YOLOLS: A Lightweight and High-Precision Power Insulator Defect Detection Network for Real-Time Edge Deployment
Abstract
:1. Introduction
- Our approach replaces standard convolutions with GhostConv to achieve efficient feature map expansion, thereby reducing parameter count and computational cost. Additionally, we introduce a novel restructuring of the C2f module into a ResNet–RepConv configuration, which enables the fusion of convolution and Batch Normalization during inference, further streamlining the network for lightweight feature extraction.
- We developed a shared convolutional detection head, a weight-sharing mechanism across multiple detection scales that minimizes redundant computations and fosters a unified representation, to enhance multi-scale feature alignment and improve detection robustness.
- By integrating an auxiliary bounding box, e.g., Inner-IoU, into the existing CIoU loss framework, our model becomes more sensitive to minor discrepancies between predicted and ground truth boxes, expediting convergence and improving localization accuracy, especially for small or partially occluded insulators.
- We extensively validate YOLOLS on the CPLID and IDID datasets, encompassing a wide range of real-world insulator scenarios. Comparative experiments confirm that our model outperforms mainstream algorithms in both accuracy and inference speed under edge-computing constraints. These results confirm that the architectural modifications and loss function enhancements in YOLOLS provide a robust, rapid, and cost-effective solution for real-time insulator defect detection in challenging, resource-limited environments.
2. Proposed Methodology and Model Construction
2.1. Proposed Model Architecture
2.2. Inner-CIoU
2.3. Lightweight Shared Convolutional Detection Head
2.4. ResNet–RepConv
2.5. GhostConv
3. Experimental Results and Discussion
3.1. Experimental Details
3.2. Evaluation Metrics
3.3. Ablation Experiments
3.4. Comparative Experiments
3.5. Robustness Experiment of Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, C.; Wu, Y.; Liu, J.; Sun, Z.; Xu, H. Insulator faults detection in aerial images from high-voltage transmission lines based on deep learning model. Appl. Sci. 2021, 11, 4647. [Google Scholar] [CrossRef]
- Anjum, S.; Jayaram, S.; El-Hag, A.; Jahromi, A.N. Detection and classification of defects in ceramic insulators using RF antenna. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 183–190. [Google Scholar]
- Song, C.; Xu, W.; Han, G.; Zeng, P.; Wang, Z.; Yu, S. A cloud edge collaborative intelligence method of insulator string defect detection for power IIoT. IEEE Internet Things J. 2020, 8, 7510–7520. [Google Scholar]
- Rahman, E.U.; Zhang, Y.; Ahmad, S.; Ahmad, H.I.; Jobaer, S. Autonomous vision-based primary distribution systems porcelain insulators inspection using UAVs. Sensors 2021, 21, 974. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hu, M.; Dong, J.; Lu, X. Summary of insulator defect detection based on deep learning. Electr. Power Syst. Res. 2023, 224, 109688. [Google Scholar]
- Souza, B.J.; Stefenon, S.F.; Singh, G.; Freire, R.Z. Hybrid-YOLO for classification of insulators defects in transmission lines based on UAV. Int. J. Electr. Power Energy Syst. 2023, 148, 108982. [Google Scholar]
- Luo, Y.; Yu, X.; Yang, D.; Zhou, B. A survey of intelligent transmission line inspection based on unmanned aerial vehicle. Artif. Intell. Rev. 2023, 56, 173–201. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar]
- Ren, S. Faster r-cnn: Towards real-time object detection with region proposal networks. arXiv 2015, arXiv:1506.01497. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Dai, J.; Li, Y.; He, K.; Sun, J. R-fcn: Object detection via region-based fully convolutional networks. In Proceedings of the Advances in Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, 5–10 December 2016; Volume 29. [Google Scholar]
- Redmon, J. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings Part I. Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; Tian, Q. Centernet: Keypoint triplets for object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6569–6578. [Google Scholar]
- Fu, C.-Y.; Liu, W.; Ranga, A.; Tyagi, A.; Berg, A.C. Dssd: Deconvolutional single shot detector. arXiv 2017, arXiv:1701.06659. [Google Scholar]
- Wang, T.; Zhai, Y.; Li, Y.; Wang, W.; Ye, G.; Jin, S. Insulator defect detection based on ML-YOLOv5 algorithm. Sensors 2023, 24, 204. [Google Scholar] [CrossRef]
- Hong, X.; Wang, F.; Ma, J. Improved YOLOv7 model for insulator surface defect detection. In Proceedings of the 2022 IEEE 5th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing, China, 16–18 December 2022; IEEE: New York, NY, USA, 2022; pp. 1667–1672. [Google Scholar]
- Qiu, Z.; Zhu, X.; Liao, C.; Shi, D.; Qu, W. Detection of transmission line insulator defects based on an improved lightweight YOLOv4 model. Appl. Sci. 2022, 12, 1207. [Google Scholar] [CrossRef]
- Lan, Y.; Xu, W. Insulator defect detection algorithm based on a lightweight network. J. Phys. Conf. Ser. 2022, 2181, 012007. [Google Scholar] [CrossRef]
- Li, D.; Lu, Y.; Gao, Q.; Li, X.; Yu, X.; Song, Y. Liteyolo-id: A lightweight object detection network for insulator defect detection. IEEE Trans. Instrum. Meas. 2024, 73, 5023812. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Fu, W.; Ma, J.; Wang, G. A lightweight YOLOv7 insulator defect detection algorithm based on DSC-SE. PLoS ONE 2023, 18, e0289162. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wei, S.; Zhong, S.; Yu, F. YOLO-PowerLite: A Lightweight YOLO Model for Transmission Line Abnormal Target Detection. IEEE Access 2024, 12, 105004–105015. [Google Scholar] [CrossRef]
- Chen, Y.; Deng, C.; Sun, Q.; Wu, Z.; Zou, L.; Zhang, G.; Li, W. Lightweight detection methods for insulator self-explosion defects. Sensors 2024, 24, 290. [Google Scholar] [CrossRef]
- Ji, C.; Jia, X.; Huang, X.; Zhou, S.; Chen, G.; Zhu, Y. FusionNet: Detection of Foreign Objects in Transmission Lines During Inclement Weather. IEEE Trans. Instrum. Meas. 2024, 73, 5021218. [Google Scholar] [CrossRef]
- Wu, J.; Jing, R.; Bai, Y.; Tian, Z.; Wei, C.; Zhang, S.; Yu, F.R.; Leung, V.C. Small insulator defects detection based on multi-scale feature interaction transformer for UAV-assisted power IoVT. IEEE Internet Things J. 2024, 11, 23410–23427. [Google Scholar] [CrossRef]
- Pang, F.; Lei, C.; Zeng, J. Electrical insulator defect detection with incomplete annotations and imbalanced samples. IET Gener. Transm. Distrib. 2024, 18, 694–715. [Google Scholar]
- Wu, S.; Gan, X.; Xiao, J.; Ma, C.; Deng, T.; Du, Z.; Qiu, W. Online insulator defects detection and application based on YOLOv7-tiny algorithm. Front. Energy Res. 2024, 12, 1372618. [Google Scholar] [CrossRef]
- Wang, Y.; Song, X.; Feng, L.; Zhai, Y.; Zhao, Z.; Zhang, S.; Wang, Q. Mci-gla plug-in suitable for yolo series models for transmission line insulator defect detection. IEEE Trans. Instrum. Meas. 2024, 73, 9002912. [Google Scholar]
- Lu, Q.; Lin, K.; Yin, L. 3D attention-focused pure convolutional target detection algorithm for insulator defect detection. Expert Syst. Appl. 2024, 249, 123720. [Google Scholar] [CrossRef]
- Tao, Z.; He, Y.; Lin, S.; Yi, T.; Li, M. SnakeNet: An adaptive network for small object and complex background for insulator surface defect detection. Comput. Electr. Eng. 2024, 117, 109259. [Google Scholar] [CrossRef]
- Lu, Y.; Li, D.; Li, D.; Li, X.; Gao, Q.; Yu, X. A Lightweight Insulator Defect Detection Model Based on Drone Images. Drones 2024, 8, 431. [Google Scholar] [CrossRef]
- Han, G.; Zhao, L.; Li, Q.; Li, S.; Wang, R.; Yuan, Q.; He, M.; Yang, S.; Qin, L. A lightweight algorithm for insulator target detection and defect identification. Sensors 2023, 23, 1216. [Google Scholar] [CrossRef]
- Meng, Y.; Tang, Y.; Huang, X.; Wang, H.; Zhu, J.; Tang, W.; Chen, L. A Lightweight Insulator Detection Methodology for UAVs in Power Line Inspection. J. Circuits Syst. Comput. 2024, 33, 2450069. [Google Scholar]
- Xiao, B.; Nguyen, M.; Yan, W.Q. Fruit ripeness identification using YOLOv8 model. Multimed. Tools Appl. 2024, 83, 28039–28056. [Google Scholar]
- Yu, J.; Jiang, Y.; Wang, Z.; Cao, Z.; Huang, T. Unitbox: An advanced object detection network. In Proceedings of the 24th ACM International Conference on Multimedia, Amsterdam, The Netherlands, 15–19 October 2016; pp. 516–520. [Google Scholar]
- Zhang, H.; Xu, C.; Zhang, S. Inner-IoU: More effective intersection over union loss with auxiliary bounding box. arXiv 2023, arXiv:2311.02877. [Google Scholar]
- Tian, Z.; Shen, C.; Chen, H.; He, T. FCOS: Fully convolutional one-stage object detection. arXiv 2019, arXiv:1904.01355. [Google Scholar]
- Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. Repvgg: Making Vgg-Style Convnets Great Again. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13733–13742. [Google Scholar]
- Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. Ghostnet: More features from cheap operations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1580–1589. [Google Scholar]
- Cao, J.; Bao, W.; Shang, H.; Yuan, M.; Cheng, Q. GCL-YOLO: A GhostConv-based lightweight yolo network for UAV small object detection. Remote Sens. 2023, 15, 4932. [Google Scholar] [CrossRef]
- Tao, X.; Zhang, D.; Wang, Z.; Liu, X.; Zhang, H.; Xu, D. Detection of power line insulator defects using aerial images analyzed with convolutional neural networks. IEEE Trans. Syst. Man Cybern. Syst. 2018, 50, 1486–1498. [Google Scholar]
- Wang, C.-Y.; Yeh, I.-H.; Liao, H.-Y.M. Yolov9: Learning what you want to learn using programmable gradient information. arXiv 2024, arXiv:2402.13616. [Google Scholar]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J.; Ding, G. Yolov10: Real-time end-to-end object detection. arXiv 2024, arXiv:2405.14458. [Google Scholar]
- Chen, Z.; Feng, J.; Zhu, K.; Yang, Z.; Wang, Y.; Ren, M. YOLOv8-ACCW: Lightweight Grape Leaf Disease Detection Method Based on Improved YOLOv8. IEEE Access 2024, 12, 123595–123608. [Google Scholar]
- Lewis, D.; Kulkarni, P. Insulator Defect Detection; IEEE DataPort: New York, NY, USA, 2021. [Google Scholar]
- Draelos, R.L.; Carin, L. Use HiResCAM instead of Grad-CAM for faithful explanations of convolutional neural networks. arXiv 2020, arXiv:2011.08891. [Google Scholar]
Parameter | Value |
---|---|
Epochs | 200 |
Batch | 32 |
Image Size | 640 × 640 |
Optimizer | SGD |
Initial learning rate | 0.01 |
Workers | 8 |
Model | Inner-CIoU | LSCDH | GhostConv | ResNet–RepConv | P (%) | R (%) | mAP (%) | Params (M) | GFLOPs | FPS (Jetson Orin NX) |
---|---|---|---|---|---|---|---|---|---|---|
Yolov8n (Baseline) | – | – | – | – | 92.7 | 86.6 | 91.1 | 3.01 | 8.1 | 36.2 |
A | √ | – | – | 96.0 | 85.7 | 92.3 | 3.01 | 8.1 | 36.3 | |
B | – | √ | – | – | 94.4 | 87.7 | 91.9 | 2.30 | 6.5 | 38.3 |
C | – | – | √ | – | 92.7 | 85.6 | 91.2 | 2.73 | 7.5 | 34.5 |
D | – | – | – | √ | 95.3 | 84.4 | 91.1 | 2.20 | 6.0 | 41.7 |
E | √ | √ | – | – | 93.4 | 88.2 | 92.5 | 2.36 | 6.5 | 38.6 |
F | √ | √ | √ | – | 93.9 | 82.7 | 90.9 | 2.09 | 6.1 | 36.2 |
YOLOLS | √ | √ | √ | √ | 92.2 | 86.9 | 91.0 | 1.27 | 3.9 | 44.6 |
Model | mAP (%) | Params (M) | GFLOPs | FPS (Jetson Orin NX) |
---|---|---|---|---|
Faster R-CNN | 77.9 | 28.5 | 948.4 | 1.5 |
Efficientdet | 80.8 | 6.6 | 12.6 | 4.7 |
SSD | 65.4 | 14.3 | 67.0 | 11.6 |
CenterNet | 84.9 | 32.7 | 109.7 | 10.0 |
YOLOv4tiny | 84.4 | 6.1 | 16.5 | 36.3 |
YOLOv5s | 90.8 | 2.5 | 7.1 | 36.3 |
YOLOv7tiny | 89.1 | 6.0 | 13.2 | 20.0 |
YOLOv8s | 94.2 | 11.1 | 28.4 | 19.1 |
YOLOv8n | 91.1 | 3.0 | 8.1 | 36.2 |
YOLOv9t | 91.7 | 2.0 | 7.6 | 20.9 |
YOLOv10n | 90.6 | 2.3 | 6.5 | 34.7 |
YOLOv8-ACCW [46] | 90.9 | 2.8 | 7.5 | 5.9 |
YOLO-POWER [24] | 91.1 | 1.6 | 5.2 | 9.5 |
YOLOLS(OURS) | 91.0 | 1.3 | 3.9 | 44.6 |
Model | Enhancement Operation | P (%) | R (%) | mAP (%) |
---|---|---|---|---|
YOLOv8n | High-exposure | 91.6 | 79.8 | 90.4 |
Synthetic Fog | 88.8 | 79.7 | 85.3 | |
YOLOLF(OUR) | High-exposure | 89.1 | 81.4 | 90.4 |
Synthetic Fog | 89.4 | 77.3 | 84.3 |
Models | P (%) | R (%) | mAP@50 (%) |
---|---|---|---|
Improved YOLOv7 [19] | - | - | 88.7 |
YOLOv6-L [19] | - | - | 83.4 |
Cascade R-CNN [18] | - | - | 91.4 |
Dynamic R-CNN [18] | - | - | 93.8 |
YOLOV7+MCI-GLA [18] | - | - | 96.1 |
YOLOV3 (Darknet) [28] | - | - | 94.8 |
SSD | 89.3 | 73.8 | 84.1 |
Faster R-CNN | 58.6 | 88.8 | 81.4 |
YOLOv8n | 92.7 | 88.5 | 94.6 |
YOLOLS (OURS) | 94.3 | 88.3 | 94.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Hu, Z.; Li, E.; Wu, G.; Yang, W.; Hu, Y.; Peng, W.; Sun, J. YOLOLS: A Lightweight and High-Precision Power Insulator Defect Detection Network for Real-Time Edge Deployment. Energies 2025, 18, 1668. https://doi.org/10.3390/en18071668
Wang Q, Hu Z, Li E, Wu G, Yang W, Hu Y, Peng W, Sun J. YOLOLS: A Lightweight and High-Precision Power Insulator Defect Detection Network for Real-Time Edge Deployment. Energies. 2025; 18(7):1668. https://doi.org/10.3390/en18071668
Chicago/Turabian StyleWang, Qinglong, Zhengyu Hu, Entuo Li, Guyu Wu, Wengang Yang, Yunjian Hu, Wen Peng, and Jie Sun. 2025. "YOLOLS: A Lightweight and High-Precision Power Insulator Defect Detection Network for Real-Time Edge Deployment" Energies 18, no. 7: 1668. https://doi.org/10.3390/en18071668
APA StyleWang, Q., Hu, Z., Li, E., Wu, G., Yang, W., Hu, Y., Peng, W., & Sun, J. (2025). YOLOLS: A Lightweight and High-Precision Power Insulator Defect Detection Network for Real-Time Edge Deployment. Energies, 18(7), 1668. https://doi.org/10.3390/en18071668