Catalytic Performance of Iron-Based Oxygen Carriers Mixed with Converter Steel Slags for Hydrogen Production in Chemical Looping Gasification of Brewers’ Spent Grains
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Experimental Apparatus and Methods
2.3. Data Evaluation
3. Chemical Reactions Involved
4. Results and Discussion
4.1. Effects of Temperature
4.2. Effects of OC/SG Ratio
4.3. Effects of Steam Flow Rate
4.4. Effects of the Weight Ratio of CSSs in CSS/Fe2O3 Composite OCs
4.5. Analysis and Characterization of CSS/Fe2O3 Composite OCs
4.6. Chemical Reactivity of CSS/Fe2O3 Composite OCs
4.7. Effects of Cycle Number
4.8. Performance Comparison of CSS/Fe2O3 Composite OCs and Other OCs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xie, Z.; Dan, M.; Zhao, G. Recent advances in microbial high-value utilization of brewer’s spent grain. Bioresour. Technol. 2024, 408, 131197. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Li, Z. A coupling strategy for comprehensive utilization of distillers’ grains towards energy recovery and carbon sequestration. Energy Convers. Manag. 2023, 275, 116494. [Google Scholar] [CrossRef]
- Ferreira, S.; Monteiro, E.; Calado, L.; Silva, V.; Brito, P.; Vilarinho, C. Experimental and modeling analysis of brewers’ spent grains gasification in a downdraft reactor. Energies 2019, 12, 4413. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Dragone, G.; Roberto, I.C. Brewers’ spent grain: Generation, characteristics and potential applications. J. Cereal Sci. 2006, 43, 1–14. [Google Scholar] [CrossRef]
- Dieringer, P.; Marx, F.; Ströhle, J.; Epple, B. System hydrodynamics of a 1 MWth dual circulating fluidized bed chemical looping gasifier. Energies 2023, 16, 5630. [Google Scholar] [CrossRef]
- Qiu, Y.; Zeng, D.; Xiao, R. Hydrogen production from biomass-based chemical looping: A critical review and perspectives. Energy Fuels 2024, 38, 13819–13836. [Google Scholar] [CrossRef]
- Ponzio, A.; Kalisz, S.; Blasiak, W. Effect of operating conditions on tar and gas composition in high temperature air/steam gasification (HTAG) of plastic containing waste. Fuel Process. Technol. 2006, 87, 223–233. [Google Scholar] [CrossRef]
- Luo, M.; Yi, Y.; Wang, S. Review of hydrogen production using chemical-looping technology. Renew. Sustain. Energy Rev. 2018, 81, 3186–3214. [Google Scholar] [CrossRef]
- Huang, Z.; He, F.; Zhu, H. Thermodynamic analysis and thermogravimetric investigation on chemical looping gasification of biomass char under different atmospheres with Fe2O3 oxygen carrier. Appl. Energy 2015, 157, 546–553. [Google Scholar] [CrossRef]
- Hu, J.; Li, C.; Zhang, Q. Using chemical looping gasification with Fe2O3/Al2O3 oxygen carrier to produce syngas (H2+CO) from rice straw. Int. J. Hydrog. Energy 2019, 44, 3382–3386. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, Y.; Fu, J. Chemical looping gasification of biomass char using iron ore as an oxygen carrier. Int. J. Hydrogen Energy 2016, 41, 17871–17883. [Google Scholar] [CrossRef]
- Hu, Z.; Jiang, E.; Ma, X. The effect of oxygen carrier content and temperature on chemical looping gasification of microalgae for syngas production. J. Energy Inst. 2019, 92, 474–487. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, B.; Wu, S. Chemical looping gasification of lignocellulosic biomass with iron-based oxygen carrier: Products distribution and kinetic analysis on gaseous products from cellulose. Fuel Process. Technol. 2019, 193, 361–371. [Google Scholar] [CrossRef]
- Wang, L.; Feng, X.; Shen, L. Carbon and sulfur conversion of petroleum coke in the chemical looping gasification process. Energy 2019, 179, 1205–1216. [Google Scholar] [CrossRef]
- Niu, X.; Shen, L. Ca- and Mg-rich waste as high active carrier for chemical looping gasification of biomass. Chin. J. Chem. Eng. 2021, 38, 145–154. [Google Scholar] [CrossRef]
- Mayer, F.; Bidwe, A.R.; Schope, A. Comparison of a new micaceous iron oxide and ilmenite as oxygen carrier for Chemical looping combustion with respect to syngas conversion. Appl. Energy 2014, 113, 1863–1868. [Google Scholar] [CrossRef]
- Song, T.; Wu, J.; Zhang, H. Characterization of an Australia hematite oxygen carrier in chemical looping combustion with coal. Int. J. Greenh. Gas Control 2012, 11, 326–336. [Google Scholar] [CrossRef]
- Bao, J.; Li, Z.; Cai, N. Reduction Kinetics of Foreign-Ion-Promoted Ilmenite Using Carbon Monoxide (CO) for Chemical Looping Combustion. Ind. Eng. Chem. Res. 2013, 52, 10646–10655. [Google Scholar] [CrossRef]
- Huang, W.C.; Kuo, Y.L.; Su, Y.M. A facile method for sodium-modified Fe2O3/Al2O3 oxygen carrier by an air atmospheric pressure plasma jet for chemical looping combustion process. Chem. Eng. J. 2017, 316, 15–23. [Google Scholar] [CrossRef]
- Zhong, H.; Er, D.; Wen, L. Theoretical study on influence of CaO and MgO on the reduction of FeO by CO. Appl. Surf. Sci. 2017, 399, 630–637. [Google Scholar] [CrossRef]
- Hildor, F.; Leion, H.; Linderholm, C.J. Steel converter slag as an oxygen carrier for chemical-looping gasification. Fuel Process. Technol. 2020, 210, 106576. [Google Scholar] [CrossRef]
- Di, Z.; Cao, Y.; Yang, F. Studies on steel slag as an oxygen carrier for chemical looping combustion. Fuel 2018, 226, 618–626. [Google Scholar] [CrossRef]
- Nguyen, N.M.; Alobaid, F.; Epple, B. Chemical looping gasification of torrefied woodchips in a bubbling fluidized bed test rig using iron-based oxygen carriers. Renew. Energy 2021, 172, 34–45. [Google Scholar] [CrossRef]
- Huang, X.; Wu, J.; Wang, M.; Ma, X.; Jiang, E.; Hu, Z. Syngas production by chemical looping gasification of rice husk using Fe-based oxygen carrier. J. Energy Inst. 2020, 93, 1261–1270. [Google Scholar] [CrossRef]
- Luo, M.; Zhang, H.; Wang, S. Syngas production by chemical looping co-gasification of rice husk and coal using an iron-based oxygen carrier. Fuel 2022, 309, 122100. [Google Scholar] [CrossRef]
- Liu, Q.; Hu, C.; Peng, B. High H2/CO ratio syngas production from chemical looping co-gasification of biomass and poly-ethylene with CaO/Fe2O3 oxygen carrier. Energy Convers. Manag. 2019, 199, 111951. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, Z.; Toan, S. Chemical looping deoxygenated gasification: An implication for efficient biomass utilization with high-quality syngas modulation and CO2 reduction. Energy Convers. Manag. 2020, 215, 112913. [Google Scholar] [CrossRef]
- Wei, G.; He, F.; Zhao, Z. Performance of Fe–Ni bimetallic oxygen carriers for chemical looping gasification of biomass in a 10 kWth interconnected circulating fluidized bed reactor. Int. J. Hydrogen Energy 2015, 40, 16021–16032. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Zhang, L. Characteristics of steel slag as an oxygen carrier for chemical looping gasification of sewage sludge. Energy 2022, 247, 123534. [Google Scholar] [CrossRef]
- Pan, Q.; Ma, L.; Du, W. Hydrogen-enriched syngas production by lignite chemical looping gasification with composite oxygen carriers of phosphogypsum and steel slag. Energy 2022, 241, 122927. [Google Scholar] [CrossRef]
- Wang, B.; Ma, Z.; Li, S.; Dai, J.; Patrascu, M.; Gao, X. Experiment investigation and multiscale modeling of biomass oxidative fast pyrolysis in a fluidized bed reactor. Chem. Eng. J. 2024, 501, 157546. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, M.; Xu, S.; Feng, Y. Hydrogen and methane mixture from biomass gasification coupled with catalytic tar reforming, methanation and adsorption enhanced reforming. Fuel Process. Technol. 2019, 192, 147–153. [Google Scholar] [CrossRef]
- Hildor, F.; Soleimanisalim, A.H.; Seemann, M.; Mattisson, T.; Leion, H. Tar characteristics generated from a 10 kWth chemical-looping biomass gasifier using steel converter slag as an oxygen carrier. Fuel 2023, 331, 125770. [Google Scholar] [CrossRef]
- Kuttin, K.W.; Leghari, A.; Yu, H.; Xia, Z.; Ding, L.; Yu, G. Carbon dioxide-steam reforming gasification of carbonized bio-mass pellet for high syngas yield and TAR reduction through CFD modeling. Chem. Eng. Sci. 2024, 287, 119716. [Google Scholar] [CrossRef]
- Abdalazeez, A.; Li, T.; Cao, Y.; Wang, W.; Abuelgasim, S.; Liu, C. Syngas production from chemical looping gasification of rice husk-derived biochar over iron-based oxygen carriers modified by different alkaline earth metals. Int. J. Hydrogen Energy 2022, 47, 40881–40894. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Liu, L. Role and mechanism of calcium-based catalysts for methane dry reforming: A review. Fuel 2024, 355, 129329. [Google Scholar] [CrossRef]
- Shah, M.; Mesfer, M.K.A.; Danish, M. Design and optimization of Ni–Fe–La based catalytic system for CO2 utilization for sustainable syngas production via dry reforming of methane. J. Energy Inst. 2023, 110, 101346. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, Z.; Hu, Y.H. Steam reforming of methane: Current states of catalyst design and process upgrading. Renew. Sustain. Energy Rev. 2021, 149, 111330. [Google Scholar] [CrossRef]
- Nguyen, D.L.T.; Tran, A.V.; Vo, D.N. Methane dry reforming: A catalyst challenge awaits. J. Ind. Eng. Chem. 2024, 140, 169–189. [Google Scholar] [CrossRef]
- Abdalazeez, A.; Wang, W.; Abuelgasim, S. Syngas production from chemical looping reforming of ethanol over iron-based oxygen carriers: Theoretical analysis and experimental investigation. Chin. J. Chem. Eng. 2021, 38, 123–131. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, H.; Huang, Z. Chemical looping gasification coupled with steam reforming of biomass using NiFe2O4: Kinetic analysis of DAEM-TI, thermodynamic simulation of OC redox, and a loop test. Chem. Eng. J. 2020, 395, 125046. [Google Scholar] [CrossRef]
- Shen, X.; Yan, F.; Zhang, Z. Enhanced and environment-friendly chemical looping gasification of crop straw using red mud as a sinter-resistant oxygen carrier. Waste Manag. 2021, 121, 354–364. [Google Scholar] [CrossRef]
- Wu, Y.; Liao, Y.; Liu, G. Syngas production by chemical looping gasification of biomass with steam and CaO additive. Int. J. Hydrogen Energy 2018, 43, 19375–19383. [Google Scholar] [CrossRef]
- Liu, G.; Liao, Y.; Wu, Y. Synthesis gas production from microalgae gasification in the presence of Fe2O3 oxygen carrier and CaO additive. Appl. Energy 2018, 212, 955–965. [Google Scholar] [CrossRef]
- Leion, H.; Jerndal, E.; Steenari, B.M. Solid fuels in chemical-looping combustion using oxide scale and unprocessed iron ore as oxygen carriers. Fuel 2009, 88, 1945–1954. [Google Scholar] [CrossRef]
- Xu, L.; Wang, L.; Li, Y.; Song, Q.; Tian, Z.; Wang, C.; Zhao, M.; Gao, N. A novel high-entropy spinel ferrites (CoNiCuZnMg)Fe2O4 catalyst for H2 production via steam reforming of derived volatiles from polypropylene and waste cooking oil. Chem. Eng. J. 2024, 488, 150767. [Google Scholar] [CrossRef]
- Das, S.; Biswas, A.; Tiwary, C.S.; Paliwal, M. Hydrogen production using chemical looping technology: A review with emphasis on H2 yield of various oxygen carriers. Int. J. Hydrogen Energy 2022, 47, 28322–28352. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, K.; Zhao, Z.; He, F.; Huang, Z.; Wei, G. Identifying the roles of MFe2O4 (M=Cu, Ba, Ni, and Co) in the chemical looping reforming of char, pyrolysis gas and tar resulting from biomass pyrolysis. Int. J. Hydrogen Energy 2019, 44, 4674–4687. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.; Gai, D.; Wang, J. B-site semi-doped LaFeO3 perovskite oxygen carrier for biomass chemical looping steam gasification to produce hydrogen-rich syngas. Int. J. Hydrogen Energy 2025, 103, 446–455. [Google Scholar] [CrossRef]
Proximate Analysis (Air-Dry Basis %) | Ultimate Analysis (Dry Basis %) | Qad,net (kJ·kg−1) | |||||||
---|---|---|---|---|---|---|---|---|---|
Mad | FCad | Vad | Aad | Cd | Hd | Od * | Nd | Sd | |
10.16 | 14.48 | 65.14 | 10.22 | 40.08 | 5.65 | 38.54 | 4.15 | 0.20 | 13,455 |
Composition | Fe2O3 | CaO | SiO2 | Al2O3 | MnO | MgO | P2O5 | TiO2 |
---|---|---|---|---|---|---|---|---|
Mass percent (wt%) | 20.185 | 28.04 | 18.462 | 9.081 | 3.246 | 15.567 | 1.283 | 1.164 |
Compositions | SiO2 | CaO | K2O | P2O5 | Al2O3 | MgO | Fe2O3 | SO3 | Na2O | TiO2 |
---|---|---|---|---|---|---|---|---|---|---|
Mass percent (wt%) | 50.84 | 4.49 | 10.14 | 16.45 | 2.40 | 5.47 | 2.02 | 1.03 | 6.52 | 0.16 |
Performance Metric | CSS/Fe2O3 Composite OCs | Iron-Based OCs | Perovskites OCs |
---|---|---|---|
Relative volume fraction of Hydrogen (%) | 30−50 | 10−20 | 40−50 |
Gasification Efficiency (%) | 45−65 | 30−50 | 80−90 |
Cyclic stability | Moderate | Excellent | Excellent |
Cost | Low | Low | High |
Advantages | High hydrogen yield and low cost | The most common, low-cost and environmentally friendly | High stability, multifunctional |
Limitations | Moderate cyclic stability | The hydrogen yield is relatively low | Complex synthesis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, M.; Jiang, H.; Zuo, X.; Wang, C.; Li, Y.; Yang, H. Catalytic Performance of Iron-Based Oxygen Carriers Mixed with Converter Steel Slags for Hydrogen Production in Chemical Looping Gasification of Brewers’ Spent Grains. Energies 2025, 18, 1298. https://doi.org/10.3390/en18051298
Yuan M, Jiang H, Zuo X, Wang C, Li Y, Yang H. Catalytic Performance of Iron-Based Oxygen Carriers Mixed with Converter Steel Slags for Hydrogen Production in Chemical Looping Gasification of Brewers’ Spent Grains. Energies. 2025; 18(5):1298. https://doi.org/10.3390/en18051298
Chicago/Turabian StyleYuan, Miao, Huawei Jiang, Xiangli Zuo, Cuiping Wang, Yanhui Li, and Hairui Yang. 2025. "Catalytic Performance of Iron-Based Oxygen Carriers Mixed with Converter Steel Slags for Hydrogen Production in Chemical Looping Gasification of Brewers’ Spent Grains" Energies 18, no. 5: 1298. https://doi.org/10.3390/en18051298
APA StyleYuan, M., Jiang, H., Zuo, X., Wang, C., Li, Y., & Yang, H. (2025). Catalytic Performance of Iron-Based Oxygen Carriers Mixed with Converter Steel Slags for Hydrogen Production in Chemical Looping Gasification of Brewers’ Spent Grains. Energies, 18(5), 1298. https://doi.org/10.3390/en18051298