A Review of Fusion and Tokamak Research Towards Steady-State Operation: A JAEA Contribution
Abstract
:1. Introduction
2. Fusion Energy and Magnetic Confinement
2.1. Fusion Energy
2.2. Topology and Symmetry of Magnetic Confinement Geometry
2.2.1. Topology
2.2.2. Integrability and Symmetry in Plasma Equilibrium
2.3. Tokamak as a Fusion Energy System
2.3.1. Tokamak Confinement and Inductive Operation
2.3.2. Tokamak Continuous Operation
2.3.3. The Steady State Tokamak Reactor
2.3.4. Reactor Power Balance
3. Principle of a Steady State Tokamak Reactor
3.1. High Bootstrap and High Poloidal Beta Operation
3.2. Current Profile Control of High Bootstrap Current Fraction Plasma
3.3. Weak Positive Shear Regime
3.4. Negative Shear and Current Hole Regimes
3.5. Advanced Tokamak Research
4. Parallel Collisional Transport Physics for Steady State Tokamak Operation
4.1. Moment Equation
4.2. Flux surface Averaged Momentum and Heat Flow Balance
4.3. Generalized Ohm’s Law
4.4. Electrical Conductivity
4.5. Bootstrap Current
4.6. Neutral Beam Current Drive [112]
4.6.1. Neutral Beam Current Drive Theory
4.6.2. Demonstration of Current Drive with N-NBI
Item | Value | Item | Value |
---|---|---|---|
Designed Beam Energy | 500keV | Beam species | D/H |
Injection Power | 10MW | Ion source | Cs seeded multi-cusp |
Beam duration | 10s | Filament material | W |
5. MHD Stability of Advanced Tokamak [128]
5.1. Energy Principle and 2D Newcomb Equation
5.2. Tearing and Neoclassical Tearing Modes
5.3. Double Tearing Modes in Negative Shear Plasma
5.4. Resistive Wall Modes
5.5. Ballooning and Peeling Modes
5.6. Infernal Modes
5.7. Alfven Eigenmodes
6. Role of Fusion Energy in the 21st Century [3]
7. Concluding Remarks
Acknowledgements
References
- Kikuchi, M. Editorial of Special Issue: Fifty years of fusion research and the road to fusion energy. Nucl. Fusion 2010, 1, 010202. [Google Scholar]
- Kikuchi, M.; Inoue, N. Role of Fusion Energy for the 21st Century Energy Market and Development Strategy with International Thermonuclear Experimental Reactor. In Proceedings of the 18th World Energy Congress, Buenos Aires, Argentina, 21–25 October, 2001.
- Kikuchi, M. Physics and Fusion; Kyoto University Press: Kyoto, Japan, 2009; in Japanese. [Google Scholar]
- Ikeda, K. ITER on the road to fusion energy. Nucl. Fusion 2010, 50, 014002. [Google Scholar] [CrossRef]
- Kikuchi, M. Steady-state tokamak reactor based on the bootstrap current. Nucl. Fusion 1990, 30, 265–276. [Google Scholar] [CrossRef]
- Seki, Y.; Kikuchi, M.; Ando, T.; Ohara, Y.; Nishio, S.; Seki, M.; Takizuka, T.; Tani, K.; Ozeki, T.; Koizumi, K.; et al. The Steady State Tokamak Reactor. In Proceedings of the 13th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Washington, DC, USA, 1–6 October 1990.
- Kikuchi, M.; Seki, Y.; Oikawa, A.; Ando, T.; Ohara, Y.; Nishio, S.; Seki, M.; Takizuka, T.; Tani, K.; Ozeki, T.; et al. Conceptual design of the steady-state tokamak reactor (SSTR). Fusion Eng. Des. 1991, 18, 195–202. [Google Scholar] [CrossRef]
- Kishimoto, H.P.; Ishida, S.; Kikuchi, M.; Ninomiya, H. Advanced tokamak research on JT-60. Nucl. Fusion 2005, 45, 986–1023. [Google Scholar] [CrossRef]
- Kitsunezaki, A.; Shimizu, M.; Ninomiya, H.; Kuriyama, M. Special Issue on JT-60. Fusion Sci. Technol. 2002, 42, 179–539. [Google Scholar]
- Yoshikawa, M. JT-60 Team. Recent experiments in JT-60. In Proceedings of 11th International Conference on Plasma Physics and Controlled Nuclear, Kyoto, Japan, 13–20 November 1986.
- Kishimoto, H. JT-60 team. Recent progress in JT-60 experiments. In Proceedings of 12th International Conference on Plasma Physics and Controlled Nuclear, Nice, France, 12–19 October 1988.
- Nagami, M. JT-60 team. Recent experiments in JT-60. In Proceedings of 13th International Conference on Plasma Physics and Controlled Nuclear, Washington, DC, USA, 1–6 October 1990.
- Shimada, M. JT-60 team. JT-60U high power heating experiments. In Proceedings of 14th International Conference on Plasma Physics and Controlled Nuclear, Germany, 30 September–7 October 1992.
- Kikuchi, M. JT-60 team. Recent JT-60U results towards steady-state operation of tokamaks. In Proceedings of 15th International Conference on Plasma Physics and Controlled Nuclear, Seville, Spain, September 26–October 1, 1994.
- Ushigusa, K. JT-60 Team. Steady state operation research in JT-60U. In Proceedings of 16th International Conference on Plasma Physics and Controlled Nuclear, Montreal, Canada, 7–11 October 1996.
- Ishida, S. JT-60 Team. JT-60U high performance regime. Nucl. Fusion 1999, 39, 1211. [Google Scholar] [CrossRef]
- Kamada, Y. JT-60 Team. Extended JT-60U plasma regimes for high integrated performance. Nucl. Fusion 2001, 41, 1311. [Google Scholar] [CrossRef]
- Fujita, T. JT-60 Team. Overview of JT-60U results leading to high integrated performance in reactor-relevant regime. Nucl. Fusion 2003, 43, 1527. [Google Scholar] [CrossRef]
- Ide, S. JT-60 Team. Overview of JT-60U progress towards steady-state advanced tokamak. Nucl. Fusion 2005, 45, S48. [Google Scholar] [CrossRef]
- Takenaga, H. JT-60 Team. Overview of JT-60U results for the development of a steady-state advanced tokamak scenario. Nucl. Fusion 2007, 47, S563. [Google Scholar] [CrossRef]
- Oyama, N. JT-60 Team. Overview of JT-60U results towards the establishment of advanced tokamak operation. Nucl. Fusion 2009, 49, 104007. [Google Scholar] [CrossRef]
- Ninomiya, H. JT-60 Team. JT-60U latest results and future prospects. Phys. Fluids 1992, B4, 2070. [Google Scholar]
- Hosogane, N. JT-60 Team. Confinement and divertor studies in Japan tokamak JT-60U. Phys. Fluids 1993, B5, 2412. [Google Scholar] [CrossRef]
- Kondoh, T. High performance and current drive experiments in the JAERI tokamak-60 upgrade. Phys. Plasmas 1994, 1, 1489. [Google Scholar] [CrossRef]
- Fukuda, T. JT-60 Team. Steady-state improved confinement studies in the JT-60U tokamak. Phys. Plasmas 1995, 2, 2249. [Google Scholar] [CrossRef]
- Kimura, H. JT-60 Team. Recent results from high performance and steady-state researches in the Japan Atomic Energy Research Institute Tokamak-60 Upgrade. Phys. Plasmas 1996, 3, 1943. [Google Scholar] [CrossRef]
- Koide, Y. Progress in confinement and stability with plasma shape and profile control for steady-state operation in the Japan Atomic Energy Research Institute Tokamak-60 upgrade. Phys. Plasmas 1997, 4, 1623. [Google Scholar] [CrossRef]
- Shirai, H. JT-60 Team. Recent experimental and analytic progress in the Japan Atomic Energy Research Institute Tokamak-60 upgrade with W-shaped divertor configuration. Phys. Plasmas 1998, 5, 1712. [Google Scholar] [CrossRef]
- Kusama, Y. Recent progress in high performance and steady-state experiments on the Japan Atomic Energy Research Institute tokamak-60 upgrade with W-shaped divertor. Phys. Plasmas 1999, 6, 1935. [Google Scholar] [CrossRef]
- Ide, S. Latest progress in steady state plasma research on the Japan Atomic Energy Research Institute Tokamak-60 Upgrade. Phys. Plasmas 2000, 7, 1927. [Google Scholar] [CrossRef]
- Takenaga, H. Improved particle control for high integrated plasma performance in Japan Atomic Energy Research Institute Tokamk-60 Upgrade. Phys. Plasmas 2001, 8, 2217. [Google Scholar] [CrossRef]
- Kubo, H. Extension of integrated high performance regimes with impurity and deuterium particle control in Japan Atomic Energy Research Institute Tokamak-60 Upgrade (JT-60U). Phys. Plasmas 2002, 9, 2127. [Google Scholar] [CrossRef]
- Miura, Y. Study of improved confinement modes with edge and/or internal transport barriers on the Japan Atomic Energy Research Institute Tokamak-60 Upgrade (JT-60U). Phys. Plasmas 2003, 10, 1809. [Google Scholar] [CrossRef]
- Ishida, S. JT-60 Team. High-beta steady-state research and future directions on the Japan Atomic Energy Research Institute Tokamak-60 Upgrade and the Japan Atomic Energy Research Institute Fusion Torus-2 Modified. Phys. Plasmas 2004, 11, 2532. [Google Scholar] [CrossRef]
- Isayama, A. Steady-state sustainment of high-β plasmas through stability control in Japan Atomic Energy Research Institute tokamak-60 upgrade. Phys. Plasmas 2005, 12, 056117. [Google Scholar] [CrossRef]
- Fujita, T. Advanced tokamak research on long time scales in JT-60U upgrade. Phys. Plasma 2006, 13, 056112. [Google Scholar] [CrossRef]
- Ozeki, T. High-beta steady-state research with integrated modeling in the JT-60 upgrade. Phys. Plasmas 2007, 14, 056114. [Google Scholar] [CrossRef]
- Hayashi, N. Advanced tokamak research with integrated modeling in JT-60 Upgrade. Phys. Plasmas 2010, 17, 056112. [Google Scholar] [CrossRef]
- Kikuchi, M. Summary of steady-state research during 23 years of JT-60 tokamak experiments. Bull. Am. Physical Soc. 2009, NO4, 1. [Google Scholar]
- Yoshikawa, M. Initial experiments in JT-60. Plasma Phys. Control. Fusion 1986, 28, 165. [Google Scholar] [CrossRef]
- Tamura, S. Status of JT-60 experiments. Plasma Phys. Control. Fusion 1986, 28, 1377. [Google Scholar] [CrossRef]
- Yoshino, R. High power heating and current drive in JT-60. Plasma Phys. Control Fusion 1987, 29, 1377. [Google Scholar] [CrossRef]
- Akiba, M. High power heating results on JT-60. Plasma Phys. Control Fusion 1988, 30, 1405. [Google Scholar] [CrossRef]
- Nagami, M. Recent results in JT-60 experiments. Plasma Phys. Control Fusion 1989, 31, 1597. [Google Scholar] [CrossRef]
- Ushigusa, K. Recent results of LH experiments on the JT-60 tokamak. Plasma Phys. Control Fusion 1990, 32, 853. [Google Scholar] [CrossRef]
- Naito, O. Steady State Plasma Performance on JT-60U. Plasma Phys. Control. Fusion 1993, 35, B215–B222. [Google Scholar] [CrossRef]
- Mori, M. Latest results from JT-60U. Plasma Phys. Control. Fusion 1994, 36, B181–B191. [Google Scholar] [CrossRef]
- Itami, K. Improved Confinement of JT-60U plasmas. Plasma Phys. Control. Fusion 1995, 37, A255–A265. [Google Scholar] [CrossRef]
- Neyatani, Y. Improved confinement with plasma profile and shape controls in JT-60U. Plasma Phys. Control. Fusion 1996, 38, A181–A191. [Google Scholar] [CrossRef]
- Fujita, T. High-performance experiments towards steady-state operation in JT-60U. Plasma Phys. Control. Fusion 1997, 39, B75–B90. [Google Scholar] [CrossRef]
- Tobita, K. Latest plasma performance and experiments on JT-60U. Plasma Phys. Control Fusion 1999, 41, A333–A343. [Google Scholar] [CrossRef]
- Kamada, Y. Extension of the JT-60U plasma regimes toward the next-step experimental reactor. Plasma Phys. Control Fusion 1999, 41, B77–B92. [Google Scholar] [CrossRef]
- Kikuchi, M. Advanced Scenarios in JT-60U—Integration towards a reactor relevant regime. Plasma Phys. Control Fusion 2001, 43, 217. [Google Scholar] [CrossRef]
- Fukuda, T. Development of high-performance discharges with transport barriers in JT-60U. Plasma Phys. Control Fusion 2002, 44, B39. [Google Scholar] [CrossRef]
- Kikuchi, M. Plasma Physics found in JT-60 Tokamak over the Last 20 years. AIP Conf. Ser. 2009, 1150, 161–167. [Google Scholar]
- Mott, N.F.; Massey, H.S.W. The Theory of Atomic Collisions, 3rd Ed. ed; Oxford Clarendon Press: Oxford, UK, 1965. [Google Scholar]
- Duane, B.H. Fusion Cross-Section Theory; Technical Report for Brookhaven National Laboratory: Upton, NY, USA, January 1972; BNWL-1685. [Google Scholar]
- Li, X.Z.; Wei, Q.M.; Liu, B. A new simple formula for fusion cross-sections of light nuclei. Nucl. Fusion 2008, 48, 125003. [Google Scholar] [CrossRef]
- Poincare, H. Sur les courbes definies par les equations differentielles. Journal de Mathematiques pures et appliqués 1885, 4, 167–244. [Google Scholar]
- Kruskal, M.D.; Krusrud, R.M. Equilibrium of a Magnetically confined Plasma in a Toroid. Phys. Fluids 1958, 1, 265–274. [Google Scholar] [CrossRef]
- Hirshman, S.P.; Whitson, J.C. Steepest-decent moment-method for three dimensional magneto hydrodynamic equilibria. Phys. Fluids 1983, 26, 3553–3568. [Google Scholar] [CrossRef]
- Lao, L.L.; Hirshman, S.P.; Wieland, R.M. Variational moment solutions to the Grad-Shafranov equation. Phys. Fluids 1981, 24, 1431–1441. [Google Scholar] [CrossRef]
- Grad, H.; Rubin, H. Hydromagnetic Equilibria and Force-Free Field. In Proceedings of the 2nd UN International Conference on Peaceful Use of Atomic Energy, Geneva, Switzerland, 1–13 September 1958.
- Shafranov, V.D. Plasma Equilibrium in a Magnetic Field; Leontovich, M.A., Ed.; Consultants Bureau: New York, NY, USA, 1966; Volume II. [Google Scholar]
- McGuire, K.M.; Barnes, C.W.; Batha, S.H.; Beer, M.A.; Bell, M.G.; Bell, R.E.; Belov, A.; Berk, H.L.; Bernabei, S.; Bitter, M.; et al. Physics of High Performance Deuterium-Tritium Plasmas in TFTR. In Proceedings of the 16th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Montreal, Canada, 7–11 October 1996.
- Watkins, M.L. Physics of high performance JET plasmas in DT. Nucl. Fusion 1999, 39, 1227–1244. [Google Scholar] [CrossRef]
- Conn, R.W.; Kulcinski, G.L.; Maynard, C.W.; Aronstein, R.; Boom, R.W.; Bowles, A.; Clemmer, R.G.; Davis, J.; Emmert, G.A.; Ghose, S.; et al. A High-performance non-circular tokamak power reactor design study—UWMAK-III. In Proceedings of the 16th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Montreal, Canada, 7–11 October 1996.
- Fisch, N.J. Confining a Tokamak Plasma with rf-Driven Currents. Phys. Rev. Lett. 1978, 41, 873. [Google Scholar] [CrossRef]
- Yamamoto, T.; Imai, T.; Shimada, M.; Suzuki, N.; Maeno, M.; Konoshima, S.; Fujii, T.; Uehara, K.; Nagashima, T.; Funahashi, A.; et al. Experimental Observation of the rf-Driven Current by the Lower-Hybrid Wave in a Tokamak. Phys. Rev. Lett. 1980, 45, 716–719. [Google Scholar] [CrossRef]
- Baker, C.C.; Abdou, M.A.; Arons, R.M.; Bolon, A.E.; Boley, C.D.; Brooks, J.N.; Clemmer, R.G.; Dennis, C.B.; Ehst, D.A.; Evans, K.E., Jr.; et al. STARFIRE—A Commercial Tokamak Fusion Power Plant Study; Technical Report for Argonne National Laboratory: Argonne, IL, USA, September 1980; No. ANL/FPP-80-1. [Google Scholar]
- Bickerton, R.J.; Connor, J.W.; Taylor, J.B. Diffusion driven plasma currents and bootstrap tokamak. Nature Phys. Sci. 1971, 229, 110. [Google Scholar] [CrossRef]
- Galeev, A.A.; Sagdeev, R.Z. The theory of plasma confinement in a tokamak at high temperature. Nucl. Fusion suppl. 1972, 12, 45–51. [Google Scholar] [CrossRef]
- Kikuchi, M.; Azumi, M.; Tsuji, S.; Tani, K.; Kubo, H. Bootstrap current during perpendicular neutral injection in JT-60. Nucl. Fusion 1990, 30, 343–355. [Google Scholar] [CrossRef]
- Conn, R.W.; Najmabadi, F. ARIES-I, A steady-state, first-stability tokamak reactor with enhanced safety and environmental features. In Proceedings of 13th International Conference on Plasma Physics and Controlled Nuclear, Washington, DC, USA, 1–6 October 1990.
- Kikuchi, M.; Seki, Y.; Nakagawa, K. The Advanced SSTR. Fus. Eng. Design 2000, 48, 265–270. [Google Scholar] [CrossRef]
- Najmabadi, F. Overview of ARIES-RS tokamak fusion power plant. Fus. Eng. Design 1998, 41, 365. [Google Scholar] [CrossRef]
- Okano, K.; Asaoka, Y.; Hiwatari, R.; Inoue, N.; Murakami, Y.; Ogawa, Y.; Tokimatsu, K.; Tomabechi, K.; Yamamoro, T.; Yoshida, T. Study of a compact reversed shear tokamak reactor. Fusion Eng. Des. 1998, 41, 511–517. [Google Scholar] [CrossRef]
- Fusion Reactor System Laboratory. Concept Study of the Steady State Tokamak Reactor (SSTR); Technical Report for Japan Atomic Energy Research Institute: Ibaraki, Japan, April 1991; JAERI-M Report-91-081. [Google Scholar]
- Nishio, S.; Ando, T.; Ohara, Y.; Mori, S.; Mizoguchi, T.; Kikuchi, M.; Oikawa, A.; Seki, Y. Engineering aspects of a steady state tokamak reactor (SSTR). Fusion Eng. Des. 1991, 15, 121–135. [Google Scholar] [CrossRef]
- Kikuchi, M.; Conn, R.W.; Najimabadi, F.; Seki, Y. Recent directions in plasma physics and its impact on tokamak magnetic fusion design. Fusion Eng. Des. 1991, 16, 253–270. [Google Scholar] [CrossRef]
- Troyon, F.; Gruber, R.; Sauremann, H.; Semenzato, S.; Succi, S. MHD-Limits to Plasma Confinement. Plasma Phys. Control Fusion 1984, 26, 209–215. [Google Scholar] [CrossRef]
- Stambaugh, R.; Moore, R.W.; Bernard, L.C.; Kellman, A.G.; Strait, E.J.; Lao, L.; Overskei, D.O.; Angel, T.; Armentrout, C.J.; Baur, J.F.; et al. Tests of Beta Limits as a Function of Plasma Shape in Doublet III. In Proceedings of the 10th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, London, UK, 12–19 September 1984.
- Cordey, J.G.; Challis, C.D.; Stubberfield, P.M. Bootstrap current theory and experimental evidence. Plasma Phys. Control Fusion 1988, 30, 1625–1635. [Google Scholar] [CrossRef]
- Ferron, J.R.; Chu, M.S.; Helton, F.J.; Howl, W.; Kellman, A.G.; Lao, L.L.; Lazarus, E.A.; Lee, J.K.; Osborne, T.H.; Strait, E.J.; et al. High-beta discharges in the DIII-D tokamak. Phys. Fluids 1990, B2, 1280–1286. [Google Scholar] [CrossRef]
- Cheng, C.Z.; Furth, H.P.; Boozer, A.H. MHD stable regime of the Tokamak. Plasma Phys. Control Fusion 1988, 29, 351–366. [Google Scholar] [CrossRef]
- Kamada, Y.; Ushigusa, K.; Naito, O.; Neyatani, Y.; Ozeki, T.; Tobita, K.; Ishida, S.; Yoshino, R.; Kikuchi, M.; Mori, M.; Ninomiya, H. Non-inductively current driven H mode with high βN and high βp values in JT-60U. Nucl. Fusion 1994, 34, 1605–1618. [Google Scholar] [CrossRef]
- Ishida, S.; Kikuchi, M.; Hirayama, T.; Koide, Y.; Ozeki, T.; Tsuji, S.; Naito, O.; Shirai, H.; Nagami, M.; Azumi, M. High poloidal beta experiments with a hot ion enhanced confinement regime in the JT-60 tokamak. In Proceedings of 13th International Conference on Plasma Physics and Controlled Nuclear, Washington, DC, USA, 1–6 October 1990.
- Ishida, S.; Koide, Y.; Ozeki, T.; Kikuchi, M.; Tsuji, S.; Shirai, H.; Naito, O.; Azumi, M. Observation of a Fast Beta Collapse during High Poloidal-Beta Discharges in JT-60. Phys. Rev. Lett. 1992, 68, 1531–1534. [Google Scholar] [CrossRef] [PubMed]
- Ishida, S.; Matsuoka, M.; Kikuchi, M.; Tsuji, S.; Nishitani, T.; Koide, Y.; Ozeki, T.; Fujita, T.; Nakamura, H.; Hosogane, N.; et al. Enhanced confinement of high bootstrap current discharges in JT-60U. In Proceedings of 14th International Conference on Plasma Physics and Controlled Nuclear, Germany, 30 September–7 October 1992.
- Hawryluk, R.J.; Arunasalam, V.; Bell, M.G.; Bitter, M.; Blanchard, W.R.; Bretz, N.L.; Budney, R.; Bush, C.E.; Callen, J.D.; Cohen, S.A.; et al. TFTR plasma regimes. In Proceedings of 11th International Conference on Plasma Physics and Controlled Nuclear, Kyoto, Japan, 13–20 November 1986.
- Park, H.K.; Bell, M.G.; Yamada, M.; McGuire, K.M.; Sabbagh, S.A.; Budney, R.V.; Wieland, R.M.; the TFTR team; Ishida, S.; Nishitani, T.; Kawano, Y.; Kamada, Y.; Fujita, T.; Mori, M.; Koide, Y.; Shirai, H.; Kikuchi, M. Proceedings of 15th International Conference on Plasma Physics and Controlled Nuclear, Seville, Spain, 26 September–1 October, 1994.
- Ozeki, T.; Azumi, M.; Tsunematsu, T.; Tani, K.; Yagi, M.; Tokuda, S. Profile control for a stable high βp tokamak with a large bootstrap current. In Proceedings of 14th International Conference on Plasma Physics and Controlled Nuclear, Germany, 30 September–7 October 1992.
- Kessel, C.; Manickam, J.; Rewoldt, G.; Tang, W.M. Improved plasma performance in tokamaks with negative magnetic shear. Phys. Rev. Lett. 1994, 72, 1212–1215. [Google Scholar] [CrossRef] [PubMed]
- Ozeki, T.; Azumi, M.; Kamada, Y.; Ishida, S.; Neyatani, Y.; Tokuda, S. Ideal MHD stability of high βp plasmas and βp collapse in JT-60U. Nucl. Fusion 1995, 35, 861–871. [Google Scholar] [CrossRef]
- Levinton, F.M.; Zarnstorff, M.C.; Batha, S.H.; Bell, M.; Bell, R.E.; Budny, R.V.; Bush, C.; Chang, Z.; Fredrickson, E.; Janos, A.; et al. Improved confinement with reversed magnetic shear in TFTR. Phys. Rev. Lett. 1995, 75, 4417–4420. [Google Scholar] [CrossRef]
- Strait, E.J.; Lao, L.L.; Mauel, M.E.; Rice, B.W.; Taylor, T.S.; Burrel, K.H.; Chu, M.S.; Lazarus, E.A.; Osborne, T.H.; Thompson, S.J.; Turnbull, A.D. Enhanced confinement and stability in DIII-D discharges with reversed magnetic shear. Phys. Rev. Lett. 1995, 75, 4421–4424. [Google Scholar] [CrossRef] [PubMed]
- Fujita, T.; Ide, S.; Shirai, H.; Kikuchi, M.; Naito, O.; Koide, Y.; Takeji, S.; Kubo, H.; Ishida, S. Internal transport barrier for electrons in JT-60U reversed shear discharges. Phys. Rev. Lett. 1997, 78, 2377–2380. [Google Scholar] [CrossRef]
- Fujita, T.; Ide, S.; Kimura, H.; Koide, Y.; Oikawa, T.; Takeji, S.; Shirai, H.; Ozeki, T.; Kamada, Y.; Ishida, S. Enhanced core confinement in JT-60U reversed shear discharges. In Proceedings of 16th International Conference on Plasma Physics and Controlled Nuclear, Montreal, Canada, 7–11 October 1996.
- Fujita, T. High-performance experiments towards steady-state operation in JT-60U. Plasma Phys. Control Fusion 1997, 39, B75–B90. [Google Scholar] [CrossRef]
- Fujita, T.; Oikawa, T.; Suzuki, T.; Ide, S.; Sakamoto, Y.; Koide, Y.; Hatae, T.; Naito, O.; Isayama, A.; Hayashi, N.; Shirai, H. Plasma Equilibrium and Confinement in a Tokamak with Nearly Zero Central Current Density in JT-60U. Phys. Rev. Lett. 2001, 87, 245001. [Google Scholar] [CrossRef] [PubMed]
- Hawkes, N.C.; Stratton, B.C.; Tala, T.; Challis, C.D.; Conway, G.; DeAngelis, R.; Giroud, C.; Hobirk, J.; Joffrin, E.; Lomas, P.; et al. Observation of Zero Current Density in the Core of JET Discharges with Lower Hybrid Heating and Current Drive. Phys. Rev. Lett. 2001, 87, 115001. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, M. Prospects of a Stationary Tokamak Reactor. Plasma Phys. Control Fusion 1993, 35, B39–B53. [Google Scholar] [CrossRef]
- Goldston, R.J.; Batha, S.H.; Bulmer, R.H.; Hill, D.N.; Hyatt, A.W.; Jardin, S.C.; Levinton, F.M.; Kaye, S.M.; Kessel, C.E.; Lazarus, E.A.; et al. Advanced tokamak physics—Status and prospects. Plasma Phys. Control Fusion, 1994, 36, B213–B227. [Google Scholar] [CrossRef]
- Taylor, T.S. Physics of Advanced Tokamaks. Plasma Phys. Control. Fusion 1997, 39, B47–B73. [Google Scholar] [CrossRef]
- Ozeki, T.; Azumi, M.; Ishii, Y.; Kishimoto, Y.; Fu, GY; Fujita, T.; Rewoldt, G.; Kikuchi, M.; Kamada, Y.; Kimura, H.; et al. Physics issues of high bootstrap current tokamaks. Plasma Phys. Control Fusion 1997, 39, A371–A380. [Google Scholar] [CrossRef]
- Murakami, M.; Wade, M.; Greenfield, C.M.; Luce, T.C.; Ferron, J.R.; St. John, H.E.; DeBoo, J.C.; Heidbrink, W.W.; Luo, Y.; Makovski, M.A.; et al. Progress toward fully noninductive, high beta conditions in DIII-D. Phys. Plasmas 2006, 13, 056106. [Google Scholar] [CrossRef]
- Hirshman, S.P.; Sigmar, D.J. Neoclassical transport of impurities in tokamak plasmas. Nucl. Fusion 1981, 21, 1079–1201. [Google Scholar] [CrossRef]
- Chew, G.F.; Goldberger, M.L.; Low, F.E. The Boltzmann Equation and the One-Fluid Hydromagnetic Equations in the Absence of Particle Collisions. Proc. Roy. Soc. 1956, A236, 112–118. [Google Scholar] [CrossRef]
- Kikuchi, M.; Azumi, M. Experimental evidence for the bootstrap current in a tokamak. Plasma Phys. Control. Fusion 1995, 37, 1215–1238. [Google Scholar] [CrossRef]
- Spitzer, L., Jr. Physics of Fully Ionized Gases,, 2nd ed.; Interscience publishers: New York, NY, USA, 1962. [Google Scholar]
- Hirshman, S.P.; Hawryluk, R.J.; Birge, B. Neoclassical conductivity of a tokamak plasma. Nucl. Fusion 1977, 17, 611. [Google Scholar] [CrossRef]
- Kikuchi, M. Plasma Heating and Current Drive by NBI. In Fusion Physics and Technologies; IAEA: Vienna, Austria, to be published in 2011.
- Start, D.F.H.; Cordey, J.G. Beam-induced currents in toroidal plasmas of arbitrary aspect ratio. Phys. Fluids 1980, 23, 1477–1478. [Google Scholar] [CrossRef]
- Connor, J.W.; Cordey, J.G. Effects of neutral injection heating upon toroidal equilibria. Nuc. Fusion 1974, 14, 185. [Google Scholar] [CrossRef]
- Cordey, J.G. Effects of particle trapping on the slowing-down of fast ions in a toroidal plasma. Nucl. Fusion 1976, 16, 499. [Google Scholar] [CrossRef]
- Gaffey, J.D., Jr. Energetic ion distribution resulting from neutral beam injection in tokamaks. J. Plasma Phys. 1976, 16, 149. [Google Scholar] [CrossRef]
- Tani, K.; Azumi, M.; Devoto, R.S. Numerical analysis of 2D MHD equilibrium with non-inductive plasma current in tokamaks. J. Comp. Phys. 1992, 98, 332. [Google Scholar] [CrossRef]
- Kuriyama, M.; Akino, N.; Araki, M.; Ebisawa, N.; Hanada, M.; Inoue, T.; Kawai, M.; Kazawa, M.; Koizumi, J.; Kunieda, T.; et al. High Energy Negative-Ion Based Neutral Beam Injector for JT-60U. Fusion Eng. Des. 1995, 26, 445–453. [Google Scholar] [CrossRef]
- Kuriyama, M.; Akino, N.; Aoyagi, T.; Ebisawa, N.; Isozaki, N.; Honda, A.; Inoue, T.; Itoh, T.; Kawai, M.; Kazawa, M.; et al. Operation of the Negative-Ion Based NBI for JT-60U. Fusion Eng. Des. 1998, 39–40, 115–121. [Google Scholar] [CrossRef]
- Grisham, L.; Kuriyama, M.; Kawai, M.; Itoh, T.; Umeda, U. Progress in Development of Negative Ion Sources on JT-60U. Nucl. Fusion 2001, 41, 597–601. [Google Scholar] [CrossRef]
- Umeda, N.; Grisham, L.R.; Yamamoto, T.; Kuriyama, M.; Kawai, M.; Ohga, T.; Mogaki, K.; Akino, N.; Yamazaki, H.; Usui, K.; et al. Improvement of beam performance in the negative-ion based NBI system for JT-60U. Nucl. Fusion 2003, 43, 522–526. [Google Scholar] [CrossRef]
- Ikeda, Y.; Umeda, N.; Akino, N.; Ebisawa, N.; Grisham, L.; Hanada, M.; Honda, A.; Inoue, T.; Kawai, M.; et al. Present status of the negative ion based NBI system for long pulse operation on JT-60U. Nucl. Fusion 2006, 46, S211–S219. [Google Scholar] [CrossRef]
- Hanada, M.; Ikeda, Y.; Kamada, M.; Grisham, L. Power Loadings of Electrons Ejected from the JT-60 Negative Ion Source. IEEE Trans. Plasma Sci. 2008, 36, 1530. [Google Scholar] [CrossRef]
- Oikawa, T.; Kamada, Y.; Isayama, A.; Fujita, T.; Suzuki, T.; Umeda, N.; Kawai, M.; Kuriyama, M.; Grisham, L.R.; Ikeda, Y.; et al. Reactor relevant current drive and heating by N-NBI on JT-60U. Nucl. Fusion 2001, 41, 1575–1583. [Google Scholar] [CrossRef]
- Forest, C.B.; Kupfer, K.; Luce, T.C.; Politzer, P.A.; Lao, L.L.; Wade, M.R.; Whyte, D.G.; Wroblewski, D. Determination of the noninductive current profile in tokamak plasmas. Phys. Rev. Lett. 1994, 73, 2444–2447. [Google Scholar] [CrossRef] [PubMed]
- Lao, L.L.; Ferron, J.R.; Groebner, R.J.; Howl, W.; St. John, H.; Strait, E.J.; Taylor, T.S. Equilibrium analysis of current profiles in tokamaks. Nucl. Fusion 1990, 30, 1035. [Google Scholar] [CrossRef]
- Oikawa, T.; Ushigusa, K.; Forest, C.B.; Nemoto, M.; Naito, O.; Kusama, Y.; Kamada, Y.; Tobita, K.; Suzuki, S.; Fujita, T.; et al. Heating and non-inductive current drive by negative ion based NBI in JT-60U. Nuclear Fusion 2000, 40, 435. [Google Scholar] [CrossRef]
- Kikuchi, M.; Campbell, D.J. Physics of plasma control towards steady-state operation of ITER. Fusion Sci. Technol. in press.
- Furth, H.P.; Killeen, J.; Rosenbluth, M.N.; Coppi, B. Stabilization by shear and negative V’’. In Proceedings of the International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Culham, UK, 6–10 September 1965.
- Tokuda, S.; Watanabe, T. A new eigenvalue problem associated with the two-dimensional Newcomb equation without continuous spectrum. Phys. Plasmas 1999, 6, 3012–3026. [Google Scholar] [CrossRef]
- Ishii, Y.; Azumi, M.; Kishimoto, Y. Structure-Driven Nonlinear Instability of Double Tearing Modes and the Abrupt Growth after Long-Time-Scale Evolution. Phys. Rev. Lett. 2002, 89, 205002. [Google Scholar] [CrossRef] [PubMed]
- Fujita, T.; Hatae, T.; Oikawa, T.; Takeji, S.; Shirai, H.; Koide, Y.; Ishida, S.; Ide, S.; Ishii, Y.; Ozeki, T.; et al. High performance reversed shear plasmas with a large radius transport barrier in JT-60U. Nucl. Fusion 1998, 38, 207–221. [Google Scholar] [CrossRef]
- Ramos, J.J. Theory of the tokamak beta limit and implications for second stability. Phys. Fluids 1991, B3, 2247–2250. [Google Scholar] [CrossRef]
- Gimblett, C.G. On free boundary instabilities induced by a resistive wall. Nucl. Fusion 1986, 26, 617–625. [Google Scholar] [CrossRef]
- Hender, T.; Gimblett, C.G.; Robinson, D.C. Effects of a resistive wall on magnetohydrodynamic instabilities. Nucl. Fusion 1989, 29, 1279–1290. [Google Scholar] [CrossRef]
- Hasegawa, A.; Chen, L. Plasma heating by alfven-wave phase mixing. Phys. Rev. Lett. 1974, 32, 454–456. [Google Scholar] [CrossRef]
- Chen, L.; Hasegawa, A. Plasma heating by spatial resonance of Alfven wave. Phys. Fluids 1974, 17, 1399–1403. [Google Scholar] [CrossRef]
- Hasegawa, A.; Chen, L. Kinetic processes in plasma heating due to alfven wave excitation. Phys. Rev. Lett. 1975, 35, 370–373. [Google Scholar] [CrossRef]
- Hasegawa, A.; Chen, L. Kinetic processes in plasma heating by resonant mode conversion of Alfven wave. Phys. Fluids 1976, 19, 1924–1934. [Google Scholar] [CrossRef]
- Weisen, H.; Appert, K.; Borg, G.G.; Joye, B.; Knight, A.J.; Lister, J.B.; Vaclavik, J. Mode Conversion to the Kinetic Alfven Wave in Low-Frequency Heating Experiments in the TCA Tokamak. Phys. Rev. Lett. 1989, 63, 2476–2479. [Google Scholar] [CrossRef] [PubMed]
- Zonca, F.; Chen, L. Resonant Damping of Toroidicity-Induced Shear-Alfven Eigenmodes in Tokamaks. Phys. Rev. Lett. 1992, 68, 592–595. [Google Scholar] [CrossRef] [PubMed]
- Berk, H.L.; van Dam, J.W.; Guo, Z.; Lindberg, D.M. Continuum daming of low-n toroidicity-induced shear Alfven eigenmodes. Phys. Fluids 1992, B4, 1806–1835. [Google Scholar] [CrossRef]
- Fasoli, A.; Borba, D.; Bosia, G.; Campbell, D.J.; Dobbing, J.A.; Gormezano, C.; Jacquinot, J.; Lavanchy, P.; Lister, J.B.; Marmillod, P.; et al. Direct Measurement of the Damping of Toroidicity-Induced Alfven Eigenmodes. Phys. Rev. Lett. 1995, 75, 645–648. [Google Scholar] [CrossRef] [PubMed]
- Reimerdes, H.; Garofalo, A.M.; Jackson, G.L.; Okabayashi, M.; Strait, E.J.; Chu, M.S.; In, Y.; La Haye, R.J.; Lanctot, M.J.; Liu, Y.Q.; et al. Reduced Critical Rotation for Resistive-Wall Mode Stabilization in a Near-Axisymmetric Configuration. Phys. Rev. Lett. 2007, 98, 055001. [Google Scholar] [CrossRef] [PubMed]
- Takechi, M.; Matsunaga, G.; Aiba, N.; Fujita, T.; Ozeki, T.; Koide, Y.; Sakamoto, Y.; Kurita, G.; Isayama, A.; Kamada, Y.; et al. Identification of a Low Plasma-Rotation Threshold for Stabilization of the Resistive-Wall Mode. Phys. Rev. Lett. 2007, 98, 055002. [Google Scholar] [CrossRef] [PubMed]
- Manickam, J.; Chance, M.S.; Jardin, S.C.; Kessel, C.; Monticello, D.; Pomphrey, N.; Reiman, A.; Wang, C.; Zakharov, L.E. The prospects for magneto hydrodynamic stability in advanced tokamak regimes. Phys. Plasmas 1994, 1, 1601–1605. [Google Scholar] [CrossRef]
- Kikuchi, M.; Nishio, S.; Kurita, G.; Tsuzuki, K.; Bakhtiari, M.; Kawashima, H.; Takenaga, H.; Kusama, Y.; Tobita, K. Blanket-plasma interaction in tokamaks Implication from JT-60U, JFT-2M and reactor studies. Fusion Eng. Des. 2006, 81, 1589–1598. [Google Scholar] [CrossRef]
- Sykes, A.; Turner, M.F. A stable route to the high βp regime. In Proceedings of European Conference on Controlled Fusion and Plasma Physics, Oxford, UK, 17–20 September 1979.
- Todd, A.M.M.; Manickam, J.; Okabayashi, M.; Chance, M.S.; Grimm, R.C.; Green, J.M.; Johnson, J.L. Dependence of Ideal-MHD kink and ballooning modes on plasma shape and profiles in tokamaks. Nucl. Fusion 1979, 19, 743–752. [Google Scholar] [CrossRef]
- Green, J.M.; Chance, M.S. The second region of stability against ballooning modes. Nuclear Fusion 1981, 21, 453–464. [Google Scholar] [CrossRef]
- Seki, S.; Tsunematsu, T.; Azumi, M.; Nemoto, T. Beta-enhancement of tokamak plasma with nearly circular cross-section. Nucl. Fusion 1978, 27, 330–334. [Google Scholar] [CrossRef]
- Takeji, S.; Tokuda, S.; Fujita, T.; Suzuki, T.; Isayama, A.; Ide, S.; Ishii, Y.; Kamada, Y.; Koide, Y.; Matsumoto, T.; et al. Resistive instabilities in reversed shear discharges and wall stabilization on JT-60U. Nucl. Fusion 2002, 42, 5–13. [Google Scholar] [CrossRef]
- Hastie, R.J.; Taylor, J.B. Validity of ballooning representation and mode number dependence of stability. Nucl. Fusion 1995, 35, 861–871. [Google Scholar] [CrossRef]
- Manickam, J.; Pomphrey, N.; Todd, A.M.M. Ideal MHD stability properties of pressure driven modes in low shear tokamaks. Nucl. Fusion 1987, 27, 1461–1472. [Google Scholar] [CrossRef]
- Cheng, C.Z.; Chance, M.S. Low-n shear Alfven spectra in axisymmetric toroidal plasmas. Phys. Fluids 1986, 29, 3695–3701. [Google Scholar] [CrossRef]
- Cheng, C.Z. Energrtic particle effects on global magnetohydrodynamic modes. Phys. Fluids 1990, 1427, 1427–1434. [Google Scholar] [CrossRef]
- Wong, K.L.; Fonck, R.J.; Paul, S.F.; Roberts, D.R.; Fredrickson, E.D.; Nazikian, R.; Park, H.K.; Bell, M.; Bretz, N.L.; Budny, R.; et al. Excitation of Toroidal Alfven Eigenmodes in TFTR. Phys. Rev. Lett. 1991, 66, 1874–1877. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.L. A review of Alfven eigenmode observations in toroidal plasmas. Plasma Phys. Control Fusion 1999, 41, R1–R56. [Google Scholar] [CrossRef]
- Saigusa, M.; Kimura, H.; Moriyama, S.; Neyatani, Y.; Fujii, T.; Koide, Y.; Kondoh, T.; Sato, M.; Nemoto, M.; Kamada, Y.; et al. Investigation of high-n TAE modes excited by minority-ion cyclotron heating in JT-60U. Plasma Phys. Control Fusion 1995, 37, 295–313. [Google Scholar] [CrossRef]
- Kimura, H.; Kusama, Y.; Saigusa, M.; Kramer, G.J.; Tobita, K.; Nemoto, M.; Kondoh, T.; Nishitani, T.; Da Costa, O.; Ozeki, T.; et al. Alfven eigenmode and energetic particle research in JT-60U. Nucl. Fusion 1998, 38, 1303–1314. [Google Scholar] [CrossRef]
- Kramer, G.J.; Saigusa, M.; Ozeki, T.; Kusama, Y.; Kimira, H.; Oikawa, T.; Tobita, K.; Fu, G.Y.; Cheng, C.Z. Noncircular Triangularity and Ellipticity-Induced Alfven Eigenmodes Observed in JT-60U. Phys. Rev. Lett. 1998, 80, 2594–2597. [Google Scholar]
- Shinohara, K.; Kusama, Y.; Takechi, M.; Morioka, A.; Ishikawa, M.; Oyama, N.; Tobita, K.; Ozeki, T.; Takeji, S.; Moriyama, S.; et al. Alfve eigenmodes driven by Alfvenic beam ions in JT-60U. Nucl. Fusion 2001, 41, 603–612. [Google Scholar] [CrossRef]
- Tachechi, M.; Fukuyama, A.; Ishikawa, M.; Cheng, C.Z.; Shinohara, K.; Ozeki, T.; Kusama, Y.; Takeji, S.; Fujita, T.; Oikawa, T.; et al. Alfven eigenmodes in reversed shear plasmas in JT-60U negative-ion-based neutral beam injection discharges. Phys. Plasmas 2005, 12, 082509. [Google Scholar] [CrossRef]
- Office of Strategy Research-JAEA. 2100 Atomic Vision—A proposal for low carbon society. 2008. Available online: http://www.jaea.go.jp/ (accessed on 1 November 2010).
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kikuchi, M. A Review of Fusion and Tokamak Research Towards Steady-State Operation: A JAEA Contribution. Energies 2010, 3, 1741-1789. https://doi.org/10.3390/en3111741
Kikuchi M. A Review of Fusion and Tokamak Research Towards Steady-State Operation: A JAEA Contribution. Energies. 2010; 3(11):1741-1789. https://doi.org/10.3390/en3111741
Chicago/Turabian StyleKikuchi, Mitsuru. 2010. "A Review of Fusion and Tokamak Research Towards Steady-State Operation: A JAEA Contribution" Energies 3, no. 11: 1741-1789. https://doi.org/10.3390/en3111741
APA StyleKikuchi, M. (2010). A Review of Fusion and Tokamak Research Towards Steady-State Operation: A JAEA Contribution. Energies, 3(11), 1741-1789. https://doi.org/10.3390/en3111741