Renewable Electricity in German Multi-Family Buildings: Unlocking the Photovoltaic Potential for Small-Scale Landlord-To-Tenant Power Supply
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Landlord-to-Tenant Electricity Supply Model
2.2. Modeling and Analysis Procedure
2.3. Optimization Approach
2.4. FOCUS Framework
2.5. Scenario Definition
3. Results
3.1. Financial Viability of the L2T Model
3.2. Optimal Sizing of PV Systems
3.3. Optimal Sizing of Home Storage Systems
3.4. Autarky Rates and the Installation of Home Storage Systems
3.5. Financial Viability of Home Storage System Installations
3.6. The L2T Model for Different Building Sizes and Cities
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Component Modeling
Appendix A.1. Home Storage System (HSS) Model
Appendix A.2. Inverter Model
Appendix A.3. PV System Model
Appendix B. Model Input Data
Appendix B.1. Demand Data
Household Type | Share in Germany | Profile Assumption |
---|---|---|
1 person | 40.85% | One person under 30 |
2 persons under 65 | 24.29% | Two full-time employees |
2 persons over 65 | 9.78% | Two persons over 65 |
3–5 persons | 25.08% | Family with two parents and two children |
Appendix B.2. Irradiance and Temperature Data
Method | Calculation Step | References |
---|---|---|
pvlib.solarposition.get_solarposition | Calculate solar positions | [65,66,67,68,68] |
pvlib.irradiance.boland | Calculate direct normal irradiance | [65,66,69,70] |
pvlib.irradiance.get_total_irradiance | Calculate irradiance on tilted surface | [65,66,71,72] |
pvlib.irradiance.aoi | Calculate angle of incidence on a surface | [65,66] |
pvlib.iam.physical | Calculate incidence angle modifier | [65,66,73,74] |
Parameter | Hamburg | Cologne | Berlin | Frankfurt | Munich |
---|---|---|---|---|---|
Specific PV yield in kWh/kWp/a | 965.1 | 1001.9 | 1013.5 | 1129.0 | 1141.2 |
Latitude | 53.5485° N | 50.9412° N | 52.5153° N | 50.1076° N | 48.1399° N |
Longitude | 9.9922° O | 6.9566° O | 13.3939° O | 8.6899° O | 11.5778° O |
Appendix B.3. Component Parameters
- PV system: Ref. [75] shows a 13% decrease in PV prices from 2018 to 2021, arriving at 1180 EUR/kWp with VAT. This is equivalent to an annual price decrease of 4.5%. With this, we calculate the 2020 price to be 1236 EUR/kWp, or 1039 EUR/kWp without VAT. Ref. [76] indicates a PV price of 1250 EUR/kWp and assigns 12% of costs for the inverter. Based on this, we assume a price of 1100 EUR/kWp for 2023. Using this price and the annual price decrease calculated previously, we obtain a value of 797 EUR/kWp for 2030. The fixed operation and maintenance (OM) costs as a percentage of the investment costs are set to 1.0% and the service life is set to 32 years [77]. The NOCT and temperature coefficient parameters are taken from [48].
- HSS: Ref. [4] shows a 63% decrease in HSS prices from 2013 to 2021, landing on 920 EUR/kWh without VAT. Further, the price for 2022 is noted at 1197 EUR/kWh, with the price increase being attributed to the war in Ukraine. Assuming a constant annual price decrease, we calculate an 11.7% reduction per year, arriving at an HSS price of 1042 EUR/kWh for 2020. Applying this annual reduction to the price for 2022, we arrive at a price of 1057 EUR/kWh without VAT for 2023. To calculate the price for 2030, we take the 2016 HSS price of 1618 EUR/kWh [8], subtract the VAT, obtaining 1360 EUR/kWh, and reduce it by 54%, as projected by [78], to arrive at 626 EUR/kWh. The fixed (OM) costs are set to 1.0% [79,80]. In addition, we choose a service life of 15 years [81], a round-trip efficiency of 96% [82], and an energy-to-power ratio (E2P) of 2 h [4]. A state of energy (SOE) of 50% is assumed at the beginning of the optimization.
- PV and HSS inverters: Based on the study by [83], we assume a specific price of 110 EUR/kW for both inverters. We assume the fixed OM costs to be equal to the OM costs for the PV system and HSS since they are often integrated systems. Further, we set the lifetime of both inverters to 15 years [84]. We set the efficiency of the PV inverter to 96% and that of the HSS inverter to 94.6%, rounded to 95% for numerical efficiency [82].
Generation and Conversion Components | ||||||||
---|---|---|---|---|---|---|---|---|
Component | Year | Invest. | Unit | Fixed | Service | Efficiency | NOCT | Temperature |
Costs | OM | Life | (One Way) | Coefficient | ||||
PV system | 2020 | 1039 | EUR/kWp | 1.0% | 32a | Variable | 45 °C | −0.39%/°K |
(Excl. Inverter) | 2023 | 1100 | EUR/kWp | |||||
2030 | 797 | EUR/kWp | ||||||
Inverter PV | all | 110 | EUR/kW | 1.0% | 15a | 96% | ||
Inverter HSS | all | 110 | EUR/kW | 1.0% | 15a | 95% | ||
Storage Components | ||||||||
Component | Year | Invest. | Unit | Fixed | Service | Round-trip | E2P | Initial SOE |
Costs | OM | Life | Efficiency | Ratio | ||||
HSS | 2020 | 1042 | EUR/kWh | 1.0% | 15a | 96% | 2h | 50% |
(excl. inverter) | 2023 | 1057 | EUR/kWh | |||||
2030 | 626 | EUR/kWh |
Appendix B.4. Energy Flows Within a Prosumer
Appendix B.5. Sensitivity Analysis of Selected L2T Scenarios
References
- Presse- und Informationsamt der Bundesregierung. Intergenerational Contract for the Climate. Available online: https://www.bundesregierung.de/breg-de/schwerpunkte/klimaschutz/climate-change-act-2021-1936846 (accessed on 25 February 2025).
- Umweltbundesamt. Emission Overviews by Sector of the German Federal Climate Protection Act 1990–2022. Available online: https://www.umweltbundesamt.de/themen/klima-energie/treibhausgas-emissionen (accessed on 25 February 2025).
- Möbert, J. Ein Wohngebäude-Klima-Modell für Deutschland. Deutsche Bank Research. Available online: https://www.dbresearch.de/PROD/RPS_DE-PROD/PROD0000000000528872/Ein_Wohngeb%C3%A4ude-Klima-Modell_f%C3%BCr_Deutschland.PDF (accessed on 30 January 2025).
- Figgener, J.; Hecht, C.; Bors, J.; Spreuer, K.; Kairies, K.P.; Stenzel, P.; Sauer, D.U. The development of battery storage systems in Germany: A market review (status 2023). arXiv 2023, arXiv:2203.06762. [Google Scholar]
- Haelsig, P.; Roehrig, P.M.; Williams, R.; Ulbig, A. Analysis of electricity sharing as modern business models for housing associations. In Proceedings of the ETG Congress 2023, Kassel, Germany, 25–26 May 2023; pp. 1–7. [Google Scholar]
- Prognos AG, Boos Hummel & Wegerich. Schlussbericht Mieterstrom: Rechtliche Einordnung, Organisationsformen, Potenziale und Wirtschaftlichkeit von Mieterstrommodellen (MSM). Available online: https://www.bmwk.de/Redaktion/DE/Publikationen/Studien/schlussbericht-mieterstrom.pdf?__blob=publicationFile&v=10 (accessed on 25 February 2025).
- Breddermann, C.; Henger, R. Großes Ungenutztes Potenzial Beim Mieterstrom, IW-Kurzbericht. Available online: https://www.iwkoeln.de/studien/christopher-breddermann-ralph-henger-grosses-ungenutztes-potenzial-beim-mieterstrom.html (accessed on 25 February 2025).
- Figgener, J.; Haberschusz, D.; Kairies, K.P.; Wessels, O.; Tepe, B.; Sauer, D.U. Wissenschaftliches Mess- und Evaluierungsprogramm Solarstromspeicher 2.0: Jahresbericht 2018; Institut für Stromrichtertechnik und Elektrische Antriebe RWTH Aachen: Aachen, Germany, 2018. [Google Scholar] [CrossRef]
- Bundesnetzagentur. Marktstammdatenregister. Available online: https://www.marktstammdatenregister.de/MaStR (accessed on 25 February 2025).
- Bundesministerium der Justiz. Gesetz über Die Elektrizitäts- und Gasversorgung (Energiewirtschaftsgesetz-EnWG). Available online: https://www.gesetze-im-internet.de/enwg_2005/ (accessed on 25 February 2025).
- Einhundert Energie. Drastische Vereinfachung von Mieterstrom Durch das Gesetz zum Neustart der Digitalisierung der Energiewende und den Virtuellen Summenzähler. Available online: https://einhundert.de/vereinfachung-von-mieterstrom-durch-das-gndew_und-den-virtuellen-summenzaehler/ (accessed on 25 February 2025).
- BürgerEnergie Nord. Unsere Projekte. Available online: https://beneg.de/unsere-projekte/ (accessed on 25 February 2025).
- energiezukunft. Energiewende im Bestand. Available online: https://www.energiezukunft.eu/buergerenergie/energiewende-im-bestand/ (accessed on 25 February 2025).
- Vonovia. Das ODH-Projekt in Bochum-Weitmar. Available online: https://www.vonovia.de/meine-stadt/wohnungen-in-bochum/odh-projekt-bochum-weitmar (accessed on 25 February 2025).
- Vonovia. Case Study Wohnungsgenossenschaft Kleefeld-Buchholz. Available online: https://workdrive.zohopublic.eu/file/bryind34c8e436e7f494597749e4bebb98f0d (accessed on 30 January 2025).
- Einhundert Energie. Mieterstrom Ohne Kosten und Mehraufwand: Einhundert Bietet Mieterstrom-Contracting Inklusive PV-Finanzierung ab Sofort als Standardprodukt an. Available online: https://einhundert.de/mieterstrom-ohne-kosten-und-mehraufwand-einhundert-bietet-mieterstrom-contracting-inklusive-pv-finanzierung-ab-sofort-als-standardprodukt-an/ (accessed on 25 February 2025).
- Einhundert Energie. Nachhaltige Quartiere mit Solarstrom für Mieter in Schwalbach und Speicher—Quartiersmanufaktur und Einhundert Gehen Partnerschaft für Solare Quartiersversorgung ein. Available online: https://einhundert.de/nachhaltige-quartiere-mit-solarstrom-fuer-mieter-in-schwalbach-und-speicher-quartiersmanufaktur-und-einhundert-gehen-partnerschaft-fuer-solare-quartiersversorgung-ein/ (accessed on 30 January 2025).
- Polarstern. Mieterstrom im Städtischen Baubestand. Available online: https://www.polarstern-energie.de/mieterstrom/staedtischer-baubestand-fsb/ (accessed on 25 February 2025).
- Polarstern. Mieterstromanlagen: Von Neubau, Bestand bis zu Großen Quartieren ist Alles Dabei. Available online: https://www.polarstern-energie.de/mieterstrom/referenzen/ (accessed on 25 February 2025).
- Statistisches Bundesamt. Deutschland ist Mieterland Nr.1 in der EU. Available online: https://www.destatis.de/Europa/DE/Thema/Bevoelkerung-Arbeit-Soziales/Soziales-Lebensbedingungen/Mieteranteil.html (accessed on 25 February 2025).
- Enkhardt, S. Solarcheck 2020 Zeigt viel Ungenutztes Photovoltaik-Potenzial in Großstädten. Available online: https://www.pv-magazine.de/2020/06/18/ (accessed on 25 February 2025).
- Wörrle, J.T. Solarpflicht: In Welchen Bundesländern sie Gilt Oder Geplant ist. Available online: https://www.deutsche-handwerks-zeitung.de/wo-eine-solarpflicht-gilt-206871/ (accessed on 25 February 2025).
- Bundesministerium der Finanzen. FAQ ‘Umsatzsteuerliche Maßnahmen zur Förderung des Ausbaus von Photovoltaikanlagen’. Available online: https://www.bundesfinanzministerium.de/Content/DE/FAQ/foerderung-photovoltaikanlagen.html (accessed on 25 February 2025).
- Bundesministerium der Justiz. Umsatzsteuergesetz (UStG). Available online: https://www.gesetze-im-internet.de/ustg_1980/ (accessed on 25 February 2025).
- Presse- und Informationsamt der Bundesregierung. Stromkunden Werden Entlastet. Available online: https://www.bundesregierung.de/breg-de/suche/eeg-umlage-faellt-weg-2011728 (accessed on 25 February 2025).
- Enkhardt, S. EnSiG-Novelle: Abschaffung der 70-Prozent-Regelung für neue Photovoltaik-Anlagen bis 25 Kilowatt Vorgezogen—Kleine Bestandsanlagen ab 1. Januar 2023 Ebenfalls Ohne Beschränkung—Größere nur mit Smart Meter. Available online: https://www.pv-magazine.de/2022/10/11/ (accessed on 25 February 2025).
- Diermann, R. Smart-Meter-Gesetz Vereinfacht Mieterstrom-Projekte. Available online: https://www.pv-magazine.de/2023/05/16/smart-meter-gesetz-vereinfacht-mieterstrom-projekte/ (accessed on 25 February 2025).
- Baum, S.; Leitenberg, A.; Maas, A.; Stadler, I. Economic Analysis of CHP Plants in the Landlord-to-Tenant Electricity. In Proceedings of the 2018 7th International Energy and Sustainability Conference (IESC), Cologne, Germany, 17–18 May 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Braeuer, F.; Kleinebrahm, M.; Naber, E. Effects of the tenants electricity law on energy system layout and landlord-tenant relationship in a multi-family building in Germany. IOP Conf. Ser./Earth Environ. Sci. 2019, 323, 012168. [Google Scholar] [CrossRef]
- Moser, R.; Xia-Bauer, C.; Thema, J.; Vondung, F. Solar Prosumers in the German Energy Transition: A Multi-Level Perspective Analysis of the German ‘Mieterstrom’ Model. Energies 2021, 14, 1188. [Google Scholar] [CrossRef]
- Quitzow, L. Smart grids, smart households, smart neighborhoods – contested narratives of prosumage and decentralization in Berlin’s urban Energiewende. Innov. Eur. J. Soc. Sci. Res. 2023, 36, 107–122. [Google Scholar] [CrossRef]
- Statistisches Bundesamt. Bautätigkeit und Wohnung—Bestand Wohnungen. Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Wohnen/Publikationen/Downloads-Wohnen/bestand-wohnungen-2050300217004.pdf?__blob=publicationFile (accessed on 25 February 2025).
- Hegger, M.; Dettmar, J.; Marting, A.; Meinberg, T.; Boczek, B.; Drebes, C.; Greiner, M.; Hesse, U.; Kern, T.; Mahlke, D.; et al. UrbanReNet. Available online: https://www.researchgate.net/publication/311100248 (accessed on 25 February 2025).
- Loga, T.; Stein, B.; Diefenbach, N.; Born, R. Deutsche Wohngebäudetypologie. Available online: https://www.episcope.eu/downloads/public/docs/brochure/DE_TABULA_TypologyBrochure_IWU.pdf (accessed on 25 February 2025).
- Gong, J.; Nie, Y.; van Ouwerkerk, J.; Wege, F.; Celi Cortés, M.; von Oy, C.; Brucksch, J.; Bußar, C.; Schreiber, T.; Sauer, D.U.; et al. FOCUS: A framework for energy system optimization from prosumer to district and city scale. arXiv 2023, arXiv:2304.07150. [Google Scholar]
- van Ouwerkerk, J.; Celi Cortés, M.; Nsir, N.; Gong, J.; Figgener, J.; Zurmühlen, S.; Bußar, C.; Sauer, D.U. Quantifying benefits of renewable investments for German residential Prosumers in times of volatile energy markets. Nat. Commun. 2024, 15, 8206. [Google Scholar] [CrossRef] [PubMed]
- Bundesnetzagentur. Solaranlagen auf Mehrparteiengebäuden: Mieterstromzuschlag und Einspeisevergütung. Available online: https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/ErneuerbareEnergien/EEGAufsicht/Mieterstrom/start.html (accessed on 20 December 2023).
- Bundesnetzagentur. Grundversorgung. Available online: https://www.bundesnetzagentur.de/DE/Vportal/Energie/Vertragsarten/Grundversorgung/start.html (accessed on 25 February 2025).
- Bundesministerium der Justiz. Gesetz für den Ausbau Erneuerbarer Energien (Erneubare-Energien-Gesetz—EEG 2023). Available online: https://www.gesetze-im-internet.de/eeg_2014/ (accessed on 20 December 2023).
- Hart, W.E.; Watson, J.P.; Woodruff, D.L. Pyomo: Modeling and solving mathematical programs in Python. Math. Program. Comput. 2011, 3, 219–260. [Google Scholar] [CrossRef]
- Gurobi Optimization. Gurobi Optimizer Reference Manual. Available online: https://www.gurobi.com (accessed on 25 February 2025).
- Forrest, J.; Ralphs, T.; Vigerske, S.; Gambini Santos, H.; Hafer, L.; Kristjansson, B.; jpfasano; EdwinStraver; Lubin, M.; Jan-Willem; et al. Coin-or/Cbc: Release Releases/2.10.11. 2023. Available online: https://zenodo.org/records/10041724 (accessed on 25 February 2025). [CrossRef]
- CPLEX, IBM ILOG. V12. 1: User’s Manual for CPLEX. Int. Bus. Mach. Corp. 2009, 46, 157.
- Ebert, B.; Rodenbücher, B.; Hess, S.; Köhler, B.; Bongs, C.; Wagner, A. Systematische Analyse der Mehrfamilien-Bestandsgebäude. Available online: http://www.lowex-bestand.de/wp-content/uploads/2022/03/2022-03-18_AP-1.1_Bestandsanalyse_final.pdf (accessed on 25 February 2025).
- Statistisches Bundesamt. Stromverbrauch der Privaten Haushalte nach Haushaltsgrößenklassen. Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Umwelt/UGR/private-haushalte/Tabellen/stromverbrauch-haushalte.html (accessed on 25 February 2025).
- Deutsches Architektenblatt. Wie Groß ist Die Wohnfläche von Mehrfamilienhäusern? Available online: https://www.dabonline.de/2023/05/02/ (accessed on 25 February 2025).
- Lödl, M.; Kerber, G.; Witzmann, R.; Hoffmann, C.; Metzger, M. Abschätzung des Photovoltaik-Potentials auf Dachflächen in Deutschland. Available online: https://mediatum.ub.tum.de/doc/%20969497/969497.pdf (accessed on 25 February 2025).
- Viessmann. Vitovolt 300—Typ M300PD, M305PD, M310PD. Available online: https://www.viessmann.de/de/wohngebaeude/photovoltaik/photovoltaik-module/vitovolt-300.html (accessed on 25 February 2025).
- Bundesnetzagentur. Messeinrichtungen/Intelligente Messsysteme. Available online: https://www.bundesnetzagentur.de/DE/Vportal/Energie/Metering/start.html (accessed on 30 January 2025).
- Bundesministerium der Justiz. Gesetz über den Messstellenbetrieb und Die Datenkommunikation in Intelligenten Energienetzen 1 (Messstellenbetriebsgesetz—MsbG). Available online: https://www.gesetze-im-internet.de/messbg/ (accessed on 25 February 2025).
- Bundesministerium der Justiz. Gesetz zur Sicherung der Energieversorgung (Energiesicherungsgesetz—EnSiG). Available online: https://www.gesetze-im-internet.de/ensig_1975/ (accessed on 25 February 2025).
- Bundesnetzagentur. Archivierte EEG-Vergütungssätze und Datenmeldungen. Available online: https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/ErneuerbareEnergien/ZahlenDatenInformationen/EEG_Registerdaten/ArchivDatenMeldgn/start.html (accessed on 25 February 2025).
- Bundesnetzagentur. Fördersätze für Solaranlagen und Mieterstromzuschlag nach EEG 2023. Available online: https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/ErneuerbareEnergien/ZahlenDatenInformationen/EEG_Registerdaten/artikel.html (accessed on 20 December 2023).
- Bundesnetzagentur. Hinweis zum Mieterstromzuschlag als eine Sonderform der EEG-Förderung. Available online: https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/ErneuerbareEnergien/Mieterstrom/Hinweis_Mieterstrom.pdf?__blob=publicationFile&v=4 (accessed on 25 February 2025).
- Ritter, D.; Bauknecht, D. Wirtschaftlichkeit von Photovoltaik-Dachanlagen: Eine Differenzierte Betrachtung von Volleinspeise- und Eigenverbrauchsanlagen. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/479/publikationen/cc_66-2021_wirtschaftlichkeit_von_photovoltaik-dachanlagen.pdf (accessed on 25 February 2025).
- Berliner Stadtwerke. Komunaler Ökostrom. Available online: https://berlinerstadtwerke.de/oekostrom-fuer-berlin-und-brandenburg/ (accessed on 20 December 2023).
- BDEW. BDEW-Strompreisanalyse Juli 2020. Available online: https://ewerk-geiger.de/wp-content/uploads/2024/04/BDEW-Strompreisanalyse_Juli-2020.pdf (accessed on 25 February 2025).
- Craiut, L.; Bungau, C.; Bungau, T.; Grava, C.; Otrisal, P.; Radu, A.F. Technology Transfer, Sustainability, and Development, Worldwide and in Romania. Sustainability 2022, 14, 15728. [Google Scholar] [CrossRef]
- Dobos, A.P. PVWatts Version 5 Manual. Available online: https://pvwatts.nrel.gov/downloads/pvwattsv5.pdf (accessed on 25 February 2025).
- Riffonneau, Y.; Bacha, S.; Barruel, F.; Ploix, S. Optimal Power Flow Management for Grid Connected PV Systems with Batteries. IEEE Trans. Sustain. Energy 2011, 2, 309–320. [Google Scholar] [CrossRef]
- Fraunhofer ISE. Gratis Profile. Available online: https://synpro-lastprofile.de/gratis-profile/ (accessed on 25 February 2025).
- Fischer, D.; Härtl, A.; Wille-Haussmann, B. Model for electric load profiles with high time resolution for German households. Energy Build. 2015, 92, 170–179. [Google Scholar] [CrossRef]
- Statistisches Bundesamt. Bevölkerung und Erwerbstätigkeit. Available online: https://www.destatis.de/DE/Themen/Arbeit/Arbeitsmarkt/Erwerbstaetigkeit/Tabellen/liste-bevoelkerung-erwerbstaetigkeit.html#129430 (accessed on 25 February 2025).
- Deutscher Wetterdienst. Ortsgenaue Testreferenzjahre von Deutschland für Mittlere, Extreme und Zukünftige Witterungsverhältnisse: Handbuch. Available online: https://www.bbsr.bund.de/BBSR/DE/forschung/programme/zb/Auftragsforschung/5EnergieKlimaBauen/2013/testreferenzjahre/try-handbuch.pdf;jsessionid=32F96E889EBF9043C884BC440CF32493.live21301?__blob=publicationFile&v=1 (accessed on 25 February 2025).
- Holmgren, W.F.; Hansen, C.W.; Mikofski, M.A. pvlib Python: A Python package for modeling solar energy systems. J. Open Source Softw. 2018, 3, 884. [Google Scholar] [CrossRef]
- Holmgren, W.; Anderson, K.; Hansen, C.; Calama-Consulting; Mikofski, M.; Lorenzo, A.; Jensen, A.R.; Krien, U.; bmu; Stark, C.; et al. pvlib/pvlib-Python: v0.10.1, 2023. Available online: https://zenodo.org/records/8117210 (accessed on 25 February 2025). [CrossRef]
- Reda, I.; Andreas, A. Solar position algorithm for solar radiation applications. Sol. Energy 2004, 76, 577–589, Erratum in Sol. Energy 2007, 81, 838. [Google Scholar] [CrossRef]
- NREL. NREL’s Solar Position Algorithm (SPA). Available online: https://midcdmz.nrel.gov/spa/ (accessed on 25 February 2025).
- Boland, J.; Ridley, B. Models of Diffuse Solar Fraction. In Modeling Solar Radiation at the Earth’s Surface: Recent Advances; Badescu, V., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 193–219. [Google Scholar] [CrossRef]
- Boland, J.; Scott, L.; Luther, M. Modelling the diffuse fraction of global solar radiation on a horizontal surface. Environmetrics 2001, 12, 103–116. [Google Scholar] [CrossRef]
- Loutzenhiser, P.; Manz, H.; Felsmann, C.; Strachan, P.; Frank, T.; Maxwell, G. Empirical validation of models to compute solar irradiance on inclined surfaces for building energy simulation. Sol. Energy 2007, 81, 254–267. [Google Scholar] [CrossRef]
- Hottel, H.; Woertz, B. Performance of flat-plate solar-heat collectors. Trans. ASME (Am. Soc. Mech. Eng.) 1942, 64, 91–103. [Google Scholar] [CrossRef]
- De Soto, W.; Klein, S.; Beckman, W. Improvement and validation of a model for photovoltaic array performance. Sol. Energy 2006, 80, 78–88. [Google Scholar] [CrossRef]
- Duffie, J.; Beckman, W. Solar Engineering of Thermal Processes; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Figgener, J.; Haberschusz, D.; Hecht, C.; Zurmühlen, S.; Sauer, D.U. Speichermonitoring BW 2.0 Schlussbericht. Available online: https://www.researchgate.net/publication/362861071_Speichermonitoring_BW_20_Schlussbericht_inhaltlicher_Teil (accessed on 25 February 2025).
- Vöpel, A. Preisentwicklung Photovoltaik: Preise & Daten im Überblick 2023. Available online: https://gruenes.haus/photovoltaik-preisentwicklung/#tve-jump-18447b21091 (accessed on 20 December 2023).
- Hansen, K. Decision-making based on energy costs: Comparing levelized cost of energy and energy system costs. Energy Strategy Rev. 2019, 24, 68–82. [Google Scholar] [CrossRef]
- Ralon, P.; Taylor, M.; Ilas, A.; Diaz-Bone, H.; Kairies, K.P. Electricity Storage and Renewables: Costs and Markets to 2030. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/Oct/IRENA_Electricity_Storage_Costs_2017.pdf (accessed on 25 February 2025).
- Knoefel, J.; Herrmann, B. Technisch-ökonomische Bewertung von Quartierspeichern. Eine Betrachtung der Wirtschaftlichkeit und der Regionalökonomischen Effekte von Quartier- Speichern. Available online: https://www.ioew.de/publikation/technisch_oekonomische_bewertung_von_quartierspeichern (accessed on 25 February 2025).
- Mongird, K.; Viswanathan, V.V.; Balducci, P.J.; Alam, M.J.E.; Fotedar, V.; Koritarov, V.S.; Hadjerioua, B. Energy Storage Technology and Cost Characterization Report 2019. Available online: https://www.osti.gov/servlets/purl/1573487/ (accessed on 30 January 2025).
- Jasper, F.B.; Späthe, J.; Baumann, M.; Peters, J.F.; Ruhland, J.; Weil, M. Life cycle assessment (LCA) of a battery home storage system based on primary data. J. Clean. Prod. 2022, 366, 132899. [Google Scholar] [CrossRef]
- Orth, N.; Munzke, N.; Weniger, J.; Messner, C.; Schreier, R.; Mast, M.; Meissner, L.; Quaschning, V. Efficiency characterization of 26 residential photovoltaic battery storage systems. J. Energy Storage 2023, 65, 107299. [Google Scholar] [CrossRef]
- Mayer, J.M.; Philipps, S.; Hussein, N.S.; Schlegl, T.; Senkpiel, C. Current and Future Cost of Photovoltaics: Long-Term Scenarios for Market Development, System Prices and LCOE of Utility-Scale PV Systems. Available online: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/AgoraEnergiewende_Current_and_Future_Cost_of_PV_Feb2015_web.pdf (accessed on 25 February 2025).
- Woodhouse, M.; Jones-Albertus, R.; Feldman, D.; Fu, R.; Horowitz, K.; Chung, D.; Jordan, D.; Kurtz, S. On the Path to SunShot. The Role of Advancements in Solar Photovoltaic Efficiency, Reliability, and Costs. 2016. Available online: https://www.nrel.gov/docs/fy16osti/65872.pdf (accessed on 30 January 2025).
Parameter | Unit | Selection of Multiple-Family Houses | Reference | |||
---|---|---|---|---|---|---|
MFH I | MFH II | MFH III | MFH IV | |||
Number of HUs | 4 | 6 | 12 | 22 | [33,34,44] | |
HU living area | m2 | 74.8 | 74.8 | 66.2 | 63.1 | [33] |
Floor layout | HUs/story | 2 | 2 | 3 | 3 | [33,44] |
Electricity demand per HU | kWh/a | 3190 | [45] | |||
Total electricity demand | kWh/a | 12,760 | 19,140 | 38,280 | 70,180 | |
Max. installable PV power | kWp | 25 | 25 | 34 | 32 | [33,46,47,48] |
Metering costs | EUR/a | 130 | 170 | 360 | 560 | [49,50] |
Parameter | Unit | 2020 | 2023 | Future: 2030 | Reference |
---|---|---|---|---|---|
PV feed-in limit | % of | 70 | 100 | 100 (*) | [26,51] |
L2T price limit | % of basic supply tariff | 90 | 90 | 90 (*) | [10] |
EEG levy | ct/kWh | 6.756 | 0 | 0 | [25,37] |
PV feed-in tariff MFH I | ct/kWh | 9.70 | 7.54 | 6.64 (o) | [39,52,53] |
PV feed-in tariff MFH II | 9.70 | 7.54 | 6.64 (o) | ||
PV feed-in tariff MFH III | 9.67 | 7.42 | 6.54 (o) | ||
PV feed-in tariff MFH IV | 9.68 | 7.44 | 6.55 (o) | ||
L2T subsidy MFH I | ct/kWh | 1.20 | 2.56 | 2.27 (o) | [39,53,54] |
L2T subsidy MFH II | 1.20 | 2.56 | 2.27 (o) | ||
L2T subsidy MFH III | 1.17 | 2.54 | 2.25 (o) | ||
L2T subsidy MFH IV | 1.18 | 2.54 | 2.25 (o) | ||
VAT component costs | % | 19 | 0 | 19 | [23,24] |
Investment horizon | years | 20 | 20 | ||
Discount rate | % | 3 | 3 (*) | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celi Cortés, M.; van Ouwerkerk, J.; Gong, J.; Figgener, J.; Bußar, C.; Sauer, D.U. Renewable Electricity in German Multi-Family Buildings: Unlocking the Photovoltaic Potential for Small-Scale Landlord-To-Tenant Power Supply. Energies 2025, 18, 1213. https://doi.org/10.3390/en18051213
Celi Cortés M, van Ouwerkerk J, Gong J, Figgener J, Bußar C, Sauer DU. Renewable Electricity in German Multi-Family Buildings: Unlocking the Photovoltaic Potential for Small-Scale Landlord-To-Tenant Power Supply. Energies. 2025; 18(5):1213. https://doi.org/10.3390/en18051213
Chicago/Turabian StyleCeli Cortés, Mauricio, Jonas van Ouwerkerk, Jingyu Gong, Jan Figgener, Christian Bußar, and Dirk Uwe Sauer. 2025. "Renewable Electricity in German Multi-Family Buildings: Unlocking the Photovoltaic Potential for Small-Scale Landlord-To-Tenant Power Supply" Energies 18, no. 5: 1213. https://doi.org/10.3390/en18051213
APA StyleCeli Cortés, M., van Ouwerkerk, J., Gong, J., Figgener, J., Bußar, C., & Sauer, D. U. (2025). Renewable Electricity in German Multi-Family Buildings: Unlocking the Photovoltaic Potential for Small-Scale Landlord-To-Tenant Power Supply. Energies, 18(5), 1213. https://doi.org/10.3390/en18051213