Optimization and Characterization of Lithium Ion Cathode Materials in the System (1 – x – y)LiNi0.8Co0.2O2 • xLi2MnO3 • yLiCoO2
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural studies
2.2. Rietveld structural refinement details
2.3. Microstructural studies
2.4. XPS Studies
2.5. Electrochemical results
2.6. Discussion
3. Experimental Section
3.1. Synthesis
3.2. Characterization
3.3. Electrochemical testing
4. Conclusions
Acknowledgements
References and Notes
- Mizushima, K.; Jones, P.C.; Wiseman, P.J.; Goodenough, J.B. LixCoO2 (0 < x < 1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15, 783–789. [Google Scholar]
- Thomas, M.G.S.R.; David, W.I.D.; Groves, P.; Goodenough, J.B.; Groves, P. Synthesis and structural characterization of the normal spinel Li[Ni2]O4. Mater. Res. Bull. 1985, 20, 1137–1146. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Hong, H.Y.P.; Kafalas, J.A. Fast Na+-ion transport in skeleton structures. Mater. Res. Bull. 1976, 11, 203–220. [Google Scholar] [CrossRef]
- Whittingham, M.S. Electrical energy storage and intercalation chemistry. Science 1976, 192, 1126–127. [Google Scholar] [CrossRef] [PubMed]
- Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature (London) 2001, 414, 359–3676. [Google Scholar] [CrossRef] [PubMed]
- Thackeray, M.M.; David, W.I.F.; Bruce, P.G.; Goodenough, J.B. Electrochemical extraction of lithium from LiMn2O4. Mater. Res. Bull. 1989, 19, 179–187. [Google Scholar] [CrossRef]
- Padhi, A.K.; Nanjundaswamy, K.S.; Masquelier, C.; Goodenough, J.B. Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation. J. Electrochem. Soc. 1997, 144, 2581–2586. [Google Scholar] [CrossRef]
- Padhi, A.K.; Nanjundaswamy, K.S.; Goodenough, J.B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188–1194. [Google Scholar] [CrossRef]
- Nishi, Y. Lithium Ion Batteries; Wahihara, M., Yamamoto, O., Eds.; Wiley-WCH, Kodansha: Tokyo, Japan, 1988. [Google Scholar]
- Goodneough, J.B.; Kizushima, K.; Takada, T. Solid-solution oxides for storage-battery electrodes. Jpn. J. Appl. Phys. 1980, 19, 305–313. [Google Scholar] [CrossRef]
- Rougier, A.; Saadoune, I.; Gravereau, P.; Willmann, P.; Delmas, C. Effect of cobalt substitution on cationic distribution in LiNi1–yCoyO2 electrode materials. Solid State Ionics 1996, 90, 83–90. [Google Scholar] [CrossRef]
- Morales, J.; Perez-Vicente, C.; Tirado, J.L. Cation distribution and chemical deintercalation of Li1–xNi1+xO2. Mater. Res. Bull. 1990, 25, 623–630. [Google Scholar] [CrossRef]
- Dahn, J.R.; Sacken, U.; Michael, C.A. Structure and electrochemistry of Li1 ± yNiO2 and a new Li2NiO2 phase with the Ni (OH)2 structure. Solid State Ionics 1990, 44, 87–97. [Google Scholar] [CrossRef]
- Rougier, A.; Saadouane, I.; Gravereau, P.; Willmann, P.; Delmas, C. Effect of cobalt substitution on cationic distribution in LiNi1–yCoyO2 electrode materials. Solid State Ionics 1996, 90, 83–90. [Google Scholar] [CrossRef]
- Saardoune, I.; Delmas, C. On the LixNi0.8Co0.2O2 system. J. Solid State Chem. 1998, 136, 8–15. [Google Scholar] [CrossRef]
- Ohzuku, T.; Yanagawa, T.; Kouguchi, M.; Ueda, A. Innovative insertion material of LiAl1/4Ni3/4O2 (R-3m) for lithium-ion (shuttlecock) batteries. J. Power Sources 1997, 68, 131–134. [Google Scholar] [CrossRef]
- Armstrong, A.R.; Bruce, P.G. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature (London) 1996, 381, 499–500. [Google Scholar] [CrossRef]
- Ohzuku, T.; Makimura, Y. Layered lithium insertion material of LiNi0.5Mn0.5O2: A possible alternative to LiCoO2 for advanced Lithium-ion batteries. Chem. Lett. 2001, 30, 744–745. [Google Scholar] [CrossRef]
- Neudecker, B.; Zuhr, R.A.; Kwak, B.S.; Bates, J.B.; Robertson, J.D. Lithium manganese nickel oxides Lix(MnyNi1–y)2–xO2. J. Electrochem. Soc. 1998, 145, 4148–4159. [Google Scholar] [CrossRef]
- Ohzuku, T.; Makimura, Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem. Lett. 2001, 30, 642–643. [Google Scholar] [CrossRef]
- Johnson, C.S.; Kim, J.S.; Kropf, J.; Kahaian, A.J.; Vaughey, J.T.; Fransson, L.M.L.; Edstrom, K.; Thackeray, M.M. Structural characterization of layered LixNi0.5Mn0.5O2 (0 < x < 2) oxide electrodes for Li batteries. Chem. Mater. 2003, 15, 2313–2322. [Google Scholar]
- Alcantara, R.; Lavela, P.; Tirado, J.L.; Zhecheva, E.; Stoyanova, R. Recent advances in the study of layered lithium transition metal oxides and their application as intercalation electrodes. J. Solid State Electrochem. 1999, 3, 121–134. [Google Scholar]
- Stoyanova, R.; Zhecheva, E.; Zarkovam, L. Effect of Mn-substitution for Co on the crystal structure and acid delithiation of LiMnyCo1–yO2 solid solutions. Solid State Ionics 1994, 73, 233–234. [Google Scholar] [CrossRef]
- Ammundsen, B.; Paulsen, J.M. Novel Lithium-ion cathode materials based on layered manganese oxides. Adv. Mater. 2001, 13, 943–956. [Google Scholar] [CrossRef]
- Kim, J.S.; Johnson, C.S.; Vaughey, J.T.; Thackeray, M.M.; Hackney, S.A.; Yoon, W.; Grey, C.P. Electrochemical and structural properties of xLi2M’O3 • (1 – x)LiMn0.5Ni0.5O2 electrodes for lithium batteries (M’ = Ti, Mn, Zr). Chem. Mater. 2004, 16, 1996–2006. [Google Scholar] [CrossRef]
- Shin, S.; Sun, Y.K.; Amine, K. Synthesis and electrochemical properties of Li[Li(1–2x)/3NixMn(2–x)/3]O2 as cathode materials for Lithium secondary batteries. J. Power Sources 2002, 112, 634–638. [Google Scholar] [CrossRef]
- Lu, Z.; Beaulieu, L.Y.; Donaberger, R.A.; Thomas, C.L.; Dahn, J.R. Synthesis, structure, and electrochemical behavior of Li[NixLi1/3–2x/3Mn2/3–x/3]O2. J. Electrochem. Soc. 2002, 149, A778–A781. [Google Scholar] [CrossRef]
- Wu, Y.; Manthiram, A. High capacity, surface-modified layered Li[Li(1–x)/3Mn(2–x)/3Nix/3Cox/3]O2 cathodes with low irreversible capacity loss. Electrochem. Solid-State Lett. 2006, 9, A221–A224. [Google Scholar] [CrossRef]
- Lu, Z.; Chen, Z.; Dahn, J.R. Lack of cation clustering in Li[NixLi1/3–2x/3Mn2/3–x/3]O2 (0 < x ≤ 1/2) and Li[CrxLi(1–x)/3Mn(2–2x)/3]O2 (0 < x < 1). Chem. Mater. 2003, 15, 3214–3220. [Google Scholar]
- Yabuuchi, N.; Ohzuku, T. Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. J Power Sources 2003, 119, 171–174. [Google Scholar] [CrossRef]
- Zhang, L.; Takada, K.; Ohta, N.; Fukuda, K.; Osada, M.; Wang, L.; Sasaki, T.; Watanabe, M. Layered (1 – x – y)LiNi1/2Mn1/2O2 • xLi[Li1/3Mn2/3]O2 • yLiCoO2 cathode materials. J. Electrochem. Soc. 2005, 152, A171–A178. [Google Scholar] [CrossRef]
- JCPDF Standard 44-0145(for LiCoO2) and 9-0063 (for LiNi1–xCoxO2). International Centre for Diffraction Data: Newtown Square, PA, USA, January 2010.
- Ohzuku, T.; Ueda, A.; Nagayama, M.; Iwakoshi, Y.; Komori, H. Comparative study of LiCoO2, LiNi1/2Co1/2O2 and LiNiO2 for 4 Volt secondary lithium cells. Electrochim. Acta 1993, 38, 1159. [Google Scholar] [CrossRef]
- Rougier, A.; Gravereau, P.; Delmas, C.J. Optimization of the composition of the Li1–zNi1+zO2 electrode materials: Structural, magnetic, and electrochemical studies. J. Electrochem. Soc. 1996, 143, 1168–1175. [Google Scholar] [CrossRef]
- Shaju, K.M.; Subba Rao, G.V.; Chowdari, B.V.R. Performance of layered Li(Ni1/3Co1/3Mn1/3]O2 as cathodes for Li batteries. Electrochim. Acta 2002, 48, 145–151. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Gong, Z.; Yang, Y. Structural, electrochemical and thermal properties of LiNi0.8–yTiyCo0.2O2 as cathode materials for lithium ion battery. Electrochimica Acta 2004, 49, 1151. [Google Scholar]
- CrystalMaker®: A Crystal and Molecular Structures Programs for Mac and Windows; CrystalMaker Software Ltd.: Oxford, UK, January 2010.
- Saadoune, I.; Delmas, C. LiNi1–yCoyO2 positive electrode materials: relationships between the structure, physical properties and electrochemical behavior. J. Mater. Chem. 1996, 6, 193–199. [Google Scholar] [CrossRef]
- Kim, W.S.; Chung, K.; Choi, Y.K.; Sung, Y.E. Synthesis and charge-discharge properties of LiNi1–x–y CoxMyO2 (M = Al, Ga) compounds. J. Power Sources 2003, 115, 101–109. [Google Scholar] [CrossRef]
- Wang, G.X.; Zhong, S.; Bradhurst, S.; Dou, S.X.; Liu, H.K. Synthesis and characterization of LiNiO2 compounds as cathodes for rechargeable batteries. J. Power Sources 1998, 76, 141–146. [Google Scholar] [CrossRef]
- Endo, E.; Yasuda, T.; Yamamura, K.; Kita, A.; Sekai, K. LiNiO2 electrode by chemical vapor deposition for higher voltage performance. J. Power Sources 2001, 93, 87–92. [Google Scholar] [CrossRef]
- Moses, A.M.; Flores, H.G.; Kim, J.G.; Langell, M.A. Surface properties of LiCoO2, LiNiO2 and LiNi1–xCoxO2. Appl. Surf. Sci. 2007, 253, 4782–4791. [Google Scholar] [CrossRef]
- Galakhov, V.R.; Kurmaev, E.Z.; Uhlenbrock, S.; Newmann, M.; Kellerman, D.G.; Gorshkov, V.S. Electronic structure of LiNiO2, LiFeO2 and LiCrO2: XPS and X-ray emission study. Solid State Commun. 1995, 95, 347–351. [Google Scholar] [CrossRef]
- Kalai Vani, V.; Hussain, O.M. Synthesis and characterization of electron beam evaporated LiCoO2 thin films. Ionics 2007, 13, 473–477. [Google Scholar] [CrossRef]
- Kosova, N.V.; Devyatkina, E.T.; Kaicheve, V.V. LiMn2O4 and LiCoO2 cathode materials obtained by mechanical activation. Russ. J. Electrochem. 2009, 45, 277–285. [Google Scholar] [CrossRef]
- Mansour, A.N. Characterization of LiNiO2 by XPS. Surf. Sci. 1994, 3, 279. [Google Scholar] [CrossRef]
- Johnson, C.S.; Kim, J.S.; Lefief, C.; Vaughey, J.T.; Thackeray, M.M. The significance of the Li2MnO3 component in 'composite' xLi2MnO3 • (1 – x)LiMn0.5Ni0.5O2 electrodes. Electrochem. Commun. 2004, 6, 1085–1091. [Google Scholar] [CrossRef]
- Wiles, D.B.; Young, R.A. A new computer program for Rietveld analysis of X-ray powder diffraction patterns. J. Applied Crystallogr. 1981, 14, 149–151. [Google Scholar] [CrossRef]
- Roisnel, T.; Rodriguez-Carjaval, J. Fullprof Manual; Institut Laue-Langevin: Grenoble, France, January 2010. [Google Scholar]
Compositions | Space Group | a Å | c Å | Discharge capacity (mAh/g) | ||||
---|---|---|---|---|---|---|---|---|
4.6–3 V | 4.6–2.75 V | 4.6–2.5 V | 4.6–2 V | |||||
#1 | Li1.033Mn0.067Ni0.64Co0.26O2 | R-3m | 2.883(2) | 14.222(3) | 118 | 122 | 128 | 141 |
#2 | Li1.1Mn0.200Ni0.48Co0.22O2 | 2.869(5) | 14.182(1) | 186 | 192 | 198 | 209 | |
#3 | Li1.033Mn0.067Ni0.48Co0.42O2 * | 2.857(1) | 14.119(5) | 177 | 184 | 190 | 216 | |
#4 | Li1.133Mn0.267Ni0.32Co0.28O2 | 2.853(2) | 14.119(3) | 172 | 177 | 182 | 191 | |
#5 | Li1.067Mn0.133Ni0.32Co0.48O2 | 2.848(6) | 14.080(2) | 177 | 183 | 189 | 199 | |
#6 | Li1.2Mn0.4Ni0.16Co0.24O2 * | 2.842(3) | 14.136(2) | 190 | 203 | 215 | 230 | |
#7 | Li1.133Mn0.267Ni0.16Co0.44O2 | 2.85(1) | 14.220(4) | 166 | 175 | 185 | 199 | |
#8 | Li1.067Mn0.133Ni0.16Co0.64O2 | 2.856(2) | 14.101(1) | 164 | 171 | 179 | 192 |
Lattice parameter (Å) | z(O) | Li3a | Occupancy of M in Li layer | χ2 | Rwp (%) | RB (%) | Bond Length(Å) | Bond Angle(°) | |
---|---|---|---|---|---|---|---|---|---|
Model 1 | a = 2.842(2) c = 14.136(7) | 0.249(1) | 0.988 | z(Mn) 0.015 | 1.15 | 7.95 | 15.8 | Mn-O 2.012 Li-O 2.029 | O-Mn-O 90.11 O-Li-O 88.96 |
Model 2 | a = 2.842(2) c = 14.136(7) | 0.247(3) | 0.982 | z(Ni) 0.017 | 1.21 | 8.10 | 12.6 | Ni-O 2.013 Li-O 2.027 | O-Ni-O 89.79 O-Li-O 89.05 |
Sample | Mn2p1/2 | Mn2p3/2 | ΔMn | Ni2p1/2 | Ni2p3/2 | ΔNi | Co2p1/2 | Co2p3/2 | ΔCo |
---|---|---|---|---|---|---|---|---|---|
#1 | - | 642.8 | - | 871.6 | 854 | 17.6 | 794.0 | 778.9 | 15.1 |
#2 | - | 642.0 | - | 871.6 | 854.8 | 16.8 | 794.0 | 779.6 | 14.4 |
#3 | - | 642.0 | - | 871.6 | 854.8 | 16.8 | 794.8 | 779.6 | 15.2 |
#4 | 653.2 | 642.8 | 10.4 | 870.8 | 854.0 | 16.8 | 794.0 | 778.8 | 15.2 |
#5 | 653.2 | 642.0 | 11.2 | 870.8 | 854.0 | 16.8 | 794.0 | 778.8 | 15.2 |
#6 | 652.4 | 642.0 | 10.4 | 870.1 | 853.2 | 16.9 | 794.0 | 778.8 | 15.2 |
#8 | 652.4 | 641.2 | 11.2 | 869.8 | 853.3 | 16.5 | 793.2 | 778.0 | 15.2 |
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Manivannan, V.; Chennabasappa, M.; Garrett, J. Optimization and Characterization of Lithium Ion Cathode Materials in the System (1 – x – y)LiNi0.8Co0.2O2 • xLi2MnO3 • yLiCoO2. Energies 2010, 3, 847-865. https://doi.org/10.3390/en3040847
Manivannan V, Chennabasappa M, Garrett J. Optimization and Characterization of Lithium Ion Cathode Materials in the System (1 – x – y)LiNi0.8Co0.2O2 • xLi2MnO3 • yLiCoO2. Energies. 2010; 3(4):847-865. https://doi.org/10.3390/en3040847
Chicago/Turabian StyleManivannan, Venkatesan, Madhu Chennabasappa, and Joshua Garrett. 2010. "Optimization and Characterization of Lithium Ion Cathode Materials in the System (1 – x – y)LiNi0.8Co0.2O2 • xLi2MnO3 • yLiCoO2" Energies 3, no. 4: 847-865. https://doi.org/10.3390/en3040847
APA StyleManivannan, V., Chennabasappa, M., & Garrett, J. (2010). Optimization and Characterization of Lithium Ion Cathode Materials in the System (1 – x – y)LiNi0.8Co0.2O2 • xLi2MnO3 • yLiCoO2. Energies, 3(4), 847-865. https://doi.org/10.3390/en3040847