0180611. [Google Scholar] [CrossRef]
- De Barbosa, L.S.N.S.; Bogdanov, D.; Vainikka, P.; Breyer, C. Hydro, Wind and Solar Power as a Base for a 100% Renewable Energy Supply for South and Central America. PLoS ONE 2017, 12, e0173820. [Google Scholar] [CrossRef]
- Child, M.; Haukkala, T.; Breyer, C. The Role of Solar Photovoltaics and Energy Storage Solutions in a 100% Renewable Energy System for Finland in 2050. Sustainability 2017, 9, 1358. [Google Scholar] [CrossRef]
- Caldera, U.; Breyer, C. The Role That Battery and Water Storage Play in Saudi Arabia’s Transition to an Integrated 100% Renewable Energy Power System. J. Energy Storage 2018, 17, 299–310. [Google Scholar] [CrossRef]
- International Renewable Energy Agency. Renewable Energy Outlook EQYPT: Based on Renewables Readiness Assessment and REmap Analysis Egypt Renewable Energy Outlook; International Renewable Energy Agency: Masdar City, United Arab Emirates, 2018; ISBN 978-92-9260-069-3. [Google Scholar]
- García-Olivares, A.; Solé, J.; Osychenko, O. Transportation in a 100% Renewable Energy System. Energy Convers. Manag. 2018, 158, 266–285. [Google Scholar] [CrossRef]
- Esteban, M.; Portugal-Pereira, J.; Mclellan, B.C.; Bricker, J.; Farzaneh, H.; Djalilova, N.; Ishihara, K.N.; Takagi, H.; Roeber, V. 100% Renewable Energy System in Japan: Smoothening and Ancillary Services. Appl. Energy 2018, 224, 698–707. [Google Scholar] [CrossRef]
- Sadiqa, A.; Gulagi, A.; Breyer, C. Energy Transition Roadmap towards 100% Renewable Energy and Role of Storage Technologies for Pakistan by 2050. Energy 2018, 147, 518–533. [Google Scholar] [CrossRef]
- Zapata, S.; Castaneda, M.; Jimenez, M.; Julian Aristizabal, A.; Franco, C.J.; Dyner, I. Long-Term Effects of 100% Renewable Generation on the Colombian Power Market. Sustain. Energy Technol. Assess. 2018, 30, 183–191. [Google Scholar] [CrossRef]
- Child, M.; Bogdanov, D.; Breyer, C. The Role of Storage Technologies for the Transition to a 100% Renewable Energy System in Europe. Energy Procedia 2018, 155, 44–60. [Google Scholar] [CrossRef]
- Renewable Energy Policy Network for the 21st Century. Available online: https://sdgs.un.org/partnerships/renewable-energy-policy-network-21st-century (accessed on 9 November 2024).
- Oyewo, A.S.; Aghahosseini, A.; Ram, M.; Lohrmann, A.; Breyer, C. Pathway towards Achieving 100% Renewable Electricity by 2050 for South Africa. Sol. Energy 2019, 191, 549–565. [Google Scholar] [CrossRef]
- Zappa, W.; Junginger, M.; van den Broek, M. Is a 100% Renewable European Power System Feasible by 2050? Appl. Energy 2019, 233–234, 1027–1050. [Google Scholar] [CrossRef]
- Luz, T.; Moura, P. 100% Renewable Energy Planning with Complementarity and Flexibility Based on a Multi-Objective Assessment. Appl. Energy 2019, 255, 113819. [Google Scholar] [CrossRef]
- Child, M.; Kemfert, C.; Bogdanov, D.; Breyer, C. Flexible Electricity Generation, Grid Exchange and Storage for the Transition to a 100% Renewable Energy System in Europe. Renew. Energy 2019, 139, 80–101. [Google Scholar] [CrossRef]
- Hansen, K.; Mathiesen, B.V.; Skov, I.R. Full Energy System Transition towards 100% Renewable Energy in Germany in 2050. Renew. Sustain. Energy Rev. 2019, 102, 1–13. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. Global Renewable Energy Resources and Use in 2050. In Managing Global Warming: An Interface of Technology and Human Issues; Elsevier: Amsterdam, The Netherlands, 2018; pp. 221–235. ISBN 9780128141052. [Google Scholar]
- Blakers, A.; Stocks, M.; Lu, B.; Cheng, C.; Stocks, R. Pathway to 100% Renewable Electricity. IEEE J. Photovolt. 2019, 9, 1828–1833. [Google Scholar] [CrossRef]
- Alves, M.; Segurado, R.; Costa, M. On the Road to 100% Renewable Energy Systems in Isolated Islands. Energy 2020, 198, 117321. [Google Scholar] [CrossRef]
- Kiwan, S.; Al-Gharibeh, E. Jordan toward a 100% Renewable Electricity System. Renew. Energy 2020, 147, 423–436. [Google Scholar] [CrossRef]
- Bogdanov, D.; Gulagi, A.; Fasihi, M.; Breyer, C. Full Energy Sector Transition towards 100% Renewable Energy Supply: Integrating Power, Heat, Transport and Industry Sectors Including Desalination. Appl. Energy 2021, 283, 116273. [Google Scholar] [CrossRef]
- Al-Ghussain, L.; Abubaker, A.M.; Darwish Ahmad, A. Superposition of Renewable-Energy Supply from Multiple Sites Maximizes Demand-Matching: Towards 100% Renewable Grids in 2050. Appl. Energy 2021, 284, 116402. [Google Scholar] [CrossRef]
- Zhong, J.; Bollen, M.; Rönnberg, S. Towards a 100% Renewable Energy Electricity Generation System in Sweden. Renew. Energy 2021, 171, 812–824. [Google Scholar] [CrossRef]
- Reyseliani, N.; Purwanto, W.W. Pathway towards 100% Renewable Energy in Indonesia Power System by 2050. Renew. Energy 2021, 176, 305–321. [Google Scholar] [CrossRef]
- Gulagi, A.; Alcanzare, M.; Bogdanov, D.; Esparcia, E.; Ocon, J.; Breyer, C. Transition Pathway towards 100% Renewable Energy across the Sectors of Power, Heat, Transport, and Desalination for the Philippines. Renew. Sustain. Energy Rev. 2021, 144, 110934. [Google Scholar] [CrossRef]
- Denholm, P.; Arent, D.J.; Baldwin, S.F.; Bilello, D.E.; Brinkman, G.L.; Cochran, J.M.; Cole, W.J.; Frew, B.; Gevorgian, V.; Heeter, J.; et al. The Challenges of Achieving a 100% Renewable Electricity System in the United States. Joule 2021, 5, 1331–1352. [Google Scholar] [CrossRef]
- Cheng, C.; Blakers, A.; Stocks, M.; Lu, B. 100% Renewable Energy in Japan. Energy Convers. Manag. 2022, 255, 115299. [Google Scholar] [CrossRef]
- AL-wesabi, I.; Zhijian, F.; Bosah, C.P.; Dong, H. A Review of Yemen’s Current Energy Situation, Challenges, Strategies, and Prospects for Using Renewable Energy Systems. Environ. Sci. Pollut. Res. 2022, 29, 53907–53933. [Google Scholar] [CrossRef] [PubMed]
- IEA50. Available online: https://www.iea.org/policies/17271-renewables-2025-target (accessed on 15 November 2024).
- Yang, H.; Deshmukh, R.; Suh, S. Global Transcontinental Power Pools for Low-Carbon Electricity. Nat. Commun. 2023, 14, 8350. [Google Scholar] [CrossRef] [PubMed]
- Hassan, Q.; Viktor, P.; Al-Musawi, T.J.; Mahmood Ali, B.; Algburi, S.; Alzoubi, H.M.; Khudhair Al-Jiboory, A.; Zuhair Sameen, A.; Salman, H.M.; Jaszczur, M. The Renewable Energy Role in the Global Energy Transformations. Renew. Energy Focus 2024, 48, 100545. [Google Scholar] [CrossRef]
- Huber, J.; Imperiali, L.; Menzi, D.; Musil, F.; Kolar, J.W. Energy Efficiency Is Not Enough! IEEE Power Electron. Mag. 2024, 11, 18–31. [Google Scholar] [CrossRef]
- Bompard, E.; Grosso, D.; Huang, T.; Profumo, F.; Lei, X.; Li, D. World Decarbonization through Global Electricity Interconnections. Energies 2018, 11, 1746. [Google Scholar] [CrossRef]
- Kiehbadroudinezhad, M.; Merabet, A.; Abo-Khalil, A.G.; Salameh, T.; Ghenai, C. Intelligent and Optimized Microgrids for Future Supply Power from Renewable Energy Resources: A Review. Energies 2022, 15, 3359. [Google Scholar] [CrossRef]
- Ahmad, S.; Tahar, R.M. Selection of Renewable Energy Sources for Sustainable Development of Electricity Generation System Using Analytic Hierarchy Process: A Case of Malaysia. Renew. Energy 2014, 63, 458–466. [Google Scholar] [CrossRef]
- Shirgholami, Z.; Namdar Zangeneh, S.; Bortolini, M. Decision System to Support the Practitioners in the Wind Farm Design: A Case Study for Iran Mainland. Sustain. Energy Technol. Assess. 2016, 16, 1–10. [Google Scholar] [CrossRef]
- Ilbahar, E.; Cebi, S.; Kahraman, C. A State-of-the-Art Review on Multi-Attribute Renewable Energy Decision Making. Energy Strategy Rev. 2019, 25, 18–33. [Google Scholar] [CrossRef]
- Erol, Ö.; Kilkiş, B. An Energy Source Policy Assessment Using Analytical Hierarchy Process. Energy Convers. Manag. 2012, 63, 245–252. [Google Scholar] [CrossRef]
- Cobuloglu, H.I.; Büyüktahtakin, I.E. A Stochastic Multi-Criteria Decision Analysis for Sustainable Biomass Crop Selection. Expert Syst. Appl. 2015, 42, 6065–6074. [Google Scholar] [CrossRef]
- Berger, M.; Radu, D.; Fonteneau, R.; Henry, R.; Glavic, M.; Fettweis, X.; Le Du, M.; Panciatici, P.; Balea, L.; Ernst, D. Critical Time Windows for Renewable Resource Complementarity Assessment. Energy 2020, 198, 117308. [Google Scholar] [CrossRef]
- Radu, D.; Berger, M.; Dubois, A.; Fonteneau, R.; Pandžić, H.; Dvorkin, Y.; Louveaux, Q.; Ernst, D. Assessing the Impact of Offshore Wind Siting Strategies on the Design of the European Power System. Appl. Energy 2022, 305, 117700. [Google Scholar] [CrossRef]
- Argin, M.; Yerci, V.; Erdogan, N.; Kucuksari, S.; Cali, U. Exploring the Offshore Wind Energy Potential of Turkey Based on Multi-Criteria Site Selection. Energy Strategy Rev. 2019, 23, 33–46. [Google Scholar] [CrossRef]
- Ali, S.; Taweekun, J.; Techato, K.; Waewsak, J.; Gyawali, S. GIS Based Site Suitability Assessment for Wind and Solar Farms in Songkhla, Thailand. Renew. Energy 2019, 132, 1360–1372. [Google Scholar] [CrossRef]
- Noorollahi, Y.; Ghenaatpisheh Senani, A.; Fadaei, A.; Simaee, M.; Moltames, R. A Framework for GIS-Based Site Selection and Technical Potential Evaluation of PV Solar Farm Using Fuzzy-Boolean Logic and AHP Multi-Criteria Decision-Making Approach. Renew. Energy 2022, 186, 89–104. [Google Scholar] [CrossRef]
- Nzotcha, U.; Kenfack, J.; Blanche Manjia, M. Integrated Multi-Criteria Decision Making Methodology for Pumped Hydro-Energy Storage Plant Site Selection from a Sustainable Development Perspective with an Application. Renew. Sustain. Energy Rev. 2019, 112, 930–947. [Google Scholar] [CrossRef]
- Eroğlu, H. Multi-Criteria Decision Analysis for Wind Power Plant Location Selection Based on Fuzzy AHP and Geographic Information Systems. Environ. Dev. Sustain. 2021, 23, 18278–18310. [Google Scholar] [CrossRef]
- Chien, F.; Wang, C.N.; Nguyen, V.T.; Nguyen, V.T.; Chau, K.Y. An Evaluation Model of Quantitative and Qualitative Fuzzy Multi-Criteria Decision-Making Approach for Hydroelectric Plant Location Selection. Energies 2020, 13, 2783. [Google Scholar] [CrossRef]
- Watson, J.J.W.; Hudson, M.D. Regional Scale Wind Farm and Solar Farm Suitability Assessment Using GIS-Assisted Multi-Criteria Evaluation. Landsc. Urban Plan. 2015, 138, 20–31. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Nematollahi, O.; Mijani, N.; Shorabeh, S.N.; Firozjaei, H.K.; Toomanian, A. An Integrated GIS-Based Ordered Weighted Averaging Analysis for Solar Energy Evaluation in Iran: Current Conditions and Future Planning. Renew. Energy 2019, 136, 1130–1146. [Google Scholar] [CrossRef]
- Messaoudi, D.; Settou, N.; Negrou, B.; Settou, B. GIS Based Multi-Criteria Decision Making for Solar Hydrogen Production Sites Selection in Algeria. Int. J. Hydrogen Energy 2019, 44, 31808–31831. [Google Scholar] [CrossRef]
- Emeksiz, C.; Demirci, B. The Determination of Offshore Wind Energy Potential of Turkey by Using Novelty Hybrid Site Selection Method. Sustain. Energy Technol. Assess. 2019, 36, 100562. [Google Scholar] [CrossRef]
- Konstantinos, I.; Georgios, T.; Garyfalos, A. A Decision Support System Methodology for Selecting Wind Farm Installation Locations Using AHP and TOPSIS: Case Study in Eastern Macedonia and Thrace Region, Greece. Energy Policy 2019, 132, 232–246. [Google Scholar] [CrossRef]
- Schitea, D.; Deveci, M.; Iordache, M.; Bilgili, K.; Akyurt, İ.Z.; Iordache, I. Hydrogen Mobility Roll-up Site Selection Using Intuitionistic Fuzzy Sets Based WASPAS, COPRAS and EDAS. Int. J. Hydrogen Energy 2019, 44, 8585–8600. [Google Scholar] [CrossRef]
- Nematollahi, O.; Alamdari, P.; Jahangiri, M.; Sedaghat, A.; Alemrajabi, A.A. A Techno-Economical Assessment of Solar/Wind Resources and Hydrogen Production: A Case Study with GIS Maps. Energy 2019, 175, 914–930. [Google Scholar] [CrossRef]
- Mensour, O.N.; El Ghazzani, B.; Hlimi, B.; Ihlal, A. A Geographical Information System-Based Multi-Criteria Method for the Evaluation of Solar Farms Locations: A Case Study in Souss-Massa Area, Southern Morocco. Energy 2019, 182, 900–919. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, C.; Song, Z.; Huang, Y.; Wu, Y. Decision Framework for Ocean Thermal Energy Plant Site Selection from a Sustainability Perspective: The Case of China. J. Clean. Prod. 2019, 225, 771–784. [Google Scholar] [CrossRef]
- Doorga, J.R.S.; Rughooputh, S.D.D.V.; Boojhawon, R. Multi-Criteria GIS-Based Modelling Technique for Identifying Potential Solar Farm Sites: A Case Study in Mauritius. Renew. Energy 2019, 133, 1201–1219. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, T.; Xu, C.; Zhang, X.; Ke, Y.; Chu, H.; Xu, R. Location Selection of Seawater Pumped Hydro Storage Station in China Based on Multi-Attribute Decision Making. Renew. Energy 2019, 139, 410–425. [Google Scholar] [CrossRef]
- Giamalaki, M.; Tsoutsos, T. Sustainable Siting of Solar Power Installations in Mediterranean Using a GIS/AHP Approach. Renew. Energy 2019, 141, 64–75. [Google Scholar] [CrossRef]
- Shorabeh, S.N.; Firozjaei, M.K.; Nematollahi, O.; Firozjaei, H.K.; Jelokhani-Niaraki, M. A Risk-Based Multi-Criteria Spatial Decision Analysis for Solar Power Plant Site Selection in Different Climates: A Case Study in Iran. Renew. Energy 2019, 143, 958–973. [Google Scholar] [CrossRef]
- Messaoudi, D.; Settou, N.; Negrou, B.; Rahmouni, S.; Settou, B.; Mayou, I. Site Selection Methodology for the Wind-Powered Hydrogen Refueling Station Based on AHP-GIS in Adrar, Algeria. Energy Procedia 2019, 162, 67–76. [Google Scholar] [CrossRef]
- Pambudi, G.; Nananukul, N. A Hierarchical Fuzzy Data Envelopment Analysis for Wind Turbine Site Selection in Indonesia. Energy Rep. 2019, 5, 1041–1047. [Google Scholar] [CrossRef]
- Majumdar, D.; Pasqualetti, M.J. Analysis of Land Availability for Utility-Scale Power Plants and Assessment of Solar Photovoltaic Development in the State of Arizona, USA. Renew. Energy 2019, 134, 1213–1231. [Google Scholar] [CrossRef]
- Solangi, Y.A.; Shah, S.A.A.; Zameer, H.; Ikram, M.; Saracoglu, B.O. Assessing the Solar PV Power Project Site Selection in Pakistan: Based on AHP-Fuzzy VIKOR Approach. Environ. Sci. Pollut. Res. 2019, 26, 30286–30302. [Google Scholar] [CrossRef]
- Sammartano, V.; Liuzzo, L.; Freni, G. Identification of Potential Locations for Run-of-River Hydropower Plants Using a GIS-Based Procedure. Energies 2019, 12, 3446. [Google Scholar] [CrossRef]
- El Khchine, Y.; Sriti, M.; El Kadri Elyamani, N.E. Evaluation of Wind Energy Potential and Trends in Morocco. Heliyon 2019, 5, e01830. [Google Scholar] [CrossRef]
- Wang, C.N.; Hsueh, M.H.; Lin, D.F. Hydrogen Power Plant Site Selection under Fuzzy Multicriteria Decision-Making (FMCDM) Environment Conditions. Symmetry 2019, 11, 596. [Google Scholar] [CrossRef]
- Sasikumar, G.; Ayyappan, S. Multi-Criteria Decision Making for Solar Panel Selection Using Fuzzy Analytical Hierarchy Process and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS): An Empirical Study. J. Inst. Eng. (India) Ser. C 2019, 100, 707–715. [Google Scholar] [CrossRef]
- Moradi, S.; Yousefi, H.; Noorollahi, Y.; Rosso, D. Multi-Criteria Decision Support System for Wind Farm Site Selection and Sensitivity Analysis: Case Study of Alborz Province, Iran. Energy Strategy Rev. 2020, 29, 100478. [Google Scholar] [CrossRef]
- O’Hanley, J.R.; Pompeu, P.S.; Louzada, M.; Zambaldi, L.P.; Kemp, P.S. Optimizing Hydropower Dam Location and Removal in the São Francisco River Basin, Brazil to Balance Hydropower and River Biodiversity Tradeoffs. Landsc. Urban Plan. 2020, 195, 103725. [Google Scholar] [CrossRef]
- Shah, S.A.A. Feasibility Study of Renewable Energy Sources for Developing the Hydrogen Economy in Pakistan. Int. J. Hydrogen Energy 2020, 45, 15841–15854. [Google Scholar] [CrossRef]
- Seker, S.; Aydin, N. Hydrogen Production Facility Location Selection for Black Sea Using Entropy Based TOPSIS under IVPF Environment. Int. J. Hydrogen Energy 2020, 45, 15855–15868. [Google Scholar] [CrossRef]
- Guleria, A.; Bajaj, R.K. A Robust Decision Making Approach for Hydrogen Power Plant Site Selection Utilizing (R, S)-Norm Pythagorean Fuzzy Information Measures Based on VIKOR and TOPSIS Method. Int. J. Hydrogen Energy 2020, 45, 18802–18816. [Google Scholar] [CrossRef]
- Dhiman, H.S.; Deb, D. Fuzzy TOPSIS and Fuzzy COPRAS Based Multi-Criteria Decision Making for Hybrid Wind Farms. Energy 2020, 202, 117755. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Zheng, L.; Cui, L.; Li, S.; Li, W.; Cai, Y. Site Selection of Wind Farms Using GIS and Multi-Criteria Decision Making Method in Wafangdian, China. Energy 2020, 207, 118222. [Google Scholar] [CrossRef]
- Rahimi, S.; Hafezalkotob, A.; Monavari, S.M.; Hafezalkotob, A.; Rahimi, R. Sustainable Landfill Site Selection for Municipal Solid Waste Based on a Hybrid Decision-Making Approach: Fuzzy Group BWM-MULTIMOORA-GIS. J. Clean. Prod. 2020, 248, 119186. [Google Scholar] [CrossRef]
- Colak, H.E.; Memisoglu, T.; Gercek, Y. Optimal Site Selection for Solar Photovoltaic (PV) Power Plants Using GIS and AHP: A Case Study of Malatya Province, Turkey. Renew. Energy 2020, 149, 565–576. [Google Scholar] [CrossRef]
- Wu, Y.; Tao, Y.; Zhang, B.; Wang, S.; Xu, C.; Zhou, J. A Decision Framework of Offshore Wind Power Station Site Selection Using a PROMETHEE Method under Intuitionistic Fuzzy Environment: A Case in China. Ocean. Coast. Manag. 2020, 184, 105016. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, L.; Solangi, Y.A. Strategic Renewable Energy Resources Selection for Pakistan: Based on SWOT-Fuzzy AHP Approach. Sustain. Cities Soc. 2020, 52, 101861. [Google Scholar] [CrossRef]
- Ahmadi, S.H.R.; Noorollahi, Y.; Ghanbari, S.; Ebrahimi, M.; Hosseini, H.; Foroozani, A.; Hajinezhad, A. Hybrid Fuzzy Decision Making Approach for Wind-Powered Pumped Storage Power Plant Site Selection: A Case Study. Sustain. Energy Technol. Assess. 2020, 42, 100838. [Google Scholar] [CrossRef]
- Khamis, A.; Khatib, T.; Amira Haziqah Mohd Yosliza, N.; Nazmin Azmi, A. Optimal Selection of Renewable Energy Installation Site in Remote Areas Using Segmentation and Regional Technique: A Case Study of Sarawak, Malaysia. Sustain. Energy Technol. Assess. 2020, 42, 100858. [Google Scholar] [CrossRef]
- Sreenath, S.; Sudhakar, K.; Yusop, A.F. Technical Assessment of Captive Solar Power Plant: A Case Study of Senai Airport, Malaysia. Renew. Energy 2020, 152, 849–866. [Google Scholar] [CrossRef]
- Ruiz, H.S.; Sunarso, A.; Ibrahim-Bathis, K.; Murti, S.A.; Budiarto, I. GIS-AHP Multi Criteria Decision Analysis for the Optimal Location of Solar Energy Plants at Indonesia. Energy Rep. 2020, 6, 3249–3263. [Google Scholar] [CrossRef]
- Kocabaldir, C.; Yücel, M.A. GIS-Based Multi-Criteria Decision Analysis of Site Selection for Photovoltaic Power Plants in Çanakkale Province. International J. Environ. Geoinform. 2020, 7, 347–355. [Google Scholar] [CrossRef]
- Li, M.; Xu, Y.; Guo, J.; Li, Y.; Li, W. Application of a GIS-Based Fuzzy Multi-Criteria Evaluation Approach for Wind Farm Site Selection in China. Energies 2020, 13, 2426. [Google Scholar] [CrossRef]
- Feng, J. Wind Farm Site Selection from the Perspective of Sustainability: A Novel Satisfaction Degree-Based Fuzzy Axiomatic Design Approach. Int. J. Energy Res. 2021, 45, 1097–1127. [Google Scholar] [CrossRef]
- Peng, H.-m.; Wang, X.-k.; Wang, T.-l.; Liu, Y.-h.; Wang, J.-q. A Multi-Criteria Decision Support Framework for Inland Nuclear Power Plant Site Selection under Z-Information: A Case Study in Hunan Province of China. Mathematics 2020, 8, 252. [Google Scholar] [CrossRef]
- Tercan, E.; Tapkın, S.; Latinopoulos, D.; Dereli, M.A.; Tsiropoulos, A.; Ak, M.F. A GIS-Based Multi-Criteria Model for Offshore Wind Energy Power Plants Site Selection in Both Sides of the Aegean Sea. Environ. Monit. Assess. 2020, 192, 652. [Google Scholar] [CrossRef] [PubMed]
- Khalid Anser, M.; Mohsin, M.; Abbas, Q.; Chaudhry, I.S. Assessing the Integration of Solar Power Projects: SWOT-Based AHP-F-TOPSIS Case Study of Turkey. Environ. Sci. Pollut. Res. 2020, 27, 31737–31749. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.C.; Patel, J.N. Selection of Best Location for Small Hydro Power Project Using AHP, WPM and TOPSIS Methods. ISH J. Hydraul. Eng. 2020, 26, 173–178. [Google Scholar] [CrossRef]
- Gafar Abdullah, A.; Fauziah, N.; Lukman Hakim, D.; Trianawati Sugito, N.; Arasid, W. A Site Selection Study of Wind Power Plants Based on Fuzzy-Topsis Method. 2021. Available online: https://jestec.taylors.edu.my/Special%20Issue%20RPI%20OCT2022/SIMASE_2021_06.pdf (accessed on 4 September 2024).
- Gao, J.; Men, H.; Guo, F.; Liu, H.; Li, X.; Huang, X. A Multi-Criteria Decision-Making Framework for Compressed Air Energy Storage Power Site Selection Based on the Probabilistic Language Term Sets and Regret Theory. J. Energy Storage 2021, 37, 102473. [Google Scholar] [CrossRef]
- Guo, F.; Gao, J.; Men, H.; Fan, Y.; Liu, H. Large-Scale Group Decision-Making Framework for the Site Selection of Integrated Floating Photovoltaic-Pumped Storage Power System. J. Energy Storage 2021, 43, 103125. [Google Scholar] [CrossRef]
- Kannan, D.; Moazzeni, S.; Darmian, S.m.; Afrasiabi, A. A Hybrid Approach Based on MCDM Methods and Monte Carlo Simulation for Sustainable Evaluation of Potential Solar Sites in East of Iran. J. Clean. Prod. 2021, 279, 122368. [Google Scholar] [CrossRef]
- Ilbahar, E.; Kahraman, C.; Cebi, S. Location Selection for Waste-to-Energy Plants by Using Fuzzy Linear Programming. Energy 2021, 234, 121189. [Google Scholar] [CrossRef]
- Saraswat, S.K.; Digalwar, A.K.; Yadav, S.S.; Kumar, G. MCDM and GIS Based Modelling Technique for Assessment of Solar and Wind Farm Locations in India. Renew. Energy 2021, 169, 865–884. [Google Scholar] [CrossRef]
- Karatop, B.; Taşkan, B.; Adar, E.; Kubat, C. Decision Analysis Related to the Renewable Energy Investments in Turkey Based on a Fuzzy AHP-EDAS-Fuzzy FMEA Approach. Comput. Ind. Eng. 2021, 151, 106958. [Google Scholar] [CrossRef]
- Yücenur, G.N.; Ipekçi, A. SWARA/WASPAS Methods for a Marine Current Energy Plant Location Selection Problem. Renew. Energy 2021, 163, 1287–1298. [Google Scholar] [CrossRef]
- Deveci, M.; Cali, U.; Pamucar, D. Evaluation of Criteria for Site Selection of Solar Photovoltaic (PV) Projects Using Fuzzy Logarithmic Additive Estimation of Weight Coefficients. Energy Rep. 2021, 7, 8805–8824. [Google Scholar] [CrossRef]
- Lo, H.W.; Hsu, C.C.; Chen, B.C.; Liou, J.J.H. Building a Grey-Based Multi-Criteria Decision-Making Model for Offshore Wind Farm Site Selection. Sustain. Energy Technol. Assess. 2021, 43, 100935. [Google Scholar] [CrossRef]
- Ouchani, F.-z.; Jbaihi, O.; Alami Merrouni, A.; Maaroufi, M.; Ghennioui, A. Yield Analysis and Economic Assessment for GIS-Mapping of Large Scale Solar PV Potential and Integration in Morocco. Sustain. Energy Technol. Assess. 2021, 47, 101540. [Google Scholar] [CrossRef]
- Deveci, M.; Özcan, E.; John, R.; Pamucar, D.; Karaman, H. Offshore Wind Farm Site Selection Using Interval Rough Numbers Based Best-Worst Method and MARCOS. Appl. Soft. Comput. 2021, 109, 107532. [Google Scholar] [CrossRef]
- Lindberg, O.; Birging, A.; Widén, J.; Lingfors, D. PV Park Site Selection for Utility-Scale Solar Guides Combining GIS and Power Flow Analysis: A Case Study on a Swedish Municipality. Appl. Energy 2021, 282, 116086. [Google Scholar] [CrossRef]
- Soydan, O. Solar Power Plants Site Selection for Sustainable Ecological Development in Nigde, Turkey. SN Appl. Sci. 2021, 3, 41. [Google Scholar] [CrossRef]
- Shahraki Shahdabadi, R.; Maleki, A.; Haghighat, S.; Ghalandari, M. Using Multi-Criteria Decision-Making Methods to Select the Best Location for the Construction of a Biomass Power Plant in Iran. J. Therm. Anal. Calorim. 2021, 145, 2105–2122. [Google Scholar] [CrossRef]
- Tekin, S.; Deniz Guner, E.; Cilek, A.; Cilek, M.U. Selection of Renewable Energy Systems Sites Using the MaxEnt Model in the Eastern Mediterranean Region in Turkey. Environ. Sci. Pollut. Res. 2021, 28, 51405–51424. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Gamal, A.; Chakrabortty, R.K.; Ryan, M. A New Hybrid Multi-Criteria Decision-Making Approach for Location Selection of Sustainable Offshore Wind Energy Stations: A Case Study. J. Clean. Prod. 2021, 280, 124462. [Google Scholar] [CrossRef]
- Yousefi, H.; Motlagh, S.G.; Montazeri, M. Multi-Criteria Decision-Making System for Wind Farm Site-Selection Using Geographic Information System (GIS): Case Study of Semnan Province, Iran. Sustainability 2022, 14, 7640. [Google Scholar] [CrossRef]
- Emeksiz, C.; Yüksel, A. A Suitable Site Selection for Sustainable Bioenergy Production Facility by Using Hybrid Multi-Criteria Decision Making Approach, Case Study: Turkey. Fuel 2022, 315, 123214. [Google Scholar] [CrossRef]
- Caceoğlu, E.; Yildiz, H.K.; Oğuz, E.; Huvaj, N.; Guerrero, J.M. Offshore Wind Power Plant Site Selection Using Analytical Hierarchy Process for Northwest Turkey. Ocean. Eng. 2022, 252, 111178. [Google Scholar] [CrossRef]
- Sánchez-Lozano, J.M.; Ramos-Escudero, A.; Gil-García, I.C.; García-Cascales, M.S.; Molina-García, A. A GIS-Based Offshore Wind Site Selection Model Using Fuzzy Multi-Criteria Decision-Making with Application to the Case of the Gulf of Maine. Expert Syst. Appl. 2022, 210, 118371. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Hai, N.H.; Lan, N.T.K. Spherical Fuzzy Multicriteria Decision-Making Model for Wind Turbine Supplier Selection in a Renewable Energy Project. Energies 2022, 15, 713. [Google Scholar] [CrossRef]
- Josimović, B.; Srnić, D.; Manić, B.; Knežević, I. Multi-Criteria Evaluation of Spatial Aspects in the Selection of Wind Farm Locations: Integrating the GIS and PROMETHEE Methods. Appl. Sci. 2023, 13, 5332. [Google Scholar] [CrossRef]
- Yum, S.G.; Das Adhikari, M. Suitable Site Selection for the Development of Solar Based Smart Hydrogen Energy Plant in the Gangwon-Do Region, South Korea Using Big Data: A Geospatial Approach. Int. J. Hydrogen Energy 2023, 48, 36295–36313. [Google Scholar] [CrossRef]
- Jamodkar, P.; Mitra, A. Determination of Optimal Locations for Installation of Solar Photovoltaic Farm in Maharashtra, India. In Proceedings of the 2023 10th IEEE International Conference on Power Systems (ICPS), Long Beach, CA, USA, 13 December 2023; pp. 1–6. [Google Scholar]
- Ng’ethe, J.; Jalilinasrabady, S. GIS-Based Multi-Criteria Decision Making under Silica Saturation Index (SSI) for Selecting the Best Direct Use Scenarios for Geothermal Resources in Central and Southern Rift Valley, Kenya. Geothermics 2023, 109, 102656. [Google Scholar] [CrossRef]
- Uyan, M.; Ertunç, E. GIS-Based Optimal Site Selection of the Biogas Facility Installation Using the Best-Worst Method. Process Saf. Environ. Prot. 2023, 180, 1003–1011. [Google Scholar] [CrossRef]
- Sekeroglu, A.; Erol, D. Site Selection Modeling of Hybrid Renewable Energy Facilities Using Suitability Index in Spatial Planning. Renew. Energy 2023, 219, 119458. [Google Scholar] [CrossRef]
- Yücenur, G.N.; Maden, A. Sequential MCDM Methods for Site Selection of Hydroponic Geothermal Greenhouse: ENTROPY and ARAS. Renew. Energy 2024, 226, 120361. [Google Scholar] [CrossRef]
- Ransikarbum, K.; Pitakaso, R. Multi-Objective Optimization Design of Sustainable Biofuel Network with Integrated Fuzzy Analytic Hierarchy Process. Expert Syst. Appl. 2024, 240, 122586. [Google Scholar] [CrossRef]
- Demir, G.; Riaz, M.; Deveci, M. Wind Farm Site Selection Using Geographic Information System and Fuzzy Decision Making Model. Expert Syst. Appl. 2024, 255, 124772. [Google Scholar] [CrossRef]
- Gao, J.; Wang, C.; Wang, Z.; Lin, J.; Zhang, R.; Wu, X.; Xu, G.; Wang, Z. Site Selection Decision for Biomass Cogeneration Projects from a Sustainable Perspective: A Case Study of China. Energy 2024, 286, 129518. [Google Scholar] [CrossRef]
- Okedu, K.E.; Oyinna, B.C.; Diemuodeke, E.O.; Colak, I.; Kalam, A. Multicriteria GIS-Based Assessment of Biomass Energy and Hydropower Potentials in Nigeria. Meas. Sens. 2024, 33, 101243. [Google Scholar] [CrossRef]
- Koca, K.; Karipoğlu, F.; Zeray Öztürk, E. Gis-Ahp Approach for a Comprehensive Framework to Determine the Suitable Regions for Geothermal Power Plants in Izmir, Türkiye. Konya J. Eng. Sci. 2024, 12, 263–279. [Google Scholar] [CrossRef]
- Chen, F.; Huang, K.; Hou, Y.; Ding, T. Long-Term Cross-Border Electricity Trading Model under the Background of Global Energy Interconnection. Glob. Energy Interconnect. 2019, 2, 122–129. [Google Scholar] [CrossRef]
- Richstein, J.C.; Chappin, E.J.L.; de Vries, L.J. Cross-Border Electricity Market Effects Due to Price Caps in an Emission Trading System: An Agent-Based Approach. Energy Policy 2014, 71, 139–158. [Google Scholar] [CrossRef]
- Makrygiorgou, D.I.; Andriopoulos, N.; Georgantas, I.; Dikaiakos, C.; Papaioannou, G.P. Cross-Border Electricity Trading in Southeast Europe towards an Internal European Market†. Energies 2020, 13, 6653. [Google Scholar] [CrossRef]
- Liu, Z. R&D on Global Energy Interconnection and Practice. In Global Energy Interconnection; Elsevier: Amsterdam, The Netherlands, 2015; pp. 273–342. [Google Scholar]
- Mcbennett, B.; Rose, A.; Hurlbut, D.; Palchak, D.; Cochran, J. Cross-Border Energy Trade between Nepal and India: Assessment of Trading Opportunities; National Renewable Energy Laboratory: Golden, CO, USA, 2022. [Google Scholar]
- Jha, A.P.; Mahajan, A.; Singh, S.K.; Kumar, P. Renewable Energy Proliferation for Sustainable Development: Role of Cross-Border Electricity Trade. Renew. Energy 2022, 201, 1189–1199. [Google Scholar] [CrossRef]
- Thaler, P.; Hofmann, B. The Impossible Energy Trinity: Energy Security, Sustainability, and Sovereignty in Cross-Border Electricity Systems. Political Geogr. 2022, 94, 102579. [Google Scholar] [CrossRef]
- Saroha, S.; Verma, R. Cross-Border Power Trading Model for South Asian Regional Power Pool. Int. J. Electr. Power Energy Syst. 2013, 44, 146–152. [Google Scholar] [CrossRef]
- Phoumin, H.; Nepal, R.; Kimura, F.; Taghizadeh-Hesary Editors, F. Large-Scale Development of Renewables in the ASEAN; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar]
- Ackah, I.; Gatete, C. Advances in African Economic, Social and Political Development Energy Regulation in Africa Dynamics, Challenges, and Opportunities; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar]
- Dalei, N.N.; Gupta, A. Economics and Policy of Energy and Environmental Sustainability; Springer: Singapore, 2022; ISBN 9789811950612. [Google Scholar]
- Fraser, H.; Al-Asaad, H.K. Engaging in Cross-Border Power Exchange and Trade via the Arab Gulf States Power Grid. Electr. J. 2008, 21, 19–29. [Google Scholar] [CrossRef]
- Abrell, J.; Rausch, S. Cross-Country Electricity Trade, Renewable Energy and European Transmission Infrastructure Policy. J. Environ. Econ. Manag. 2016, 79, 87–113. [Google Scholar] [CrossRef]
- Schönheit, D.; Kenis, M.; Lorenz, L.; Möst, D.; Delarue, E.; Bruninx, K. Toward a Fundamental Understanding of Flow-Based Market Coupling for Cross-Border Electricity Trading. Adv. Appl. Energy 2021, 2, 100027. [Google Scholar] [CrossRef]
- Papaioannou, G.P.; Dikaiakos, C.; Kaskouras, C.; Evangelidis, G.; Georgakis, F. Granger Causality Network Methods for Analyzing Cross-Border Electricity Trading between Greece, Italy, and Bulgaria. Energies 2020, 13, 900. [Google Scholar] [CrossRef]
- Strand Aas, E. Simulation Model of the Future Nordic Power Grid Considering the Impact of HVDC Links. Available online: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2413293 (accessed on 9 November 2024).
- Agostini, C.A.; Guzmán, A.M.; Nasirov, S.; Silva, C. A Surplus Based Framework for Cross-Border Electricity Trade in South America. Energy Policy 2019, 128, 673–684. [Google Scholar] [CrossRef]
- Haque, H.M.E.; Dhakal, S.; Mostafa, S.M.G. An Assessment of Opportunities and Challenges for Cross-Border Electricity Trade for Bangladesh Using SWOT-AHP Approach. Energy Policy 2020, 137, 111118. [Google Scholar] [CrossRef]
- Wijayatunga, P.; Chattopadhyay, D.; Fernando, P.N. ASIAN DEVELOPMENT BANK Cross-Border Power Trading in South Asia A Techno Economic Rationale CroSS-BorDer Power TrADing in SouTh ASiA: A TeChno EConomiC RATionAle; Asian Development Bank: Mandaluyong, Philippines, 2015. [Google Scholar]
- Dhakal, S.; Karki, P.; Shrestha, S. Cross-Border Electricity Trade for Nepal: A SWOT-AHP Analysis of Barriers and Opportunities Based on Stakeholders’ Perception. Int. J. Water Resour. Dev. 2021, 37, 559–580. [Google Scholar] [CrossRef]
- Mukherjee, S.; Das, M.; Debnath, P. Cross Border Energy Transactions in India: Present and Future. In Proceedings of the 2021 6th Asia Conference on Power and Electrical Engineering (ACPEE), Chongqing, China, 8–11 April 2021; pp. 583–589. [Google Scholar]
- Hurlbut, D.J.; Koebrich, S. Regulatory Foundations for Cross-Border Electricity Trading: Bangladesh; National Renewable Energy Laboratory: Golden, CO, USA, 2019. [Google Scholar]
- Dangal, D.N.; Chapagai, S.D.; Ghimire, K.P. Economic Prospects of Cross-Border Electricity Trade Between Nepal and India. Econ. Rev. Nepal 2022, 5, 34–42. [Google Scholar] [CrossRef]
- Del Barrio Alvarez, D.; Sasakawa, A.; Yamaguchi, K.; Wang, J. Strategic Priorities for Regional Power Connectivity in Asia in the Overlapping of Subregional Initiatives and China’s Global Energy Interconnection. Asia Pac. Bus. Rev. 2024, 30, 376–398. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, G.; Chen, S.; Huang, W.; Yang, Y. Hydropower Pricing Options for Cross-Border Electricity Trading in China Based on Bi-Level Optimization. IEEE Access 2022, 10, 83869–83883. [Google Scholar] [CrossRef]
- Parisio, L.; Bosco, B. Electricity Prices and Cross-Border Trade: Volume and Strategy Effects. Energy Econ. 2008, 30, 1760–1775. [Google Scholar] [CrossRef]
- Watcharejyothin, M.; Shrestha, R.M. Effects of Cross-Border Power Trade between Laos and Thailand: Energy Security and Environmental Implications. Energy Policy 2009, 37, 1782–1792. [Google Scholar] [CrossRef]
- Srinivasan, S. Electricity as a Traded Good. Energy Policy 2013, 62, 1048–1052. [Google Scholar] [CrossRef]
- Torriti, J. Privatisation and Cross-Border Electricity Trade: From Internal Market to European Supergrid? Energy 2014, 77, 635–640. [Google Scholar] [CrossRef]
- Higgins, P.; Li, K.; Devlin, J.; Foley, A.M. The Significance of Interconnector Counter-Trading in a Security Constrained Electricity Market. Energy Policy 2015, 87, 110–124. [Google Scholar] [CrossRef]
- Antweiler, W. Cross-Border Trade in Electricity. J. Int. Econ. 2016, 101, 42–51. [Google Scholar] [CrossRef]
- Oseni, M.O.; Pollitt, M.G. The Promotion of Regional Integration of Electricity Markets: Lessons for Developing Countryies. Energy Policy 2016, 88, 628–638. [Google Scholar] [CrossRef]
- Ahmed, T.; Mekhilef, S.; Shah, R.; Mithulananthan, N. Investigation into Transmission Options for Cross-Border Power Trading in ASEAN Power Grid. Energy Policy 2017, 108, 91–101. [Google Scholar] [CrossRef]
- Sediqi, M.M.; Howlader, H.O.R.; Ibrahimi, A.M.; Danish, M.S.S.; Sabory, N.R.; Senjyu, T. Development of Renewable Energy Resources in Afghanistan for Economically Optimized Cross-Border Electricity Trading. AIMS Energy 2017, 5, 691–717. [Google Scholar] [CrossRef]
- Saroha, S.; Shekher, V.; Rana, P. Cross Border Power Trading and Portfolio in South Asia. IJIRST-Int. J. Innov. Res. Sci. Technol. 2017, 4, 67–71. [Google Scholar]
- Singh, A.; Jamasb, T.; Nepal, R.; Toman, M. Electricity Cooperation in South Asia: Barriers to Cross-Border Trade. Energy Policy 2018, 120, 741–748. [Google Scholar] [CrossRef]
- Sediqi, M.M.; Ibrahimi, A.M.; Shah Danish, M.S.; Senjyu, T.; Chakraborty, S.; Mandal, P. An Optimization Analysis of Cross-Border Electricity Trading between Afghanistan and Its Neighbor Countries. IFAC-PapersOnLine 2018, 51, 25–30. [Google Scholar] [CrossRef]
- IEEE. 2018 International Conference on Power System Technology (POWERCON); IEEE: Piscataway, NJ, USA, 2018; ISBN 9781538664612. [Google Scholar]
- Loureiro, M.V.; Claro, J.; Fischbeck, P. Coordinating Cross-Border Electricity Interconnection Investments and Trade in Market Coupled Regions. Int. J. Electr. Power Energy Syst. 2019, 104, 194–204. [Google Scholar] [CrossRef]
- Ul-Haq, A.; Hassan, M.S.; Jalal, M.; Ahmad, S.; Anjum, M.A.; Khalil, I.U.; Waqar, A. Cross-Border Power Trade and Grid Interconnection in SAARC Region: Technical Standardization and Power Pool Model. IEEE Access 2019, 7, 178977–179001. [Google Scholar] [CrossRef]
- Montoya, L.G.; Guo, B.; Newbery, D.; Dodds, P.E.; Lipman, G.; Castagneto Gissey, G. Measuring Inefficiency in International Electricity Trading. Energy Policy 2020, 143, 111521. [Google Scholar] [CrossRef]
- Mertens, T.; Poncelet, K.; Duerinck, J.; Delarue, E. Representing Cross-Border Trade of Electricity in Long-Term Energy-System Optimization Models with a Limited Geographical Scope. Appl. Energy 2020, 261, 114376. [Google Scholar] [CrossRef]
- IEEE. 2020 IEEE Power & Energy Society General Meeting (PESGM); IEEE: Piscataway, NJ, USA, 2020; ISBN 9781728155081. [Google Scholar]
- IEEE. 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference 2020: Sept. 20-Sept. 23, 2020, Nanjing, China; IEEE: Piscataway, NJ, USA, 2020; ISBN 9781728157481. [Google Scholar]
- Yuan, M.; Tapia-Ahumada, K.; Reilly, J. The Role of Cross-Border Electricity Trade in Transition to a Low-Carbon Economy in the Northeastern U.S. Energy Policy 2021, 154, 112261. [Google Scholar] [CrossRef]
- Boz, D.E.; Sanli, B.; Berument, M.H. The Effects of Cross-Border Electricity Trade on Power Production from Different Energy Sources. Electr. J. 2021, 34, 106953. [Google Scholar] [CrossRef]
- Kurian, A.L. Cross-Border Energy Trade (Cbet): An Impetus to South Asian Cooperation. Vidyabharati Int. Interdiscip. Res. J. 2021, 12, 215–223. [Google Scholar]
- Pu, Y.; Li, Y.; Wang, Y. Structure Characteristics and Influencing Factors of Cross-border Electricity Trade: A Complex Network Perspective. Sustainability 2021, 13, 5797. [Google Scholar] [CrossRef]
- Eghlimi, M.; Niknam, T.; Aghaei, J. Decision Model for Cross-Border Electricity Trade Considering Renewable Energy Sources. Energy Rep. 2022, 8, 11715–11728. [Google Scholar] [CrossRef]
- Shinde, P.; Gamberi, G.; Amelin, M. A Multi-Agent Model for Cross-Border Trading in the Continuous Intraday Electricity Market. Energy Rep. 2023, 9, 6227–6240. [Google Scholar] [CrossRef]
- Do, T.N.; Burke, P.J. Is ASEAN Ready to Move to Multilateral Cross-Border Electricity Trade? Asia Pac. Viewp. 2023, 64, 110–125. [Google Scholar] [CrossRef]
- Timilsina, G.R.; Toman, M.A. Carbon Pricing and Cross-Border Electricity Trading for Climate Change Mitigation in South Asia. Policy 2018, 7, 111–124. [Google Scholar] [CrossRef]
- Luo, Z.; Li, Z.; Dong, C.; Dai, X.; Shen, X.; Li, J.; Bi, G. Multi-Participants Trading Mode in Cross-Border Electricity Market: A Non-Cooperative Game Approach. Int. J. Electr. Power Energy Syst. 2024, 160, 110093. [Google Scholar] [CrossRef]
- Shan, J. Design and Application of Global Energy Trade Cross Border E-Commerce Optimization Model. EAI Endorsed Trans. Energy Web 2024, 11, 1–12. [Google Scholar] [CrossRef]
- Luo, Z.; Dai, X.; Liu, D.; Li, J.; Wang, H.; Liang, J.; Zhang, Y.; Zheng, L. Bi-Level Electricity and Heat Sharing Strategy for Cross-Border Integrated Energy System Based on Nash Game. Appl. Therm. Eng. 2025, 258, 124704. [Google Scholar] [CrossRef]
- Borge-Diez, D.; Rosales-Asensio, E.; Cabrera, P.; Sarmento, P.; Carta, J.A. Cross-Border Electricity Cooperation in Southern Asia: Consequences and Benefits. Processes 2024, 12, 2324. [Google Scholar] [CrossRef]
- Wang, M.; An, T.; Ergun, H.; Lan, Y.; Andersen, B.; Szechtman, M.; Leterme, W.; Beerten, J.; Van Hertem, D. Review and Outlook of HVDC Grids as Backbone of Transmission System. CSEE J. Power Energy Syst. 2021, 7, 797–810. [Google Scholar] [CrossRef]
- Long, W.; Nilsson, S. HVDC Transmission: Yesterday and Today. IEEE Power Energy Mag. 2007, 5, 22–31. [Google Scholar] [CrossRef]
- Li, G.; Liu, W.; Joseph, T.; Liang, J.; An, T.; Lu, J.; Szechtman, M.; Andersen, B.; Zhuang, Q. Control Strategies of Full-Voltage to Half-Voltage Operation for LCC and Hybrid LCC/MMC Based UHVDC Systems. Energies 2019, 12, 742. [Google Scholar] [CrossRef]
- Rao, H.; Zhou, Y. Key Technologies of Ultra-High Voltage Hybrid LCC-VSC MTDC Systems. CSEE J. Power Energy Syst. 2019, 5, 365–373. [Google Scholar] [CrossRef]
- Brinkerink, M.; Gallachóir, B.Ó.; Deane, P. A Comprehensive Review on the Benefits and Challenges of Global Power Grids and Intercontinental Interconnectors. Renew. Sustain. Energy Rev. 2019, 107, 274–287. [Google Scholar] [CrossRef]
- International Energy Agency. Large-Scale Electricity Interconnection—Technology and Prospects for Cross-Regional Networks; IEA: Paris, France, 2016. [Google Scholar]
- Arif, M.; Ahmad, F.; Kashyap, R.; Abdel-Galil, T.K.; Othman, M.M.; El-Amin, I.; Al-Mubarak, A. Evaluation of EHV and AC/DC Technologies for Integration of Large-scale Renewable Generation in Saudi Arabian Network. IET Gener. Transm. Distrib. 2019, 13, 575–581. [Google Scholar] [CrossRef]
- Alassi, A.; Bañales, S.; Ellabban, O.; Adam, G.; MacIver, C. HVDC Transmission: Technology Review, Market Trends and Future Outlook. Renew. Sustain. Energy Rev. 2019, 112, 530–554. [Google Scholar] [CrossRef]
- Mokhberdoran, A.; Carvalho, A.; Silva, N.; Leite, H.; Carrapatoso, A. Application Study of Superconducting Fault Current Limiters in Meshed HVDC Grids Protected by Fast Protection Relays. Electr. Power Syst. Res. 2017, 143, 292–302. [Google Scholar] [CrossRef]
- Lagrotteria, G.; Pietribiasi, D.; Marelli, M. HVDC Cables—The Technology Boost. In Proceedings of the 2019 AEIT HVDC International Conference (AEIT HVDC), Firenze, Italy, 9–10 May 2019; pp. 1–5. [Google Scholar]
- Paez, J.D.; Frey, D.; Maneiro, J.; Bacha, S.; Dworakowski, P. Overview of DC–DC Converters Dedicated to HVdc Grids. IEEE Trans. Power Deliv. 2019, 34, 119–128. [Google Scholar] [CrossRef]
- Gomis-Bellmunt, O.; Sau-Bassols, J.; Prieto-Araujo, E.; Cheah-Mane, M. Flexible Converters for Meshed HVDC Grids: From Flexible AC Transmission Systems (FACTS) to Flexible DC Grids. IEEE Trans. Power Deliv. 2020, 35, 2–15. [Google Scholar] [CrossRef]
- Gomez, D.; Shinoda, K.; Paez Alvarez, J.; Morel, F.; Cheah-Mane, M.; Gomis-Bellmunt, O.; Dworakowski, P. Case Study of Dc-MMC Interconnecting Two HVDC Lines with Different Grid Topologies. Available online: https://cse.cigre.org/cse-n024/case-study-of-dc-mmc-interconnecting-two-hvdc-lines-with-different-grid-topologies.html (accessed on 5 December 2024).
- Niewiadomski, W.; Wierzbowski, M. Direct Current Market Coupling: Sweden—Poland—Lithuania—Sweden. In Proceedings of the 2017 14th International Conference on the European Energy Market (EEM), Dresden, Germany, 6–9 June 2017; pp. 1–5. [Google Scholar]
- Raths, S.; Beck, D.; Bongers, T.; Sander, I. ALEGrO-Market Integration Und System Operation Aspects of the New HVDC Link Between Germany and Belgium. In Proceedings of the ETG Congress 2021, Online, 18–19 March 2021. [Google Scholar]
- Deligianni, P.M.; Tsekouras, G.J.; Tsirekis, C.D.; Kontargyri, V.T.; Kanellos, F.D.; Kontaxis, P.A. Techno-Economic Optimization Analysis of an Autonomous Photovoltaic Power System for a Shoreline Electrode Station of HVDC Link: Case Study of an Electrode Station on the Small Island of Stachtoroi for the Attica–Crete Interconnection. Energies 2020, 13, 5550. [Google Scholar] [CrossRef]
- HVDC-VSC Newsletter Technology Outlook P2 Synchronous Power-Train of Type 5 Wind Turbine Projects Update P5-6 EuroAsia Interconnector Enters Its Construction Phase NeuConnect Cable Production Starts North Sea Link in Normal Operation France-Italy First 600 MW Link in Service. 2022. Available online: https://www.windflow.co.nz/Download/20230330_SyncWind_RTEi_HVDC_VSC_Newsletter_2022-11-Henderson-and-Gevorgian.pdf (accessed on 9 November 2024).
- Alam, Q.; Alam, F.; Chowdhury, H.; Sarkar, R.; Paul, A. A Review on the Regional Collaboration of Power Utilisation in South Asia. Energy Procedia 2019, 160, 11–17. [Google Scholar] [CrossRef]
- Klein, M.; Linnenkohl, J.; Heidenreich, H. Power: HVDC to Illuminate Darkest Africa: By 1975, Electric Energy Will Be Produced in Northwest Mozambique in One of the Largest Hydroelectric Systems under Construction. IEEE Spectr. 1974, 11, 51–58. [Google Scholar] [CrossRef]
- Goodrich, F.G.; Andersen, B.R. The 2000 MW HVDC Link between England and France. Power Eng. J. 1987, 1, 69. [Google Scholar] [CrossRef]
- Rasmussen, J.; Jorgensen, P. Synchronized Phasor Measurements of a Power System Event in Eastern Denmark. IEEE Trans. Power Syst. 2006, 21, 278–284. [Google Scholar] [CrossRef]
- Ingelsson, B.; Lindstrom, P.-O.; Karlsson, D.; Runvik, G.; Sjodin, J.-O. Wide-Area Protection against Voltage Collapse. IEEE Comput. Appl. Power 1997, 10, 30–35. [Google Scholar] [CrossRef]
- Kabouris, J.; Hatziargyriou, N. Wind Power in Greece—Current Situation Future Developments and Prospects. In Proceedings of the 2006 IEEE Power Engineering Society General Meeting, Montreal, QC, Canada, 18–22 June 2006; p. 8. [Google Scholar]
- Noosuk, A.; Mermork, T.; Semjan, A.; Rahman, M.S.; Dawood, A.R.; Ismail, S.B.; Kurth, R.D.; Atmuri, S.R. Commissioning Experience of the 300 MW Thailand-Malaysia Interconnection Project. In Proceedings of the IEEE/PES Transmission and Distribution Conference and Exhibition, Yokohama, Japan, 6–10 October 2002; pp. 1004–1009. [Google Scholar]
- Ronström, L.; Hoffstein, M.L.; Pajo, R.; Lahtinen, M. The Estlink HVDC Light ® Transmission System. Available online: https://www.academia.edu/6254205/The_Estlink_HVDC_Light_Transmission_System (accessed on 3 August 2024).
- Teeuwsen, S.P.; Rossel, R. Dynamic Performance of the 1000 MW BritNed HVDC Interconnector Project. In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–8. [Google Scholar]
- Egan, J.; O’Rourke, P.; Sellick, R.; Tomlinson, P.; Johnson, B.; Svensson, S. Overview of the 500MW EirGrid East-West Interconnector, Considering System Design and Execution-Phase Issues. In Proceedings of the 2013 48th International Universities’ Power Engineering Conference (UPEC), Dublin, Ireland, 2–5 September 2013; pp. 1–6. [Google Scholar]
- Abdel-Moamen, M.A.; Shaaban, S.A.; Jurado, F. France-Spain HVDC Transmission System with Hybrid Modular Multilevel Converter and Alternate-Arm Converter. In Proceedings of the 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, India, 21–22 April 2017; pp. 1–6. [Google Scholar]
- Michi, L.; Donnini, G.; Giordano, C.; Scavo, F.; Luciano, E.G.; Aluisio, B.; Vergine, C.; Pompili, M.; Lauria, S.; Calcara, L.; et al. New HVDC Technology in Pan-European Power System Planning. In Proceedings of the 2019 AEIT HVDC International Conference (AEIT HVDC), Florence, Italy, 9–10 May 2019; pp. 1–6. [Google Scholar]
- Musca, R.; Bizumic, L. Primary Frequency Control in the Power System of Continental Europe Including the Dynamics of the HVDC Link France-Great Britain. In Proceedings of the 2020 AEIT International Annual Conference (AEIT), Catania, Italy, 23–25 September 2020; pp. 1–6. [Google Scholar]
- Li, G.; Liang, J. Modular Multilevel Converters: Recent Applications [History]. IEEE Electrif. Mag. 2022, 10, 85–92. [Google Scholar] [CrossRef]
- Hambissa, T.; Biru, G.; Ghandhari, M. Analysis of Fast Frequency Control Using Battery Energy Storage Systems in Mitigating Impact of Photovoltaic Penetration in Ethiopia–Kenya HVDC Link. Int. J. Electr. Power Energy Syst. 2024, 156, 109732. [Google Scholar] [CrossRef]
- Xlinks. Available online: https://xlinks.co/morocco-uk-power-project/ (accessed on 3 August 2024).
- Power Technology. Available online: https://www.power-technology.com/projects/australia-asia-powerlink-australia-singapore/ (accessed on 9 November 2024).
- Lu, T.; Sherman, P.; Chen, X.; Chen, S.; Lu, X.; McElroy, M. India’s Potential for Integrating Solar and on- and Offshore Wind Power into Its Energy System. Nat. Commun. 2020, 11, 4750. [Google Scholar] [CrossRef]
- Fletcher, G. Power System Development and Economics C1 Global Electricity Network Feasibility Study; CIGRE: Paris, France, 2019; ISBN 9782858734771. [Google Scholar]
Hydropower | Solar | Wind | ||||
---|---|---|---|---|---|---|
Renewable Energy | Total Installed Capacity (MW) | Global Share | Total Installed Capacity (MW) | Global Share | Total Installed Capacity (MW) | Global Share |
Asia | 591,620.137 | 47.02% | 625,534.065 | 42.81% | 439,687.044 | 48.70% |
Africa | 36,079.022 | 2.87% | 12,646.002 | 0.87% | 7744.853 | 0.86% |
Europe | 248,526.214 | 19.75% | 625,534.065 | 42.81% | 242,338.358 | 26.84% |
Americas | 368,005.195 | 29.25% | 167,799.418 | 11.48% | 200,078.499 | 22.16% |
Oceania | 13,939.462 | 1.11% | 29,565.818 | 2.02% | 13,034.611 | 1.44% |
World | 1,258,170.03 | 100% | 1,461,079.368 | 100% | 902,883.365 | 100% |
Authors | Year | Initiative Taken by Country | Percentage of RE | Target Year |
---|---|---|---|---|
H. Lund et al. [28] | 2009 | Denmark | 100% | 2050 |
D. Connolly et al. [29] | 2011 | Ireland | 100% | - |
B.V. Mathiesen et al. [42] | 2011 | Denmark | 100% | 2050 |
B. Elliston et al. [43] | 2012 | Australia | 100% | - |
B. Cosic et al. [44] | 2012 | Macedonia | 100% | 2050 |
M. Esteban et al. [30] | 2012 | Japan | 100% | - |
C. Bussar et al. [45] | 2014 | Europe | 100% | 2050 |
G. Plebmann et al. [31] | 2014 | Global | 100% | 2050 |
A. Charles [46] | 2014 | Nigeria | 100% | - |
D. Connolly et al. [47] | 2014 | Global | 100% | 2050 |
S.K. Chaharsooghi et al. [33] | 2015 | Iran | 10% | 2025 |
B. Brand [35] | 2016 | Algeria | 27% | 2030 |
A.M.A. Mohamed et al. [34] | 2016 | Libya | 30% | 2030 |
B. Brand [35] | 2016 | Tunisia | 30% | 2030 |
D. Bogdanov et al. [48] | 2016 | North-East Asia | 100% | - |
V. Krakowski et al. [49] | 2016 | France | 100% | 2050 |
A. Kilickaplan et al. [50] | 2017 | Turkey | 100% | 2050 |
H.C. Gils et al. [51] | 2017 | Canary Islands | 100% | 2050 |
T.S. Uyar et al. [52] | 2017 | Global | 100% | - |
A. Blakers et al. [53] | 2017 | Australia | 100% | - |
A. Khoodaruth et al. [54] | 2017 | Mauritius | 100% | 2050 |
U.B. Akuru et al. [55] | 2017 | Nigeria | 100% | 2050 |
A. Gulagi et al. [56] | 2017 | India | 100% | 2050 |
S. Chatzivasileiadis et al. [57] | 2017 | Global | 80% | 2050 |
H.C. Gils et al. [58] | 2017 | Brazil | 100% | 2050 |
A. Gulagi et al. [59] | 2017 | India and SAARC Countries | 100% | 2030 |
L.S.N.S. Barbosa et al. [60] | 2017 | South and Central America | 100% | 2030 |
M. Child et al. [61] | 2017 | Finland | 100% | 2050 |
U. Caldera et al. [62] | 2018 | Saudi Arabia | 100% | 2040 |
IRENA [63] | 2018 | Egypt | 42% | 2035 |
A. García-Olivares et al. [64] | 2018 | Global | 100% | - |
M. Esteban et al. [65] | 2018 | Japan | 100% | - |
A. Sadiqa et al. [66] | 2018 | Pakistan | 100% | 2050 |
S. Zapata et al. [67] | 2018 | Colombia | 100% | 2040 |
M. Child et al. [68] | 2018 | Europe | 100% | 2050 |
REN21 [69] | 2018 | Iraq | 10% | 2030 |
REN21 [69] | 2018 | Morocco | 53% | 2030 |
C.F. Heuberger et al. [37] | 2018 | United Kingdom | 100% | 2050 |
A.S. Oyewo et al. [70] | 2019 | South Africa | 100% | 2050 |
W. Zappa et al. [71] | 2019 | Europe | 100% | 2050 |
T. Luz et al. [72] | 2019 | Brazil | 100% | 2050 |
M. Child et al. [73] | 2019 | Europe | 100% | 2050 |
K. Hansen et al. [74] | 2019 | Germany | 100% | 2050 |
P. Moriarty et al. [75] | 2019 | Global | 100% | 2050 |
A. Blakers et al. [76] | 2019 | Global | 100% | - |
A. Aghahosseini et al. [36] | 2020 | Middle East and North Africa | 100% | 2030 |
M. Alves et al. [77] | 2020 | Islands | 100% | - |
A. Aghahosseini et al. [36] | 2020 | Israel | 17% | 2030 |
S. Kiwan et al. [78] | 2020 | Jordan | 100% | 2050 |
D. Bogdanov et al. [79] | 2021 | Global | 100% | 2050 |
L. Al-Ghussain [80] | 2021 | Jordan | 100% | 2050 |
J. Zhong et al. [81] | 2021 | Sweden | 100% | 2040 |
N. Reyseliani et al. [82] | 2021 | Indonesia | 100% | 2050 |
A. Gulagi et al. [83] | 2021 | Philippines | 100% | 2050 |
P. Denholm et al. [84] | 2021 | United States | 100% | - |
W.J. Cole et al. [38] | 2021 | United States | 100% | - |
C. Cheng et al. [85] | 2022 | Japan | 50–60% | 2050 |
I. AL-wesabi et al. [86] | 2022 | Yemen | 15% | 2025 |
IEA50 [87] | 2023 | Oman | 10% | 2025 |
H. Yang et al. [88] | 2023 | Global | 100% | 2050 |
Q. Hassan et al. [89] | 2024 | Global | 100% | 2050 |
J. Huber et al. [90] | 2024 | Global | 100% | 2050 |
Authors | Year | Proposed for | Method Used | RE |
---|---|---|---|---|
M. Argin et al. [100] | 2019 | Turkey | WA | Offshore wind |
D. Messaoudi et al. [108] | 2019 | Algeria | GIS and AHP | Solar Hydrogen production |
S. Ali et al. [101] | 2019 | Thailand | GIS and AHP | Wind and Solar |
C. Emeksiz et al. [109] | 2019 | Turkey | Novelty Hybrid Site Selection Method (NHSSM) | Offshore wind |
I. Konstantinos et al. [110] | 2019 | Greece | GIS and AHP and TOPSIS | Wind |
D. Schitea et al. [111] | 2019 | Romania | WASPAS, COPRAS and EDAS | Hydrogen mobility roll-up |
O. Nematollahi et al. [112] | 2019 | Iran | GIS | Solar/wind and Hydrogen production |
O.N. Mensour et al. [113] | 2019 | Morocco | AHP | Solar PV |
J. Zhang et al. [114] | 2019 | China | Extended PROMETHEE combined with ORA and Fuzzy | Ocean thermal energy |
J.R.S. Doorga et al. [115] | 2019 | Mauritius | GIS and AHP | Solar PV |
M.K. Firozjaei et al. [107] | 2019 | Iran | GIS and Ordered Weighted Averaging (OWA) | Solar PV |
Y. Wu et al. [116] | 2019 | China | λ-fuzzy measure AHP | Pumped hydro storage station |
M. Giamalaki et al. [117] | 2019 | Mediterranean | GIS and AHP | Solar PV |
S.N. Shorabeh et al. [118] | 2019 | Iran | GIS and OWA | Solar PV |
U. Nzotcha et al. [103] | 2019 | Cameroon | AHP and ELECTRE | Pumped hydro-energy storage |
D. Messaoudi et al. [119] | 2019 | Algeria | GIS and AHP | Wind-powered hydrogen refuelling |
G. Pambudi et al. [120] | 2019 | Indonesia | Hierarchical fuzzy data envelopment analysis | Wind |
D. Majumdar et al. [121] | 2019 | USA | GIS and Multi-Criteria Analysis | Solar PV |
Y.A. Solangi et al. [122] | 2019 | Pakistan | AHP and Fuzzy VIKOR | Solar PV |
M. Giamalaki et al. [117] | 2019 | Greece | GIS and AHP | Solar PV and CSP |
V. Sammartano et al. [123] | 2019 | England | GIS | Hydropower |
Y. Khchine et al. [124] | 2019 | Morocco | Weibull analysis | Wind |
C. Wang et al. [125] | 2019 | Vietnam | Fuzzy AHP and TOPSIS | Biomass |
G. Sasikumar et al. [126] | 2019 | Generalized | Fuzzy AHP and TOPSIS | Solar PV |
Moradi et al. [127] | 2020 | Iran | GIS and AHP | Wind |
J.R. O’Hanleya et al. [128] | 2020 | Brazil | ArcGIS and GRASS | Hydropower |
S.H.A. Shah et al. [129] | 2020 | Pakistan | Fuzzy AHP data envelopment analysis (DEA) | RE |
S. Seker et al. [130] | 2020 | Turkey | TOPSIS | Hydrogen |
A. Guleria et al. [131] | 2020 | Global | (R, S)-Norm Pythagorean Fuzzy information measures and on VIKOR and TOPSIS | Hydrogen power |
H.S. Dhiman et al. [132] | 2020 | USA | Fuzzy TOPSIS and fuzzy COPRAS | Wind |
Y. Xu et al. [133] | 2020 | China | GIS and interval AHP | Wind |
S. Rahimi et al. [134] | 2020 | Iran | GIS and Fuzzy group BWM-MULTIMOORA | Municipal solid waste |
H.E. Colak et al. [135] | 2020 | Turkey | GIS and AHP | Solar PV |
Y. Wu et al. [136] | 2020 | China | PROMETHEE and Fuzzy | Offshore wind |
Y. Wang et al. [137] | 2020 | Pakistan | Strengths, Weaknesses, Opportunities, and Threats (SWOT) Fuzzy AHP | Solar PV and Wind |
S. Ahmadi et al. [138] | 2020 | Iran | Hybrid fuzzy and AHP and VIKOR | Wind-powered pumped storage power plant |
A. Khamis et al. [139] | 2020 | Malaysia | K-means Technique | Solar, Wind and Hydro |
S. Sreenath et al. [140] | 2020 | Malaysia | ForgeSolar software | Solar PV |
H.S. Ruiz et al. [141] | 2020 | Tropical countries | GIS and AHP | Solar PV |
C. Kocabaldir et al. [142] | 2020 | Turkey | GIS and AHP | Solar PV |
M. Li et al. [143] | 2020 | China | GIS and Fuzzy | Wind |
F. Chien et al. [105] | 2020 | Vietnam | Fuzzy, ANC, and TOPSIS | Hydropower |
J. Feng [144] | 2020 | China | Fuzzy axiomatic design approach | Wind |
H. Peng et al. [145] | 2020 | China | BWM, DETMATEL, and TOPSIS | Nuclear |
E. Tercan et al. [146] | 2020 | Turkey | GIS MCDM | Wind |
M.K. Anser et al. [147] | 2020 | Turkey | SWOT-based AHP–F-TOPSIS | Solar PV |
S.C. Rana et al. [148] | 2020 | India | AHP, WPM, and TOPSIS | Hydropower |
A.G. Abdullah et al. [149] | 2021 | Indonesia | AHP, WPM, and TOPSIS | Wind |
J. Gao et al. [150] | 2021 | China | Probabilistic linguistic term set (PLTS) | Compressed air Energy Storage |
F. Guo et al. [151] | 2021 | China | Extended fuzzy PROMETHEE | Floating Solar PV |
D. Kannan et al. [152] | 2021 | Iran | GRA, VIKOR | Solar PV |
E. Ilbahar et al. [153] | 2021 | Turkey | Fuzzy linear programming | Waste-to-energy |
S.K. Saraswat et al. [154] | 2021 | India | GIS and AHP | Wind and Solar |
B. Karatop et al. [155] | 2021 | Turkey | Fuzzy AHP-EDAS-Fuzzy FMEA | RE |
G.N. Yucenur et al. [156] | 2021 | Turkey | SWARA/WASPAS | Marine current energy |
M. Deveci et al. [157] | 2021 | Turkey | BWM and MARCOS | Offshore wind |
H. Lo et al. [158] | 2021 | Taiwan | Hybrid of Gray decision-making trial-and-evaluation laboratory-and ANP and Probability and GRA | Offshore wind |
F. Ouchani et al. [159] | 2021 | Morocco | GIS | Solar PV |
M. Deveci et al. [160] | 2021 | Global | Fuzzy logarithmic additive estimation of weight coefficients | Solar PV |
O. Lindberg et al. [161] | 2021 | Sweden | GIS | Solar PV |
O. Soydan et al. [162] | 2021 | Turkey | GIS and AHP | Solar PV |
H. Eroglu [104] | 2021 | Turkey | GIS and Fuzzy AHP | Wind |
R.S. Shahdabadi et al. [163] | 2021 | Iran | SAW, TOPSIS, and ELECTRE | Biomass |
S. Tekin et al. [164] | 2021 | Turkey | MaxEnt model | Solar PV |
M.A. Basset et al. [165] | 2021 | Egypt | AHP and PROMETHEE II | Offshore Wind |
H. Yousefi et al. [166] | 2022 | Iran | GIS and AHP | Wind |
C. Emeksiz et al. [167] | 2022 | Turkey | Novelty hybrid MCDM approach (NHMCDMA) | Bioenergy |
E. Caceoglu et al. [168] | 2022 | Turkey | GIS and AHP | Offshore wind |
Y. Noorollahi et al. [102] | 2022 | Iran | GIS and Fuzzy and AHP | Solar PV |
J.M.S. Lozano et al. [169] | 2022 | USA | TOPSIS and VIKOR | Offshore wind |
V.T. Nguyen et al. [170] | 2022 | Vietnam | Fuzzy AHP and WASPAS | Wind |
B. Josimovic et al. [171] | 2023 | Kosovo | GIS and PROMETHEE | Wind |
S. Yum et al. [172] | 2023 | South Korea | GIS-MCDA and big data | Solar based smart hydrogen energy |
P. Jamodkar et al. [173] | 2023 | India | GIS and AHP | Solar PV |
J. Ngethe et al. [174] | 2023 | Kenya | GIS and hybrid AHP–WASPAS | Geothermal |
M. Uyan et al. [175] | 2023 | Turkey | GIS and BWM | Biogas |
A. Sekeroglu et al. [176] | 2023 | Turkey | GIS and Fuzzy logic | Wind, solar, and biomass |
G.N. Yucenur et al. [177] | 2024 | Turkey | ENTROPY and ARAS | Geothermal |
K. Ransikarbum et al. [178] | 2024 | Thailand | Fuzzy AHP | Biofuel |
G. Demir et al. [179] | 2024 | Turkey | GIS and Fuzzy SWARA | Wind |
J. Gao et al. [180] | 2024 | China | GIS and Fuzzy BWM | Biomass |
K.E. Okedu et al. [181] | 2024 | Nigeria | GIS and Fuzzy | Biomass |
K. Koca et al. [182] | 2024 | Turkey | GIS and AHP | Geothermal |
Authors | Year | Countries Involved | Method Used |
---|---|---|---|
H. Fraser et al. [194] | 2008 | Arab Gulf States | Developed a legal and organizational framework |
L. Parisio et al. [208] | 2008 | Europe | Used volume and strategy effects to regulate price in CBET |
M. Watcharejyothin et al. [209] | 2009 | Laos and Thailand | Used a MARKAL-based model |
S. Srinivasan et al. [210] | 2013 | India and Bhutan | Energy policy study |
J.C. Richstein et al. [184] | 2014 | Europe | Agent-based approach |
J. Torriti et al. [211] | 2014 | Europe | Used a bi-linear fixed-effects model for CBET |
P. Higgins et al. [212] | 2015 | Europe | Optimization |
P. Wijayatunga et al. [201] | 2015 | SAARC Countries | Performed a techno-economic analysis of CBET in SAARC Countries |
W. Antweiler [213] | 2016 | USA and Canada | Two-way trade for optimization |
M.O. Oseni et al. [214] | 2016 | South Africa, West Africa, and Central America | Investigation |
J. Abrell et al. [195] | 2016 | Europe | Equilibrium model |
T. Ahmed et al. [215] | 2017 | Southeast Asian Countries | An optimal power flow model is developed in MATPOWER |
M.M. Sediqi et al. [216] | 2017 | Afghanistan and Pakistan | Used the Genetic Algorithm to minimize cost and maximize profit |
S. Saroha et al. [217] | 2017 | South Asian Countries | Discussed the power system security, stability, and benefits of CBET |
A. Singh et al. [218] | 2017 | South Asia Region | Review about barriers in CBET in the South Asia Region |
M.M. Sediqi et al. [219] | 2018 | Afghanistan and Neighbor Countries | Optimal sizing of RE using the Genetic Algorithm |
Y. Hou et al. [220] | 2018 | Northeast Asia | Consideration of the significance of the intermittent nature of wind energy while using CBET |
H.M.E. Haque et al. [200] | 2019 | Bhutan, Bangladesh, India, and Nepal | SWOT-AHP approach |
M.V. Loureiro et al. [221] | 2019 | Spain, Portugal | Nash–Coase or Nash bargaining |
F. Chen et al. [183] | 2019 | Global | Optimized the resource allocation |
C.A. Agostini et al. [199] | 2019 | Chile and Neighbor Countries | Used Surplus-based framework for CBET |
S. Dhakal et al. [202] | 2019 | Bhutan, Bangladesh, India, and Nepal | Used SWOT-AHP model for CBET |
A. Ulhaq et al. [222] | 2019 | SAARC Region | Used Technical Standardization and Power Pool Model |
L.G. Montoya [223] | 2020 | Great Britain, France, and the Netherlands | Determined metrics |
T. Mertens et al. [224] | 2020 | Belgium, the Netherlands, France, Germany, and Denmark | Used long-term energy-system optimization models for CBET |
M.E. Islam et al. [225] | 2020 | India and Bangladesh | Discussed the economic benefits of CBET |
G.P. Papaioannou et al. [197] | 2020 | Greece, Italy, and Bulgaria | Used Granger Causality Network Methods |
D.I. Makrygiorgou et al. [185] | 2020 | Greece, North Macedonia, Bulgaria, Serbia, and Romania | Used the Available Transfer Capacity-Net Transfer Capacity (ATC-NTC) method |
X. Gu et al. [226] | 2020 | Countries taking part in Belt and Road Initiative | BRI |
M. Yuan et al. [227] | 2021 | New York and New England | Top-down approach |
D.E. Boz et al. [228] | 2021 | 48 countries across America, Europe, and Asia | Studied the effects of CBET on power production from various RESs |
D. Schonheit et al. [196] | 2021 | Europe | Implemented a flow-based market coupling model |
A.L. Kurian et al. [229] | 2021 | South Asia | Review of the functioning and significance of CBET |
M. Yuan et al. [227] | 2021 | Northeastern region of USA | Used integrated top-down bottom-up modeling framework |
S. Mukharjee et al. [203] | 2021 | India and Nepal | Study of present and future scenarios of CBET for India |
Y. Pu. et al. [230] | 2021 | Europe and Asia | Complex Network Perspective |
M. Eghlimi et al. [231] | 2022 | Iran, Turkey, Iraq, Pakistan, Afghanistan, Armenia, Azerbaijan, and Turkmenistan | Multi objective particle swarm optimization algorithm |
D.N. Dangal et al. [205] | 2022 | Nepal and India | Explored opportunities and challenges through data analysis and descriptive research methods |
S. Zhang et al. [207] | 2022 | China | Bi-level optimization model is used to maximize income and minimize expenditures with the help of Karush–Kuhn–Tucker. |
P. Shinde et al. [232] | 2023 | Europe | Proposed an agent-based model to analyze the trading behaviour in CBET |
T.N. Do et al. [233] | 2023 | International Solar Alliance | Literature study |
G.R. Timilsina et al. [234] | 2024 | South Asia | Discussed climate change and how climate change will be mitigated by using CBET |
Z. Luo et al. [235] | 2024 | China | Nash game and ARIMA-GARCH model |
J. Shan et al. [236] | 2024 | Generalized | Developed an energy cross-border e-commerce optimization model |
Z. Luo et al. [237] | 2024 | China | Non-cooperative game approach |
D.B. Diez et al. [238] | 2024 | India, Bhutan, and Nepal | Literature study about CBET |
Countries Interconnected | Length (km) | Technology | Power (MW) | Voltage (kV) | Status |
---|---|---|---|---|---|
South Africa and Mozambique [257] | 1420 (OHL) | Thyrister | 1920 | 533 | Operating (1979) |
France and the UK [258] | 70 (USC) | Thyrister | 2000 | 270 | Operating (1986) |
Denmark and Sweden [259] | 61 (OHL) 88 (USC) | Thyrister | 300 | 300 | Operating (1988) |
Germany and Sweden [260] | 262 (OHL) | Thyrister | 600 | 450 | Operating (1994) |
Denmark and Germany [198] | 170 (OHL) | Thyrister | 440 | 350 | Operating (1996) |
Poland and Sweden [252] | 245 (OHL) | Thyrister | 600 | 450 | Operating (2000) |
Greece and Italy [261] | 310 (OHL) | Thyrister | 500 | 400 | Operating (2001) |
Thailand and Malaysia [262] | 110 (OHL) | Thyrister | 300 | 300 | Operating (2001) |
Finland and Estonia [263] | 105 (OHL) | IGBT | 350 | 150 | Operating (2006) |
The Netherlands and Norway [198] | 580 (OHL) | Thyrister | 700 | 450 | Operating (2008) |
The Netherlands and the UK [264] | 245 (OHL) | Thyrister | 1000 | 450 | Operating (2010) |
Finland and Sweden [198] | 303 (OHL) | Thyrister | 800 | 500 | Operating (2011) |
Ireland and the UK [265] | 130 (OHL) | IGBT | 500 | 200 | Operating (2012) |
France and Spain [266] | 64 (OHL) | IGBT | 2000 | 320 | Operating (2015) |
Sweden and Lithuania [252] | 450 (OHL) | IGBT | 700 | 300 | Operating (2015) |
Denmark and Norway [198] | 244 (OHL) | IGBT | 700 | 500 | Operating (2015) |
India and Bangladesh [256] | 1728 (OHL) | Thyrister | 6000 | 800 | Operating (2017) |
Italy and Montenegro [267] | 415 (OHL) | Thyrister | 1000 | 500 | Operating (2019) |
Denmark and the Netherlands [251] | 325 (OHL) | IGBT | 700 | 320 | Operating (2019) |
Italy and France [261] | 190 (OHL) | IGBT | 1200 | 320 | Operating (2019) |
Belgium and the UK [268] | 140 (OHL) | IGBT | 1000 | 400 | Operating (2019) |
Belgium and Germany [253] | 100 (OHL) | IGBT | 1000 | 320 | Operating (2020) |
Norway and Germany [251] | 623 (OHL) | IGBT | 1400 | 525 | Operating (2021) |
Norway and the UK [269] | 730 (OHL) | IGBT | 1400 | 515 | Operating (2021) |
Kenya and Ethiopia [270] | 1045 (OHL) | Thyrister | 2000 | 500 | Operating (2021) |
Denmark and the UK [255] | 740 (OHL) | IGBT | 1400 | 525 | Operating (2023) |
India and Sri Lanka [256] | 285(USC) | Thyrister | 1000 | 400 | Developing |
India and Nepal [256] | 85 (OHL) | Thyrister | 700 | 400 | Developing |
India and Bhutan [256] | 170 (OHL) | Thyrister | 2000 | 400 | Developing |
Ireland and France [255] | 575 | Planning | 700 | 500 | Planning |
Israel and Greece [254] | 1208 | Planning | 2000 | 500 | Planning |
Egypt and Greece [254] | 1396 | Planning | 2000 | 500 | Planning |
Germany and the UK [255] | 725 | Planning | 1400 | 525 | Planning |
Lithuania and Poland [252] | 330 | Planning | 700 | 320 | Planning |
France and the UK [255] | 210 | IGBT | 1400 | 320 | Planning |
Morocco and the UK [271] | 4000 (USC) | Planning | 3600 | Planning | |
Australia and Singapore [272] | 800 (OHL) 4200 (USC) | Planning | 1500 | Planning |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dora, B.K.; Bhat, S.; Mitra, A.; Ernst, D.; Halinka, A.; Zychma, D.; Sowa, P. The Global Electricity Grid: A Comprehensive Review. Energies 2025, 18, 1152. https://doi.org/10.3390/en18051152
Dora BK, Bhat S, Mitra A, Ernst D, Halinka A, Zychma D, Sowa P. The Global Electricity Grid: A Comprehensive Review. Energies. 2025; 18(5):1152. https://doi.org/10.3390/en18051152
Chicago/Turabian StyleDora, Bimal Kumar, Sunil Bhat, Arghya Mitra, Damien Ernst, Adrian Halinka, Daria Zychma, and Pawel Sowa. 2025. "The Global Electricity Grid: A Comprehensive Review" Energies 18, no. 5: 1152. https://doi.org/10.3390/en18051152
APA StyleDora, B. K., Bhat, S., Mitra, A., Ernst, D., Halinka, A., Zychma, D., & Sowa, P. (2025). The Global Electricity Grid: A Comprehensive Review. Energies, 18(5), 1152. https://doi.org/10.3390/en18051152