Guiding Principles for Geochemical/Thermodynamic Model Development and Validation in Nuclear Waste Disposal: A Close Examination of Recent Thermodynamic Models for H+—Nd3+—NO3−(—Oxalate) Systems
Abstract
:1. Introduction
2. Key Guiding Principles for the Development of a Defensible STM
3. Determination of Thermodynamic Properties of Trace Components in Concentrated Electrolyte Solutions
- Coskrenite-(Ce) [(Ce,Nd,La)2(SO4)2(C2O4)·8H2O];
- Deveroite-(Ce) [(Ce1.01Nd0.33La0.32Pr0.11Y0.11Sm0.01Pb0.04U0.03Th0.01Ca0.04)2.01(C2O4)2.99·9.99H2O];
- Gasparite-(La)[(La0.65Ce0.17Nd0.07Ca0.06Mn0.05Pr0.02)1.02(As0.70V0.28P0.02)1.00O4];
- Gasparite-(Ce) [(Ce0.43La0.24Nd0.15Ca0.11Pr0.04Sm0.02Gd0.01)1.00(As0.99Si0.03)1.02O4];
- Levinsonite-(Y)[(Y,Nd,Ce)Al(SO4)2(C2O4)·12H2O];
- Zugshunstite-(Ce) [(Ce,Nd,La)Al(SO4)2(C2O4)·12H2O].
4. Model Validation Against Independent Data Sets
x(Nd(NO3)3) | x(HNO3) | x(H2O) | m(Nd(NO3)3) | m(HNO3) | Total ionic strength, mol·kg−1 | P, kPa, exp. | P, kPa, XW Model | Error, |%| |
0.0026 | 0.0454 | 0.9520 | 0.15 | 2.65 | 3.56 | 2.825 | 2.779 | 1.63 |
0.0057 | 0.0323 | 0.9620 | 0.33 | 1.86 | 3.84 | 2.847 | 2.824 | 0.808 |
x(Nd(NO3)3) | x(HNO3) | x(H2O) | m(Nd(NO3)3) | m(HNO3) | Total ionic strength, mol·kg−1 | aw, exp. | aw, XW Model | Error, |%| |
0.0085 | 0.0141 | 0.9775 | 0.48 | 0.80 | 3.68 | 0.929 ± 0.005 | 0.927 | 0.215 |
0.0098 | 0.0160 | 0.9740 | 0.56 | 0.92 | 4.28 | 0.921 ± 0.005 | 0.910 | 1.17 |
x(Ce(NO3)3) | x(HNO3) | x(H2O) | m(Ce(NO3)3) | m(HNO3) | Total ionic strength, mol·kg−1 | aw, exp. | aw, XW Model | Error, |%| |
0.0018 | 0.0018 | 0.9964 | 0.10 | 0.10 | 0.70 | 0.9873 | 0.9907 | 0.342 |
0.0089 | 0.0018 | 0.9893 | 0.50 | 0.10 | 3.1 | 0.9657 | 0.9587 | 0.722 |
0.0018 | 0.0089 | 0.9893 | 0.10 | 0.50 | 1.1 | 0.9763 | 0.9763 | 0.000 |
0.00885 | 0.00885 | 0.9823 | 0.50 | 0.50 | 3.5 | 0.9497 | 0.9394 | 1.08 |
0.0018 | 0.0177 | 0.9806 | 0.10 | 1.0 | 1.6 | 0.9610 | 0.9572 | 0.395 |
5. Intended Use and Validity Range
6. pH as a Performance Indicator for Model Testing
7. Physical Constraints on Nd3+ Association with NO3−
8. Minimizing the Number of Fitted Model Parameters
9. Summary
- Materials and Methods
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Babb, S.C.; Novak, C.F. WIPP PA User’s Manual for FMT; Version 2.0; ERMS 228119; Sandia National Laboratories: Albuquerque, NM, USA, 1995.
- Weiner, R.F.; Stockman, C.T.; Wang, Y.; Novak, C.F. A Conceptual Performance Assessment Model of the Dissolved Actinide Source Term for the WIPP; (No. SAND-96-2654C; CONF-960911-7); Sandia National Lab. (SNL-NM): Albuquerque, NM, USA, 1996.
- Babb, S.C.; Novak, C.F. User’s Manual for FMT Version 2.3: A Computer Code Employing the Pitzer Activity Coefficient Formalism for Calculating Thermodynamic Equilibrium in Geochemical Systems to High Electrolyte Concentrations; ERMS 243037; Sandia National Laboratories: Albuquerque, NM, USA, 1997.
- Wang, Y. WIPP PA Validation Document for FMT; Version 2.4; ERMS, 251587; Sandia National Laboratories: Carlsbad, NM, USA, 1998.
- Larson, K.W. Development of the conceptual models for chemical conditions and hydrology used in the 1996 performance assessment for the Waste Isolation Pilot Plant. Reliab. Eng. Syst. Saf. 2000, 69, 59–86. [Google Scholar] [CrossRef]
- Brush, L.H.; Xiong, Y. Overview of WIPP Geochemical Modeling (No. SAND2010-5757P); Sandia National Lab. (SNL-NM): Albuquerque, NM, USA; Sandia National Laboratories: Carlsbad, NM, USA, 2010.
- Colas, E.; Riba, O.; Alba, V. Radionuclide Solubility Calculations (Phase 2) (No. NWMO-TR--2022-11); Nuclear Waste Management Organization (NWMO): Toronto, ON, Canada, 2022. [Google Scholar]
- Fanghänel, T.; Neck, V.; Kim, J.I. Thermodynamics of neptunium(V) in concentrated salt solutions: II. Ion interaction (Pitzer) parameters for Np(V) hydrolysis species and carbonate complexes. Radiochim. Acta 1995, 69, 169–176. [Google Scholar] [CrossRef]
- Konevnik, Y.V.; Martynov, K.V.; Karaseva, Y.Y.; Rodygina, N.I.; Zakharova, E.V. The role of phosphate released from Na-Al-P glass under repository conditions in speciation and transport of americium. J. Radioanal. Nucl. Chem. 2019, 321, 83–89. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, T.; Liu, S. Hydrogeological characteristics of Beishan pre-selected area, Gansu province for China’s high-level radioactive waste repository. Uranium Geol. 2001, 17, 184–189. [Google Scholar]
- Guo, Y.; Liu, S.; Yang, T.; Jiang, G. Isotope techniques for the research of groundwater in the potential site of China’s high-level waste repository. Sci. China Ser. E Technol. Sci. 2001, 44, 168–174. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, Y.G.; Cui, Y.J.; Ye, W.M.; Chen, B. Effect of synthetic Beishan site water and cement solutions on the mineralogy and microstructure of compacted Gaomiaozi (GMZ) bentonite. Soils Found. 2019, 59, 2056–2069. [Google Scholar] [CrossRef]
- Xiong, Y.; Lord, A.S. Experimental investigations of the reaction path in the MgO–CO2–H2O system in solutions with various ionic strengths, and their applications to nuclear waste isolation. Appl. Geochem. 2008, 23, 1634–1659. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, Y.; Roselle, G.; Kim, S. Lead/lead-alloy as a corrosion-resistant outer layer packaging material for high level nuclear waste disposal. Nucl. Eng. Des. 2021, 380, 111294. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, Y. Experimental and modeling studies of Pr and Nd oxalate solubility to high ionic strengths: Insight into actinide (III) oxalates. Chem. Geol. 2021, 573, 120200. [Google Scholar] [CrossRef]
- Guignot, S.; Lassin, A.; Christov, C.; Lach, A.; André, L.; Henocq, P. Modeling the osmotic and activity coefficients of lanthanide nitrate aqueous solutions at 298.15 K from low molalities to supersaturation. J. Chem. Eng. Data 2018, 64, 345–359. [Google Scholar] [CrossRef]
- Oakes, C.; Ward, A.; Chugonov, N. A Conventional, molal-based Pitzer Model for the (H+—Nd3+—NO3-){aq} System Valid to Stoichiometric Ionic-Strengths near 40 mol·kg–1 at 298 K and 0.1 MPa. Chem. Geol. 2024, 653, 122044. [Google Scholar] [CrossRef]
- Wolery, T.J.; Xiong, Y.L.; Long, J.J. Verification and Validation Plan/Validation Document for EQ3/6 Version 8.0a for Actinide Chemistry; Document Version 8.10; Sandia National Laboratories: Carlsbad, NM, USA, 2010; ERMS, 550239.
- Xiong, Y.L. WIPP Verification and Validation Plan/Validation Document for EQ3/6 Version 8.0 a for Actinide Chemistry, Revision 1; Document Version 8.20; Supersedes ERMS, 550239; Sandia National Laboratories: Carlsbad, NM, USA, 2011; ERMS 555358.
- Nordstrom, D.K. Models, validation, and applied geochemistry: Issues in science, communication, and philosophy. Appl. Geochem. 2012, 27, 1899–1919. [Google Scholar] [CrossRef]
- Lacroix, E.; Brovelli, A.; Holliger, C.; Barry, D.A. Evaluation of silicate minerals for pH control during bioremediation: Application to chlorinated solvents. Water Air Soil Pollut. 2012, 223, 2663–2684. [Google Scholar] [CrossRef]
- Lacroix, E.; Brovelli, A.; Holliger, C.; Barry, D.A. Control of groundwater pH during bioremediation: Improvement and validation of a geochemical model to assess the buffering potential of ground silicate minerals. J. Contam. Hydrol. 2014, 160, 21–29. [Google Scholar] [CrossRef]
- Xiong, Y. Experimental determination of solubility constant of hydromagnesite (5424) in NaCl solutions up to 4.4 m at room temperature. Chem. Geol. 2011, 284, 262–269. [Google Scholar] [CrossRef]
- Xiong, Y. Comment on “Hydromagnesite solubility product and growth kinetics in aqueous solution from 25 to 75 °C” by Gautier, Q.; Benezeth, P.; Mavromatis, V.; Schott, J. Geochim. Cosmochim. Acta 2017, 213, 677–680. [Google Scholar] [CrossRef]
- Xiong, Y.; Cetiner, Z. Comment on “The experimental determination of hydromagnesite precipitation rates at 22.5–75 °C” by Berninger, U.-N.; Jordan, G.; Schott, J. and Oelkers, EH. Mineral. Mag. 2017, 81, 689–693. [Google Scholar] [CrossRef]
- Xiong, Y.-L.; Wang, Y.-F. Comment on “Thermodynamic Models for the (HClO4 + NaClO4){aq} and (HBr+ NaBr){aq} Systems at 298.15 K and 0.1 MPa” authored by Oakes, C.; Ward, A.; Chugunov, N. Journal of Chemical & Engineering Data, 68, 2554–2562. J. Chem. Eng. Data 2024, 69, 4247–4250. [Google Scholar]
- Choppin, G.R.; Chopoorian, J.A. Complexes of the lanthanide elements with α-hydroxy carboxylate ligands. J. Inorg. Nucl. Chem. 1961, 22, 97–113. [Google Scholar] [CrossRef]
- Manning, P.G. The ratios of stepwise stability constants: III. the rare-earth α-hydroxymonocarboxylates. Can. J. Chem. 1965, 43, 3258–3263. [Google Scholar] [CrossRef]
- Manning, P.G. A Correlation of Stepwise Stability Constant Ratios and Some Bonding Properties of Transition Metal and Zinc Complexes. Can. J. Chem. 1966, 44, 1975–1980. [Google Scholar] [CrossRef]
- Aziz, A.; Lyle, S.J.; Naqvi, S.J. Chemical equilibria in americium and curium sulphate and oxalate systems and an application of a liquid scintillation counting method. J. Inorg. Nucl. Chem. 1968, 30, 1013–1018. [Google Scholar] [CrossRef]
- Powell, J.E.; Kulprathipanja, S. Formation constants of some 1: 1 and 2: 1 2, 3-dihydroxy-2-methylpropanoato and 2, 3-dihydroxy-2-methylbutanoato complex species of divalent transition metals. Inorganica Chim. Acta 1974, 11, 31–32. [Google Scholar] [CrossRef]
- Agrawal, Y.K.; Mudaliar, A. Formation constants of No-tolylbenzohydroxamic acids with manganese (II), nickel (II), copper (II) and zinc (II). Transit. Met. Chem. 1979, 4, 252–254. [Google Scholar] [CrossRef]
- Bologni, L.; Sabatini, A.; Vacca, A. Complex formation equilibria between 2-amino-2 (hydroxymethyl)-1, 3,-propanediol (tris, tham) and nickel (II), copper (II), zinc (II) and hydrogen ions in aqueous solutions. Inorganica Chim. Acta 1983, 69, 71–75. [Google Scholar] [CrossRef]
- Stumm, W.; Morgan, J.J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed.; John Wiley and Sons: New York, NY, USA, 1996; 1022 p. [Google Scholar]
- Millero, F.J.; Byrne, R.H. Use of Pitzer’s equations to determine the media effect on the formation of lead chloro complexes. Geochim. Cosmochim. Acta 1984, 48, 1145–1150. [Google Scholar] [CrossRef]
- Xiong, Y.; Kirkes, L.; Westfall, T.; Roselle, R. Experimental determination of solubilities of lead oxalate (PbC2O4(cr)) in a NaCl medium to high ionic strengths, and the importance of lead oxalate in low temperature environments. Chem. Geol. 2013, 342, 128–137. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, Y. Uranyl oxalate species in high ionic strength environments: Stability constants for aqueous and solid uranyl oxalate complexes. Radiochim. Acta 2021, 109, 177–185. [Google Scholar] [CrossRef]
- Lassin, A.; André, L. A revised description of the binary CaCl2-H2O chemical system up to solution-mineral equilibria and temperatures of 250 °C using Pitzer equations. Extension to the multicomponent HCl-LiCl-NaCl-KCl-MgCl2-CaCl2-H2O system. J. Chem. Thermodyn. 2023, 176, 106927. [Google Scholar] [CrossRef]
- Novak, C.F.; Moore, R.C.; Bynum, R.V. Prediction of Dissolved Actinide Concentrations in Concentrated Electrolyte Solutions: A Conceptual Model and Model Results for the Waste Isolation Pilot Plant (WIPP); (No. SAND--96-2695C); Sandia National Labs: Albuquerque, NM, USA, 1996.
- Novak, C.F.; Nitsche, H.; Silber, H.B.; Roberts, Κ.; Torretto, P.C.; Prussin, T.; Becraft, Κ.; Carpenter, S.A.; Hobart, D.E.; AlMahamid, I. Neptunium(V) and Neptunium(VI) Solubilities in Synthetic Brines of Interest to the Waste Isolation Pilot Plant (WIPP). Radiochim. Acta 1996, 74, 31–36. [Google Scholar] [CrossRef]
- Novak, C.F.; Mahamid, I.A.; Becraft, K.A.; Carpenter, S.A.; Hakem, N.; Prussin, T. Measurement and thermodynamic modeling of Np(V) solubility in aqueous K2CO3 solutions to high concentrations. J. Solut. Chem. 1997, 26, 681–697. [Google Scholar] [CrossRef]
- Pitzer, K.S.; Mayorga, G. Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 1973, 77, 2300–2308. [Google Scholar] [CrossRef]
- Thakur, P.; Xiong, Y.; Borkowski, M. An improved thermodynamic model for the complexation of trivalent actinides and lanthanide with oxalic acid valid to high ionic strength. Chem. Geol. 2015, 413, 7–17. [Google Scholar] [CrossRef]
- Graeser, S.; Schwander, H. Gasparite-(Ce) and monazite-(Nd): Two new minerals to the monazite group from the Alps. Schweiz. Mineral. Und Petrogr. Mitteilungen 1987, 67, 103–113. [Google Scholar]
- Peacor, D.; Rouse, R.C.; Essene, E.J.; Lauf, R.J. Coskrenite-(Ce), (Ce,Nd,La)2(SO4)2(C2O4)·8H2O, a new rare. earth oxalate mineral from alum cave bluff, Tennessee: Characterization and crystal structure. Can. Mineral. 1999, 37, 1453–1462. [Google Scholar]
- Rouse, R.C.; Peacor, D.R.; Essene, E.J.; Coskren, T.D.; Lauf, R.J. The new minerals levinsonite-(Y)[(Y, Nd, Ce)Al(SO4)2(C2O4)·12H2O] and zugshunstite-(Ce)[(Ce, Nd, La)Al(SO4)2(C2O4)·12H2O]: Coexisting oxalates with different structures and differentiation of LREE and HREE. Geochim. Cosmochim. Acta 2001, 65, 1101–1115. [Google Scholar] [CrossRef]
- Guastoni, A.; Nestola, F.; Gentile, P.; Zorzi, F.; Alvaro, M.; Lanza, A.; Peruzzo, L.; Schiazza, M.; Casati, N.M. Deveroite-(Ce): A new REE-oxalate from Ount Cervandone, Devero Valley, western-central Alps, Italy. Mineral. Mag. 2013, 77, 3019–3026. [Google Scholar] [CrossRef]
- Vereshchagin, O.S.; Britvin, S.N.; Perova, E.N.; Brusnitsyn, A.I.; Polekhovsky, Y.S.; Shilovskikh, V.V.; Bocharov, V.N.; Burgt, A.V.D.; Cuchet, S.; Meisser, N. Gasparite-(La), La (AsO4), a new mineral from Mn ores of the Ushkatyn-III deposit, Central Kazakhstan, and metamorphic rocks of the Wanni glacier, Switzerland. Am. Mineral. 2019, 104, 1469–1480. [Google Scholar] [CrossRef]
- Kim, E.H.; Shin, Y.J.; Kim, W.H.; Chung, D.Y.; Kim, S.S.; Yoo, J.H.; Choi, C.S. Partition of neodymium and americium in the liquid radioactive waste by oxalate precipitation. Korean J. Chem. Eng. 1995, 12, 557–562. [Google Scholar] [CrossRef]
- Wei, Y.; Kumagai, M.; Takashima, Y.; Modolo, G.; Odoj, R. Studies on the separation of minor actinides from high-level wastes by extraction chromatography using novel silica-based extraction resins. Nucl. Technol. 2000, 132, 413–423. [Google Scholar] [CrossRef]
- Hoshi, H.; Wei, Y.Z.; Kumagai, M.; Asakura, T.; Morita, Y. Group separation of trivalent minor actinides and lanthanides by TODGA extraction chromatography for radioactive waste management. J. Alloys Compd. 2004, 374, 451–455. [Google Scholar] [CrossRef]
- Charton, S.; Kacem, A.; Amokrane, A.; Borda, G.; Puel, F.; Klein, J.-P. Actinides oxalate precipitation in emulsion modeling: From the drop scale to the industrial process. Chem. Eng. Res. Des. 2013, 91, 660–669. [Google Scholar] [CrossRef]
- Malatesta, F.; Carrara, G. Activity coefficients of electrolytes from the E.M.F. of liquid membrane cells. I. The method--Test measurements on KCl. J. Solut. Chem. 1992, 21, 1251–1270. [Google Scholar] [CrossRef]
- Malatesta, F. The activity coefficients of high-charge electrolytes in aqueous dilute solutions. J. Solut. Chem. 2020, 49, 1536–1551. [Google Scholar] [CrossRef]
- Malatesta, F.; Bruni, F.; Fanelli, N. Activity coefficients of lanthanum salts at 298.15 K. Phys. Chem. Chem. Phys. 2002, 4, 121–126. [Google Scholar] [CrossRef]
- Chang, T.P. Cerium Oxalate Precipitation; DP-1723; E.I. du Pont de Nemours & Co., Savannah River Laboratory: Aiken, SC, USA, 1987; 24p.
- Patwardhan, V.S.; Kumar, A. A unified approach for prediction of thermodynamic properties of aqueous mixed-electrolyte solutions. Part II. Volume, thermal, and other properties. AIChE J. 1986, 37, 1429–1438. [Google Scholar] [CrossRef]
- Söhnel, O.; Novotný, P. Densities of Aqueous Solutions of Inorganic Substances; Elsevier: Amsterdam, The Netherlands, 1985; 335 p. [Google Scholar]
- Kandpal, K.; Joshi, B.K.; Joshi, S.K.; Kandpal, N.D. Interaction studies of dilute aqueous oxalic acid. E-J. Chem. 2007, 4, 574–580. [Google Scholar] [CrossRef]
- Moiseev, A.E.; Dzuban, A.V.; Gordeeva, A.S.; Arkhipin, A.S.; Kovalenko, N.A. Thermodynamic Properties of Ternary Solutions in the Water–Nitric Acid–Rare Earth Nitrate (Pr, Nd, Sm) Systems at 298.15 K. J. Chem. Eng. Data 2016, 61, 3295–3302. [Google Scholar] [CrossRef]
- O’Brien, W.G.; Bautista, R.G. The excess Gibbs free energy and the activity coefficients of the Nd(NO3)3—HNO3—H2O system at 25 °C. In Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, USA, 1979; pp. 299–321. [Google Scholar]
- Lalleman, S.; Bertrand, M.; Plasari, E.; Sorel, C.; Moisy, P. Determination of the Bromley contributions to estimate the activity coefficient of neodymium electrolytes. Chem. Eng. Sci. 2012, 77, 189–195. [Google Scholar] [CrossRef]
- Rodríguez-Ruiz, I.; Teychené, S.; Vitry, Y.; Biscans, B.; Charton, S. Thermodynamic modeling of neodymium and cerium oxalates reactive precipitation in concentrated nitric acid media. Chem. Eng. Sci. 2018, 183, 20–25. [Google Scholar] [CrossRef]
- Lassin, A.; Guignot, S.; Lach, A.; Christov, C.; André, L.; Madé, B. Modeling the Solution Properties and Mineral–Solution Equilibria in Radionuclide-Bearing Aqueous Nitrate Systems: Application to Binary and Ternary Systems Containing U, Th, or Lanthanides at 25° C. J. Chem. Eng. Data 2020, 65, 3613–3626. [Google Scholar] [CrossRef]
- Fanghänel, T.; Könnecke, T.; Weger, H.; Paviet-Hartmann, P.; Neck, V.; Kim, J.I. Thermodynamics of Cm (III) in concentrated salt solutions: Carbonate complexation in NaCl solution at 25 °C. J. Solut. Chem. 1999, 28, 447–462. [Google Scholar] [CrossRef]
- Meinrath, G. Carbonate Complexation of the Trivalent Americium Under Groundwater Conditions. Ph.D. Thesis, Technische University Munchen, Munchen, Germany, 1991. [Google Scholar]
- Runde, W.; Kim, J.I. RMC-01094; Institut fűr Radiochemie, Technische Universitat Munchen: Munchen, Germany, 1994. [Google Scholar]
- Xiong, Y. Experimental determination of lead carbonate solubility at high ionic strengths: A Pitzer model description. Monatshefte Für Chem. Chem. Mon. 2015, 146, 1433. [Google Scholar] [CrossRef]
- Bilinski, H.; Schindler, P. Solubility and equilibrium constants of lead in carbonate solutions (25° C, I= 0.3 mol dm− 3). Geochim. Cosmochim. Acta 1982, 46, 921–928. [Google Scholar] [CrossRef]
- Porter, J.A.; Symonds, A.E., Jr. Precipitation Of Plutonium (III) Oxalate And Calcination To Plutonium Dioxide (No. DP-981); Du Pont de Nemours (EI) and Co., Savannah River Lab: Aiken, SC, USA, 1965.
- Burney, G.A.; Porter, J.A. Solubilities of Pu (III), Am (III), and Cm (III) Oxalates. Inorg. Nucl. Chem. Lett. 1967, 3, 79–85. [Google Scholar] [CrossRef]
- Doty, J.W.; Chong, C.H.H. Preparation of micron-sized 238PuO2. J. Nucl. Mater. 1970, 35, 247–249. [Google Scholar] [CrossRef]
- Cheneau, G. The Precipitation and Filtration of Trivalent Plutonium Oxalate (No. CEA-R--4109); CEA Centre de Production de Plutonium de Marcoule: Chuscla, France, 1971. [Google Scholar]
- Zakolupin, S.A.; Korablin, E.V. On the americium oxalate solubility. Radiokhimiya 1977, 19, 698–701. [Google Scholar]
- Sun, Z.; Hu, H.; Xue, S.; Qing, Z. The solubility of Pu(III) oxalate. At. Energy Sci. Technol. (Yuanzineng Kexue Jishu) 1987, 21, 326–329. [Google Scholar]
- Hasilkar, S.P.; Khedkar, N.B.; Chander, K.; Jadhav, A.V.; Jain, H.C. Studies of the solubility of Pu(III) oxalate. J. Radioanal. Nucl. Chem. 1994, 185, 119–125. [Google Scholar] [CrossRef]
- Holmes, H.F.; Baes, C.F., Jr.; Mesmer, R.E. Isopiestic studies of aqueous solutions at elevated temperatures I. KCl, CaCl2, and MgCl2. J. Chem. Thermodyn. 1978, 10, 983–996. [Google Scholar] [CrossRef]
- Holmes, H.F.; Mesmer, R.E. Isopiestic studies of aqueous solutions at elevated temperatures VI. LCl, and CsCl. J. Chem. Thermodyn. 1981, 13, 1035–1046. [Google Scholar] [CrossRef]
- Holmes, H.F.; Mesmer, R.E. An isopiestic study of aqueous solutions of the alkali metal bromides at elevated temperatures. J. Chem. Thermodyn. 1998, 30, 723–741. [Google Scholar] [CrossRef]
- Felmy, A.R.; Rai, D. An Aqueous Thermodynamic Model for a High Valence 4: 2 Electrolyte Th4+—SO42− in the System Na+—K+—Li+—NH4+—Th4+—SO42−—HSO4−—H2O High Concentration. J. Solut. Chem. 1992, 21, 5–407. [Google Scholar] [CrossRef]
- Felmy, A.R.; Rai, D.; Sterner, S.M.; Mason, M.J.; Hess, N.J.; Conradson, S.D. Thermodynamic models for highly charged aqueous species: Solubility of Th(IV) hydrous oxide in concentrated NaHCO3 and Na2CO3 solutions. J. Solut. Chem. 1997, 26, 233–248. [Google Scholar] [CrossRef]
- Britton, H.T.S. Hydrogen Ions: Their Determination and Importance in Pure and Industrial Chemistry. In Monographs on Applied Chemistry, 3rd ed.; Chapman and Hall Ltd.: London, UK, 1942; Volume 3. [Google Scholar]
- Moeller, T.; Kremers, H.E. The basicity characteristics of scandium, yttrium, and the rare earth elements. Chem. Rev. 1945, 37, 97–159. [Google Scholar] [CrossRef]
- Moeller, T.; Kremers, H.E. Observations on the Rare Earths. LI. An Electrometric Study of the Precipitation of Trivalent Hydrous Rare Earth Oxides or Hydroxides. J. Phys. Chem. 1944, 48, 395–406. [Google Scholar] [CrossRef]
- Kolthoff, I.M.; Elmquist, R. The solubilities of lanthanum oxalate and of lanthanum hydroxide in water. The mobility of the lanthanum ion at 25. J. Am. Chem. Soc. 1931, 53, 1217–1225. [Google Scholar] [CrossRef]
- Jones, G.; Bickford, C.F. The conductance of aqueous solutions as a function of the concentration. I. Potassium bromide and lanthanum chloride. J. Am. Chem. Soc. 1934, 56, 602–611. [Google Scholar] [CrossRef]
- Spedding, F.H.; Porter, P.E.; Wright, J.M. Conductances of aqueous solutions of some rare earth chlorides at 25°. J. Am. Chem. Soc. 1952, 74, 2055–2058. [Google Scholar] [CrossRef]
- Luo, Q.-H.; Shen, M.-C.; Bao, X.-L.; Ding, Y.A. Study on hydrolytic polymerization of lanthanide ions. Chin. J. Chem. 1990, 8, 412–422. [Google Scholar]
- Deberdt, S.; Castet, S.; Dandurand, J.L.; Harrichoury, J.C.; Louiset, I. Experimental study of La(OH)3 and Gd(OH)3 solubilities (25 to 150° C), and La–acetate complexing (25 to 80 °C). Chem. Geol. 1998, 151, 349–372. [Google Scholar] [CrossRef]
- Wood, S.A.; Palmer, D.A.; Wesolowski, D.J.; Bénézeth, P. The aqueous geochemistry of the rare earth elements and yttrium. Part XI. The solubility of Nd(OH)3 and hydrolysis of Nd3+ from 30 to 290 °C at saturated water vapor pressure with in-situ pHm measurement. Water–Rock Interact. Ore Depos. Environ. Geochem. A Tribut. David Crerar Geochem. Soc. Spec. Publ. 2002, 7, 229–256. [Google Scholar]
- Oakes, C.; Ward, A.; Chugonov, N.; Icenhower, J. A speciated, conventional Pitzer ion-interaction model for the aqueous Nd3+—H+—Na+—K+—Ca2+—Cl-—OH- system at 298 K and 0.1 MPa. Geochim. Cosmochim. Acta 2021, 297, 308–327. [Google Scholar] [CrossRef]
- Mesmer, R.E. Comments on “A New Approach to Measuring pH in Brines and Other Concentrated Electrolytes” by K. G. Knauss, T.J. Wolery, and K. J. Jackson. Geochim. Cosmochim. Acta 1991, 55, 1175–1176. [Google Scholar] [CrossRef]
- Xiong, Y.; Deng, H.; Nemer, M.; Johnsen, S. Experimental determination of the solubility constant for magnesium chloride hydroxide hydrate (Mg3Cl(OH)5·4H2O, phase 5) at room temperature, and its importance to nuclear waste isolation in geological repositories in salt formations. Geochim. Cosmochim. Acta 2010, 74, 4605–4611. [Google Scholar] [CrossRef]
- Roselle, G.T. Determination of pCH+ Correction Factors in Brines; Sandia National Laboratories: Albuquerque, NM, USA, 2011; ERMS 556699.
- Spedding, F.H.; Shiers, L.E.; Brown, M.A.; Baker, J.L.; Guitierrez, L.; McDowell, L.S.; Habenschuss, A. Densities and apparent molal volumes of some aqueous rare earth solutions at 25. deg. III. Rare earth nitrates. J. Phys. Chem. 1975, 79, 1087–1096. [Google Scholar] [CrossRef]
- Grenthe, I.; Gaona, X.; Rao, L.; Plyasunov, A.; Runde, W.; Grambow, B.; Konings, R.; Smith, A.; Moore, E.; Ragoussi, M.E.; et al. Second Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium. Chemical Thermodynamics; (No. NEA-7500); Organisation for Economic Co-Operation and Development: Paris, France, 2020; Volume 14. [Google Scholar]
- Choppin, G.R. Comparison of the solution chemistry of the actinides and lanthanides. J. Less Common Met. 1983, 93, 323–330. [Google Scholar] [CrossRef]
- Choppin, G.R. Utility of oxidation state analogs in the study of plutonium behavior. Radiochim. Acta 1999, 85, 89–96. [Google Scholar]
- Choppin, G.R.; Rizkalla, E.N. Solution chemistry of actinides and lanthanides. Handb. Phys. Chem. Rare Earths 1994, 18, 559–590. [Google Scholar]
- Choppin, G.R.; Jensen, M.P. Actinides in solution: Complexation and kinetics. In The Chemistry of the Actinide and Transactinide Elements; Springer: Dordrecht, The Netherlands, 2006; pp. 2524–2621. [Google Scholar]
- Christov, C. Pitzer ion-interaction parameters for Fe (II) and Fe (III) in the quinary {Na+ K + Mg + Cl + SO4 + H2O} system at T = 298.15 K. J. Chem. Thermodyn. 2004, 36, 223–235. [Google Scholar] [CrossRef]
- Beyer, R.; Steiger, M. Vapor pressure measurements of NaHCOO + H2O and KHCOO + H2O from 278 to 308 K and representation with an ion interaction (Pitzer) model. J. Chem. Eng. Data 2010, 55, 830–838. [Google Scholar] [CrossRef]
- Höffler, F.; Müller, I.; Steiger, M. Thermodynamic properties of ZnSO4 (aq) and phase equilibria in the ZnSO4–H2O system from 268 K to 373 K. J. Chem. Thermodyn. 2018, 116, 279–288. [Google Scholar] [CrossRef]
- Pitzer, K.S. Chapter 3, Ion Interaction Approach: Theory and Data Correlation. In Activity Coefficients in Electrolyte Solutions; Pitzer, K.S., Ed.; CRC Press: Boca Raton, FL, USA, 1991; pp. 75–153. [Google Scholar]
- Rard, J.A.; Miller, D.G.; Spedding, F.H. Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 25 °C. 4. Lanthanum nitrate, praseodymium nitrate, and neodymium nitrate. J. Chem. Eng. Data 1979, 24, 348–354. [Google Scholar] [CrossRef]
- Chartterjee, S.; Campbell, E.L.; Neiner, D.; Pence, N.K.; Robinson, T.A.; Levitskaia, T.G. Aqueous binary lanthanide(III) nitrate Ln(NO3)3 electrolytes revisited: Extended Pitzer and Bromley treatments. J. Chem. Eng. Data 2015, 60, 2974–2988. [Google Scholar] [CrossRef]
Exp # | m (Nd(III)) | m (HNO3) | m (H2C2O4) | Total Stoichiometric Ionic Strength, m |
---|---|---|---|---|
Nd-0.1 | 2.65 × 10−4 | 0.100 | 0 | 0.102 |
Nd-0.5 | 2.01 × 10−3 | 0.500 | 0 | 0.515 |
Nd-1.0 | 5.02 × 10−3 | 1.00 | 0 | 1.04 |
Nd-2.0 | 7.73 × 10−3 | 1.94 | 0.017 | 2.05 |
Nd-3.0 | 1.31 × 10−2 | 2.72 | 0.033 | 2.92 |
Nd-4.0 | 1.37 × 10−2 | 3.22 | 0.057 | 3.49 |
Electrolyte | Concentration, mol·kg−1 | pH Reading (pHob) ± 2σ | Molar Scale Correction Factor, AM A | Conversion Factor from Molarity to Molality, Θ B | Molal Scale Correction Factor, Am | pHm ± 2σ |
---|---|---|---|---|---|---|
Nd(NO3)3 | 0.50 | 6.20 ± 0.08 | 0.395 | 1.117 | 0.345 | 6.55 ± 0.08 |
0.75 | 6.05 ± 0.10 | 0.608 | 1.174 | 0.538 | 6.59 ± 0.10 | |
1.30 | 5.92 ± 0.15 | 1.01 | 1.300 | 0.897 | 6.82 ± 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, Y.; Wang, Y. Guiding Principles for Geochemical/Thermodynamic Model Development and Validation in Nuclear Waste Disposal: A Close Examination of Recent Thermodynamic Models for H+—Nd3+—NO3−(—Oxalate) Systems. Energies 2025, 18, 1650. https://doi.org/10.3390/en18071650
Xiong Y, Wang Y. Guiding Principles for Geochemical/Thermodynamic Model Development and Validation in Nuclear Waste Disposal: A Close Examination of Recent Thermodynamic Models for H+—Nd3+—NO3−(—Oxalate) Systems. Energies. 2025; 18(7):1650. https://doi.org/10.3390/en18071650
Chicago/Turabian StyleXiong, Yongliang, and Yifeng Wang. 2025. "Guiding Principles for Geochemical/Thermodynamic Model Development and Validation in Nuclear Waste Disposal: A Close Examination of Recent Thermodynamic Models for H+—Nd3+—NO3−(—Oxalate) Systems" Energies 18, no. 7: 1650. https://doi.org/10.3390/en18071650
APA StyleXiong, Y., & Wang, Y. (2025). Guiding Principles for Geochemical/Thermodynamic Model Development and Validation in Nuclear Waste Disposal: A Close Examination of Recent Thermodynamic Models for H+—Nd3+—NO3−(—Oxalate) Systems. Energies, 18(7), 1650. https://doi.org/10.3390/en18071650