Microbial Fuel Cells, A Current Review
Abstract
:1. Introduction
2. Current Applications for Microbial Fuel Cells
3. Potential Applications for Microbial Fuel Cells
4. Microorganisms in A Microbial Fuel Cell
5. Electrical Interactions between Microbes and Electrodes
6. Proton Inhibition in Microbial Fuel Cell Biofilms
7. Cathode Interactions
8. Summary
Acknowledgements
References and Notes
- Bond, D.R.; Holmes, D.E.; Tender, L.M.; Lovley, D.R. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 2002, 295, 483–485. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Park, H.S.; Hyun, M.S.; Chang, I.S.; Kim, M.; Kim, B.H. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewenella putrefaciens. Enzyme Microb. Technol. 2002, 30, 145–152. [Google Scholar] [CrossRef]
- Kim, H.J.; Hyun, M.S.; Chang, I.S.; Kim, B.H. A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotech. 1999, 9, 365–367. [Google Scholar]
- Time. The 50 Best Inventions of 2009. Available online: http://www.time.com/time/specials/packages/article/0,28804,1934027_1934003_1933965,00.html (accessed on 25 March 2010).
- Potter, M.C. Electrical effects accompanying the decomposition of organic compunds. Proc. R. Soc. Lond. B 1911, 84, 260–276. [Google Scholar] [CrossRef]
- Potter, M.C. On the difference of potential due to the vital activity of microorganisms. Proc. Univ. Durham Phil. Soc. 1910, 3, 245–249. [Google Scholar]
- Tender, L.; Gray, S.; Groveman, E.; Lowy, D.; Kauffma, P.; Melhado, R.; Tyce, R.; Flynn, D.; Petrecca, R.; Dobarro, J. The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy. J. Power Sourc. 2008, 179, 571–575. [Google Scholar] [CrossRef]
- Tender, L.M.; Reimers, C.E.; Stecher, H.A.; Holmes, D.E.; Bond, D.R.; Lowy, D.A.; Pilobello, K.; Fertig, S.J.; Lovley, D.R. Harnessing microbially generated power on the seafloor. Nat. Biotechnol. 2002, 20, 821–825. [Google Scholar] [CrossRef] [PubMed]
- Reimers, C.E.; Tender, L.M.; Fertig, S.; Wang, W. Harvesting energy from the marine sediment-water interface. Environ. Sci. Technol. 2001, 35, 192–195. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, F.; Richard, T.L.; Logan, B.E. Enzymatic hydrolysis of cellulose coupled with electricity generation in a microbial fuel cell. Biotechnol. Bioeng. 2008, 101, 1163–1169. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, F.; Richard, T.L.; Logan, B.E. Analysis of chitin particle size on maximum power generation, power longevity, and Coulombic efficiency in solid-substrate microbial fuel cells. J. Power Sourc. 2009, 192, 304–309. [Google Scholar] [CrossRef]
- Rezaei, F.; Richard, T.L.; Brennan, R.A.; Logan, B.E. Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems. Environ. Sci. Technol. 2007, 41, 4053–4058. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, F.; Xing, D.; Wagner, R.; Regan, J.M.; Richard, T.L.; Logan, B.E. Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl. Environ. Microbiol. 2009, 75, 3673–3678. [Google Scholar] [CrossRef] [PubMed]
- Donovan, C.; Dewan, A.; Heo, D.; Beyenal, H. Batteryless, wireless sensor powered by a sediment microbial fuel cell. Environ. Sci. Technol. 2008, 42, 8591–8596. [Google Scholar] [CrossRef] [PubMed]
- Dewan, A.; Donovan, C.; Heo, D.; Beyenal, H. Evaluating the performance of microbial fuel cells powering electronic devices. J. Power Sourc. 2009, 195, 90–96. [Google Scholar] [CrossRef]
- Behera, M.; Jana, P.S.; Ghangrekar, M.M. Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode. Bioresour. Technol 2009, 101, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- Lovley, D.R. Microbial energizers: Fuel cells that keep on going. Microbe 2006, 1, 323–329. [Google Scholar]
- Lovley, D.R.; Nevin, K.P. Electricity production with electricigens. In Bioenergy: Microbial Contributions to Alternative Fuels; Wall, J., Harwood, C., Demain, A., Eds.; ASM Press: Washington D.C., USA, 2008; pp. 295–306. [Google Scholar]
- Logan, B.E. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 2009, 7, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Pant, D.; Van Bogaert, G.; Diels, L.; Vanbroekhoven, K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresourc. Technol. 2009, 101, 1533–1543. [Google Scholar] [CrossRef] [PubMed]
- Bond, D.R.; Lovley, D.R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 2003, 69, 1548–1555. [Google Scholar] [CrossRef] [PubMed]
- Nevin, K.P.; Richter, H.; Covalla, S.F.; Johnson, J.P.; Woodard, T.L.; Orloff, A.L.; Jia, H.; Zhang, M.; Lovley, D.R. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ. Microbiol. 2008, 10, 2505–2514. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Choi, Y.; Jung, S.; Kim, S. Effect of initial carbon sources on the performance of microbial fuel cells containing Proteus vulgaris. Biotechnol. Bioeng. 2000, 70, 109–114. [Google Scholar] [CrossRef]
- Lu, N.; Zhou, S.G.; Zhuang, L.; Zhang, J.T.; Ni, J.R. Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochem. Eng. J. 2009, 43, 246–251. [Google Scholar] [CrossRef]
- Ren, Z.; Steinberg, L.M.; Regan, J.M. Electricity production and microbial biofilm characterization in cellulose-fed microbial fuel cells. Water Sci. Technol. 2008, 58, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Min, B.; Huang, L.; Angelidaki, I. Generation of electricity and analysis of microbial communities in wheat straw biomass-powered microbial fuel cells. Appl. Environ. Microbiol. 2009, 75, 3389–3395. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, M.; Liu, G.; Luo, H.; Zhang, R. Pyridine degradation in the microbial fuel cells. J. Hazard. Mat. 2009, 172, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Liu, G.; Zhang, R.; Jin, S. Phenol degradation in microbial fuel cells. Chem. Eng. J. 2009, 147, 259–264. [Google Scholar] [CrossRef]
- Zhu, X.; Ni, J. Simultaneous processes of electricity generation and p-nitrophenol degradation in a microbial fuel cell. Electrochem. Comm. 2009, 11, 274–277. [Google Scholar] [CrossRef]
- Liu, H.; Logan, B.E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Env. Sci. Tech. 2004, 38, 4040–4046. [Google Scholar] [CrossRef]
- You, S.J.; Zhao, Q.L.; Jiang, J.Q. Biological wastewater treatment and simultaneous generating electricity from organic wastewater by microbial fuel cell. Huan Jing Ke Xue 2006, 27, 1786–1790. [Google Scholar] [PubMed]
- Feng, Y.; Wang, X.; Logan, B.; Lee, H. Brewery wastewater treatment using air-cathode microbial fuel cells. App. Microbiol. Biotechnol. 2008, 78, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Gálvez, A.; Greenman, J.; Ieropoulos, I. Landfill leachate treatment with microbial fuel cells; scale-up through plurality. Bioresour. Technol. 2009, 100, 5085–5091. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.A.; Surakasi, V.P.; Koul, S.; Ijmulwar, S.; Vivek, A.; Shouche, Y.S.; Kapadnis, B.P. Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber. Bioresour. Technol. 2009, 100, 5132–5139. [Google Scholar] [CrossRef] [PubMed]
- Freguia, S.; Teh, E.H.; Boon, N.; Leung, K.M.; Keller, J.; Rabaey, K. Microbial fuel cells operating on mixed fatty acids. Bioresour. Technol. 2009, 101, 1233–1238. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.M.; Jin, S. Feasibility of using microbial fuel cell technology for bioremediation of hydrocarbons in groundwater. J. Environm. Sci. Health A: Tox./Hazard. Subst. Environm. Eng. 2008, 43, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Braster, M.; van Breukelen, B.M.; van Verseveld, H.W.; Westerhoff, H.V.; Roling, W.F.M. Geobacteraceae community composition is related to hydrochemistry and biodegradation in an iron-reducing aquifer polluted by a neighboring landfill. Appl. Environ. Microbiol. 2005, 71, 5983–5991. [Google Scholar] [CrossRef] [PubMed]
- Rooney-Varga, J.N.; Anderson, R.T.; Fraga, J.L.; Ringelberg, D.; Lovley, D.R. Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl. Environ. Microbiol. 1999, 65, 3056–3064. [Google Scholar] [PubMed]
- Roling, W.F.M.; van Breukelen, B.M.; Braster, B.L.; van Verseveld, H.W. Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer. Appl. Environ. Microbiol. 2001, 67, 4619–4629. [Google Scholar] [CrossRef] [PubMed]
- Lovley, D.R.; Baedecker, M.J.; Lonergan, D.J.; Cozzarelli, I.M.; Phillips, E.J.P.; Siegel, D.I. Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 1989, 339, 297–299. [Google Scholar] [CrossRef]
- Anderson, R.T.; Rooney-Varga, J.; Gaw, C.V.; Lovley, D.R. Anaerobic benzene oxidation in the Fe(III)-reduction zone of petroleum-contaminated aquifers. Environ. Sci. Technol. 1998, 32, 1222–1229. [Google Scholar] [CrossRef]
- Lovley, D.R.; Woodward, J.C.; Chapelle, F.H. Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms. Appl. Environ. Microbiol. 1996, 62, 288–291. [Google Scholar] [PubMed]
- Lovley, D.R.; Woodward, J.C.; Chapelle, F.H. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature 1994, 370, 128–131. [Google Scholar] [CrossRef] [PubMed]
- Lovley, D.R.; Coates, J.D.; Blunt-Harris, E.L.; Phillips, E.J.P.; Woodward, J.C. Humic substances as electron acceptors for microbial respiration. Nature 1996, 382, 445–448. [Google Scholar] [CrossRef]
- Lovley, D.R.; Chapelle, F.H. Deep subsurface microbial processes. Rev. Geophsy. 1995, 33, 365–381. [Google Scholar] [CrossRef]
- Lovley, D.R. Potential for anaerobic bioremediation of BTEX in petroleum-contaminated aquifers. J. Industr. Microbiol. 1997, 18, 75–81. [Google Scholar] [CrossRef]
- Reddy, C.M.; Eglinton, T.I.; Hounshell, A.; White, H.K.; Xu, L.; Gaines, R.B.; Frysinger, G.S. The West Falmouth oil spill after thirty years: the persistence of petroleum hydrocarbons in marsh sediments. Environ. Sci. Technol. 2002, 36, 4754–4760. [Google Scholar] [CrossRef] [PubMed]
- Rogers, S.W.; Ong, S.K.; Kjartanson, B.H.; Golchin, J.; Stenback, G.A. Natural Attenuation of Polycyclic Aromatic Hydrocarbon-Contaminated Sites: Review. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management 2002, 6, 141–155. [Google Scholar] [CrossRef]
- Frysinger, G.S.; Gaines, R.B.; Xu, L.; Reddy, C.M. Resolving the unresolved complex mixture in petroleum-contaminated sediments. Environ. Sci. Technol. 2003, 37, 1653–1662. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Gannon, S.M.; Nevin, K.P.; Franks, A.E.; Lovley, D.R. Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminatedsediments by providing an electrode as the electron acceptor. Environm. Microbiol. Rep. 2010. [Google Scholar] [CrossRef] [PubMed]
- Borole, A.P.; Mielenz, J.R.; Vishnivetskaya, T.A.; Hamilton, C.Y. Controlling accumulation of fermentation inhibitors in biorefinery recycle water using microbial fuel cells. Biotechnol. Biofuels 2009, 2, 7. [Google Scholar] [CrossRef] [PubMed]
- Kerzenmacher, S.; DucrÈe, J.; Zengerle, R.; von Stetten, F. Energy harvesting by implantable abiotically catalyzed glucose fuel cells. J. Power Sourc. 2008, 182, 1–17. [Google Scholar] [CrossRef]
- Kim, H.H.; Mano, N.; Zhang, Y.; Heller, A. A miniature membrane-less biofuel cell operating under physiological conditions at 0.5 V. J. Electrochem. Soc. 2003, 150, A209–A213. [Google Scholar] [CrossRef]
- Minteer, S.D.; Liaw, B.Y.; Cooney, M.J. Enzyme-based biofuel cells. Curr. Opin. Biotechnol. 2007, 18, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Calabrese Barton, S.; Gallaway, J.; Atanassov, P. Enzymatic biofuel cells for implantable and microscale devices. Chem. Rev. 2004, 104, 4867–4886. [Google Scholar] [CrossRef]
- Mingui, S.; Justin, G.A.; Roche, P.A.; Jun, Z.; Wessel, B.L.; Yinghe, Z.; Sclabassi, R.J. Passing data and supplying power to neural implants. IEEE Eng. Med. Biol. Mag. 2006, 25, 39–46. [Google Scholar] [CrossRef]
- Justin, G.A.; Zhang, Y.; Sun, M.; Sclabassi, R. An investigation of the ability of white blood cells to generate electricity in biofuel cells. In Proceedings of the IEEE 31st Annual Northeast Bioengineering Conference, Hoboken, NJ, USA, April 2005; pp. 277–278.
- Lovley, D.R. Bug juice: harvesting electricity with microorganisms. Nature Rev. Microbiol. 2006, 4, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Rabaey, K.; Boon, N.; Siciliano, S.D.; Verhaege, M.; Verstraete, W. Biofuel cells select for microbial consortia that self-mediate elecron transfer. Appl. Environ. Microbiol. 2004, 70, 5373–5382. [Google Scholar] [CrossRef] [PubMed]
- Phung, N.; Lee, J.; Kang, K.; Chang, I.; Gadd, G.; Kim, B. Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences. FEMS Microb. Lett. 2004, 233, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Aelterman, P.; Rabaey, K.; Pham, H.T.; Boon, N.; Verstraete, W. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 2006, 40, 3388–3394. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.H.; Park, H.S.; Kim, H.J.; Kim, G.T.; Chang, I.S.; Lee, J.; Phung, N.T. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. App. Microbiol. and Biotechnol. 2004, 63, 672–681. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.H.; Boon, N.; Aelterman, P.; Clauwaert, P.; De Schamphelaire, L.; Vanhaecke, L.; De Maeyer, K.; Hofte, M.; Verstraete, W.; Rabaey, K. Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. Appl. Microbiol. Biotechnol. 2008, 77, 1119–1129. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Kim, B.H.; Kim, H.S.; Kim, H.J.; Kim, G.T.; Kim, M.; Chang, I.S.; Park, Y.K.; Chang, H.I. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 2001, 7, 297–306. [Google Scholar] [CrossRef]
- Bond, D.R.; Lovley, D.R. Evidence for Involvement of an Electron Shuttle in Electricity Generation by Geothrix fermentans. Appl. Environ. Microbiol. 2005, 71, 2186–2189. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Cui, C.; Chen, S.; Yang, H.; Shen, P. The direct electrocatalysis of Escherichia coli through electroactivated excretion in microbial fuel cell. Electrochem. Comm. 2008, 10, 293–297. [Google Scholar] [CrossRef]
- Zuo, Y.; Cheng, S.; Call, D.; Logan, B.E. Tubular membrane cathodes for scalable power generation in microbial fuel cells. Env. Sci. Tech. 2007, 41, 3347–3353. [Google Scholar] [CrossRef]
- Zhao, F.; Rahunen, N.; Varcoe, J.R.; Chandra, A.; Avignone-Rossa, C.; Thumser, A.E.; Slade, R.C.T. Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environ. Sci Technol. 2008, 42, 4971–4976. [Google Scholar] [CrossRef] [PubMed]
- Borole, A.; O’Neill, H.; Tsouris, C.; Cesar, S. A microbial fuel cell operating at low pH using the acidophile acidiphilium cryptum. Biotechnol. Lett. 2008, 30, 1367–1372. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Martiny, A.C.; Reppas, N.B.; Barry, K.W.; Malek, J.; Chisholm, S.W.; Church, G.M. Sequencing genomes from single cells by polymerase cloning. Nat. Biotechnol. 2006, 24, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Holmes, D.E.; Nicoll, J.S.; Bond, D.R.; Lovley, D.R. Potential role of a novel psychrotolerant Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by the marine sediment fuel cell. Appl. Environ. Microbiol. 2004, 70, 6023–6030. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, S.K.; Lovley, D.R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 2003, 21, 1229–1232. [Google Scholar] [CrossRef] [PubMed]
- Walker, A.L.; Walker, J.C.W. Biological fuel cell and an application as a reserve power source. J. Power Sourc. 2006, 160, 123–129. [Google Scholar] [CrossRef]
- Prasad, D.; Arun, S.; Murugesan, M.; Padmanaban, S.; Satyanarayanan, R.S.; Berchmans, S.; Yegnaraman, V. Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell. Biosen. Bioelectron. 2007, 22, 2604–2610. [Google Scholar] [CrossRef] [PubMed]
- Freguia, S.; Rabaey, K.; Yuan, Z.; Keller, J. Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes. Environ. Sci. Technol. 2008, 42, 7937–7943. [Google Scholar] [CrossRef] [PubMed]
- Torres, C.; Kato-Marcus, A.; Rittmann, B. Kinetics of consumption of fermentation products by anode-respiring bacteria. App. Microbiol. Biotechnol. 2007, 77, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Parameswaran, P.; Kato-Marcus, A.; Torres, C.I.; Rittmann, B.E. Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Res. 2008, 42, 1501–1510. [Google Scholar] [CrossRef] [PubMed]
- Lanthier, M.; Gregory, K.B.; Lovley, D.R. Growth with high planktonic biomass in Shewanella oneidensis fuel cells. FEMS Microbiol. Lett. 2008, 278, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Rabaey, K.; Lissens, G.; Siciliano, S.D.; Verstraete, W. A microbial fuel cell cabable lf converting glucose to electricity at high rate and efficiency. Biotech. Lett. 2003, 25, 1531–1535. [Google Scholar] [CrossRef]
- Rittmann, B.E.; Torres, C.I.; Marcus, A.K. Understanding the distinguishing features of a microbial fuel cell as a biomass-based renewable energy technology. In Emerging Environmental Technologies; Springer: Berlin, German, 2008; pp. 1–28. [Google Scholar]
- Cheng, S.; Liu, H.; Logan, B.E. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Env. Sci. Tech. 2006, 40, 364–369. [Google Scholar] [CrossRef]
- Zhao, F.; Harnisch, F.; Schroder, U.; Scholz, F.; Bogdanoff, P.; Herrmann, I. Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem. Comm. 2005, 7, 1405–1410. [Google Scholar] [CrossRef]
- Nevin, K.P.; Kim, B.C.; Glaven, R.H.; Johnson, J.P.; Woodard, T.L.; Methe, B.A.; DiDonato, R.J.; Covalla, S.F.; Franks, A.E.; Liu, A.; Lovley, D.R. Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS ONE 2009, 4, e5628. [Google Scholar] [CrossRef] [PubMed]
- Rabaey, K.; Read, S.T.; Clauwaert, P.; Freguia, S.; Bond, P.L.; Blackall, L.L.; Keller, J. Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells. ISME J. 2008, 2, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Rabaey, K.; Boon, N.; Hofte, M.; Verstraete, W. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 2005, 39, 3401–3408. [Google Scholar] [CrossRef] [PubMed]
- Sund, C.J.; McMasters, S.; Crittenden, S.R.; Harrell, L.E.; Sumner, J.J. Effect of electron mediators on current generation and fermentation in a microbial fuel cell. Appl. Microbiol. Biotechnol. 2007, 76, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Logan, B.E.; Hamelers, B.; Rozendal, R.; Schroder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 2006, 40, 5181–5192. [Google Scholar] [CrossRef] [PubMed]
- Richter, H.; Nevin, K.P.; Jia, H.F.; Lowy, D.A.; Lovley, D.R.; Tender, L.M. Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer. Energ. Environ. Sci. 2009, 2, 506–516. [Google Scholar] [CrossRef]
- Fricke, K.; Harnisch, F.; Schroder, U. On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells. Energ. Environ. Sci. 2008, 1, 144–147. [Google Scholar] [CrossRef]
- Busalmen, J.P.; Esteve-Nunez, A.; Feliu, J.M. Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport. Environ. Sci. Technol. 2008, 42, 2445–2450. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Cui, C.; Chen, S.; Ai, X.; Yang, H.; Shen, P.; Peng, Z. A novel mediatorless microbial fuel cell based on direct biocatalysis of Escherichia coli. Chem. Commun. Camb. 2006, 2257–2259. [Google Scholar] [CrossRef] [PubMed]
- Srikanth, S.; Marsili, E.; Flickinger, M.C.; Bond, D.R. Electrochemical characterization of Geobacter sulfurreducens cells immobilized on graphite paper electrodes. Biotechnol. Bioeng. 2008, 99, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Dumas, C.; Mollica, A.; Feron, D.; Basseguy, R.; Etcheverry, L.; Bergel, A. Checking graphite and stainless anodes with an experimental model of marine microbial fuel cell. Bioresour. Technol. 2008, 99, 8887–8894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, K.Y.; Cord-Ruwisch, R.; Ho, G. A new approach for in situ cyclic voltammetry of a microbial fuel cell biofilm without using a potentiostat. Bioelectrochemistry 2009, 74, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Marsili, E.; Baron, D.B.; Shikhare, I.D.; Coursolle, D.; Gralnick, J.A.; Bond, D.R. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl. Acad. Sci. USA 2008, 105, 3968–3973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nevin, K.P.; Lovley, D.R. Novel mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. Appl. Envioron. Microbiol. 2002, 68, 2294–2299. [Google Scholar]
- Hernandez, M.E.; Kappler, A.; Newman, D.K. Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl. Environ. Microbiol. 2004, 70, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Reguera, G.; McCarthy, K.D.; Mehta, T.; Nicoll, J.S.; Tuominen, M.T.; Lovley, D.R. Extracellular electron transfer via microbial nanowires. Nature 2005, 435, 1098–1101. [Google Scholar] [CrossRef] [PubMed]
- Myers, C.R.; Myers, J.M. Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J. Bacteriol. 1992, 174, 3429–3438. [Google Scholar] [PubMed]
- Lovley, D.R. Microbial fuel cells: Covel microbial physiologies and engineering approaches. Curr. Opin. Biotechnol. 2006, 17, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Lovley, D.R. The microbe electric: Conversion of organic matter to electricity. Curr. Opin. Biotechnol. 2008, 19, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Lovley, D.R. Extracellular electron transfer: Wires, capacitors, iron lungs, and more. Geobiology 2008, 6, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Holmes, D.E.; Bond, D.R.; O'Neil, R.A.; Reimers, C.E.; Tender, L.R.; Lovley, D.R. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microbial Ecol. 2004, 48, 178–190. [Google Scholar] [CrossRef] [PubMed]
- Ishii, S.; Watanabe, K.; Yabuki, S.; Logan, B.E.; Sekiguchi, Y. Comparison of electrode reduction activities of geobacter sulfurreducens and an enriched consortium in an air-cathode microbial fuel cell. Appl. Environ. Microbiol. 2008, 74, 7348–7355. [Google Scholar] [CrossRef] [PubMed]
- Methé, B.A.; Nelson, K.E.; Eisen, J.A.; Paulsen, I.T.; Nelson, W.; Heidelberg, J.F.; Wu, D.; Wu, M.; Ward, N.; Beanan, M.J.; Dodson, R.J.; Madupu, R.; Brinkac, L.M.; Daugherty, S.C.; DeBoy, R.T.; Durkin, A.S.; Gwinn, M.; Kolonay, J.F.; Sullivan, S.A.; Haft, D.H.; Selengut, J.; Davidsen, T.M.; Zafar, N.; White, O.; Tran, B.; Romero, C.; Forberger, H.A.; Weidman, J.; Khouri, H.; Feldblyum, T.V.; Utterback, T.R.; Van Aken, S.E.; Lovley, D.R.; Fraser, C.M. The genome of Geobacter sulfurreducens: Insights into metal reduction in subsurface environments. Science 2003, 302, 1967–1969. [Google Scholar] [CrossRef] [PubMed]
- Coppi, M.V.; Leang, C.; Sandler, S.J.; Lovley, D.R. Development of a genetic system for Geobacter sulfurreducens. Appl. Environ. Microbiol. 2001, 67, 3180–3187. [Google Scholar] [CrossRef] [PubMed]
- Postier, B.L.; DiDonato, R.J., Jr.; Nevin, K.P.; Liu, A.; Frank, B.; Lovley, D.R.; Methe, B.A. Benefits of electrochemically synthesized oligonucleotide microarrays for analysis of gene expression in understudied microorganisms. J. Microbiol. Methods 2008, (in press). [Google Scholar] [CrossRef] [PubMed]
- Park, D.H.; Zeikus, J.G. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng. 2003, 81, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Logan, B.E.; Regan, J.M. Electricity-producing bacterial communities in microbial fuel cells. Trend Microbiol. 2006, 14, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Debabov, V.G. Electricity from microorganisms. Mikrobiologiia 2008, 77, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Chang, I.S.; Moon, H.; Bretschger, O.; Jang, J.K.; Park, H.I.; Nealson, K.H.; Kim, B.H. Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J. Microbiol. Biotechnol. 2006, 16, 163–177. [Google Scholar]
- Kim, B.C.; Leang, C.; Ding, Y.H.; Glaven, R.H.; Coppi, M.V.; Lovley, D.R. OmcF, a putative c-Type monoheme outer membrane cytochrome required for the expression of other outer membrane cytochromes in Geobacter sulfurreducens. J. Bacteriol. 2005, 187, 4505–4513. [Google Scholar] [CrossRef] [PubMed]
- Holmes, D.E.; Chaudhuri, S.K.; Nevin, K.P.; Mehta, T.; Methe, B.A.; Liu, A.; Ward, J.E.; Woodard, T.L.; Webster, J.; Lovley, D.R. Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. Env. Microbiol. 2006, 8, 1805–1815. [Google Scholar] [CrossRef] [PubMed]
- Holmes, D.E.; Mester, T.; O'Neil, R.A.; Perpetua, L.A.; Larrahondo, M.J.; Glaven, R.; Sharma, M.L.; Ward, J.E.; Nevin, K.P.; Lovley, D.R. Genes for two multicopper proteins required for Fe(III) oxide reduction in Geobacter sulfurreducens have different expression patterns both in the subsurface and on energy-harvesting electrodes. Microbiol. 2008, 154, 1422–1435. [Google Scholar] [CrossRef] [PubMed]
- Busalmen, J.P.; Esteve-Nunez, A.; Berna, A.; Feliu, J.M. C-type cytochromes wire electricity-producing bacteria to electrodes. Angew. Chem. Int. Ed. Engl. 2008, 47, 4874–4877. [Google Scholar] [CrossRef] [PubMed]
- Franks, A.E.; Nevin, K.P.; Jia, H.; Izallalen, M.; Woodard, T.L.; Lovley, D.R. Novel strategy for three-dimensional real-time imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation within the anode biofilm. Energ. Environ. Sci. 2009, 2, 113–119. [Google Scholar] [CrossRef]
- Reguera, G.; Nevin, K.P.; Nicoll, J.S.; Covalla, S.F.; Woodard, T.L.; Lovley, D.R. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens Fuel Cells. Appl. Environ. Microbiol. 2006, 72, 7345–7348. [Google Scholar] [CrossRef] [PubMed]
- Kato-Marcus, A.; Torres, C.I.; Rittmann, B.E. Conduction-based modeling of the biofilm anode of a microbial fuel cell. Biotechnol. Bioeng. 2007, 98, 1171–1182. [Google Scholar] [CrossRef] [PubMed]
- Picioreanu, C.; Head, I.M.; Katuri, K.P.; van Loosdrecht, M.C.; Scott, K. A computational model for biofilm-based microbial fuel cells. Water Res. 2007, 41, 2921–2940. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Berbel, X.; Muñoz, F.J.; Vigués, N.; Mas, J. On-chip impedance measurements to monitor biofilm formation in the drinking water distribution network. Sensor Actuat. B: Chem. 2006, 118, 129–134. [Google Scholar] [CrossRef]
- Dheilly, A.; Linossier, I.; Darchen, A.; Hadjiev, D.; Corbel, C.; Alonso, V. Monitoring of microbial adhesion and biofilm growth using electrochemical impedancemetry. Appl. Microbiol. Biotechnol. 2008, 79, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Herbert-Guillou, D.; Tribollet, B.; Festy, D.; KiÈnÈ, L. In situ detection and characterization of biofilm in waters by electrochemical methods. Electrochimica Acta 1999, 45, 1067–1075. [Google Scholar] [CrossRef]
- Izallalen, M.; Mahadevan, R.; Burgard, A.; Postier, B.; Didonato, R., Jr.; Sun, J.; Schilling, C.H.; Lovley, D.R. Geobacter sulfurreducens strain engineered for increased rates of respiration. Met. Eng. 2008, 10, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Mahadevan, R.; Bond, D.R.; Butler, J.E.; Esteve-Nunez, A.; Coppi, M.V.; Palsson, B.O.; Schilling, C.H.; Lovley, D.R. Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Appl. Environ. Microbiol. 2006, 72, 1558–1568. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.; Nevin, K.P.; Kim, B.C.; Franks, A.E.; Klimes, A.; Tender, L.M.; Lovley, D.R. Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosens. Bioelectron. 2009, 24, 3498–3503. [Google Scholar] [CrossRef] [PubMed]
- Torres, C.I.; Lee, H.S.; Rittmann, B.E. Carbonate species as OH- carriers for decreasing the pH gradient between cathode and anode in biological fuel cells. Environ. Sci. Technol. 2008, 42, 8773–8777. [Google Scholar] [CrossRef] [PubMed]
- Torres, C.I.; Kato Marcus, A.; Rittmann, B.E. Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnol. Bioeng. 2008, 100, 872–881. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Torres, C.I.; Rittmann, B.E. Effects of Substrate Diffusion and Anode Potential on Kinetic Parameters for Anode-Respiring Bacteria. Environ. Scienc. Technol. 2009, 43, 7571–7577. [Google Scholar] [CrossRef]
- Franks, A.E.; Nevin, K.P.; Glaven, R.H.; Lovley, D.R. Microtoming Coupled to Microarray Analysis to Evaluate the Spatial Metabolic Status of Geobacter sulfurreducens Biofilms. ISME J. 2010. [Google Scholar] [CrossRef] [PubMed]
- Logan, B.E.; Regan, J.M. Microbial fuel cells-challenges and applications. Environ. Sci. Technol. 2006, 40, 5172–5180. [Google Scholar] [CrossRef] [PubMed]
- Clauwaert, P.; van der Ha, D.; Boon, N.; Verbeken, K.; Verhaege, M.; Rabaey, K.; Verstraete, W. Open air biocathode enables effective electricity generation with microbial fuel cells. Environ. Scienc. Technol. 2007, 41, 7564–7569. [Google Scholar] [CrossRef]
- Rismani-Yazdi, H.; Carver, S.M.; Christy, A.D.; Tuovinen, O.H. Cathodic limitations in microbial fuel cells: An overview. J. Power Sourc. 2008, 180, 683–694. [Google Scholar] [CrossRef]
- Gil, G.C.; Chang, I.S.; Kim, B.H.; Kim, M.; Jang, J.K.; Park, H.S.; Kim, H.J. Operational parameters affecting the performannce of a mediator-less microbial fuel cell. Biosens. Bioelectron. 2003, 18, 327–334. [Google Scholar] [CrossRef]
- Rabaey, K.; Clauwaert, P.; Aelterman, P.; Verstraete, W. Tubular microbial fuel cells for efficient electricity generation. Environ. Sci. Technol. 2005, 39, 8077–8082. [Google Scholar] [CrossRef] [PubMed]
- Gregory, K.B.; Bond, D.R.; Lovley, D.R. Graphite electrodes as electron donors for anaerobic respiration. Env. Microbiol. 2004, 6, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Gregory, K.B.; Lovley, D.R. Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Env. Sci. Tech. 2005, 39, 8943–8947. [Google Scholar] [CrossRef]
- Rhoads, A.; Beyenal, H.; Lewandowski, Z. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ. Sci. Technol. 2005, 39, 4666–4671. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.T.; Kim, D.H.; Oh, S.J.; Rasool, K.; Park, D.H.; Zhang, R.H.; Ahn, D.H. Nitrifying biocathode enables effective electricity generation and sustainable wastewater treatment with microbial fuel cell. Water Sci. Technol. 2009, 59, 1803–1808. [Google Scholar] [CrossRef] [PubMed]
- Bergel, A.; FÈron, D.; Mollica, A. Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem. Comm. 2005, 7, 900–904. [Google Scholar] [CrossRef] [Green Version]
- You, S.J.; Ren, N.Q.; Zhao, Q.L.; Wang, J.Y.; Yang, F.L. Power generation and electrochemical analysis of biocathode microbial fuel cell using graphite fibre brush as cathode material. Fuel Cells 2009, 9, 588–596. [Google Scholar] [CrossRef]
- Chen, G.W.; Choi, S.J.; Lee, T.H.; Lee, G.Y.; Cha, J.H.; Kim, C.W. Application of biocathode in microbial fuel cells: Cell performance and microbial community. App. Microbiol. Biotechnol. 2008, 79, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Strycharz, S.; Gannon, S.; Boles, A.; Franks, A.; Nevin, K.; Lovley, D.R. Reductive dechlorination of 2-chlorophenol by anaeromyxobacter dehalogenans with an electrode serving as the electron donor. Environ. Microbio. Environ. Microbiol. Report 2010, 2, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Strycharz, S.M.; Woodard, T.L.; Johnson, J.P.; Nevin, K.P.; Sanford, R.A.; Loffler, F.E.; Lovley, D.R. Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter Lovleyi. Appl. Environ. Microbiol. 2008, 74, 5943–5947. [Google Scholar] [CrossRef] [PubMed]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Franks, A.E.; Nevin, K.P. Microbial Fuel Cells, A Current Review. Energies 2010, 3, 899-919. https://doi.org/10.3390/en3050899
Franks AE, Nevin KP. Microbial Fuel Cells, A Current Review. Energies. 2010; 3(5):899-919. https://doi.org/10.3390/en3050899
Chicago/Turabian StyleFranks, Ashley E., and Kelly P. Nevin. 2010. "Microbial Fuel Cells, A Current Review" Energies 3, no. 5: 899-919. https://doi.org/10.3390/en3050899
APA StyleFranks, A. E., & Nevin, K. P. (2010). Microbial Fuel Cells, A Current Review. Energies, 3(5), 899-919. https://doi.org/10.3390/en3050899