How Will Hydroelectric Power Generation Develop under Climate Change Scenarios? A Case Study in the Upper Danube Basin
Abstract
:1. Introduction
2. Hydropower in the Upper Danube Basin
3. Methods
3.1. The Hydrological Model PROMET and Its Components Considering Snow- and Ice-Melt, Channel Flow and Man-Made Hydraulic Structures
3.2. The Hydropower Module
3.3. Validation
Annual Values | Daily Values | ||||||
---|---|---|---|---|---|---|---|
Gauge name | River | Size of (sub-) watershed | Slope of linear regression | Coefficient of determination | Slope of linear regression | Coefficient of determination | Nash-Sutcliffe efficiency coefficient |
Achleiten | Danube | 76,660 km2 | 1.05 | 0.93 | 1.03 | 0.87 | 0.84 |
Hofkirchen | Danube | 46,496 km2 | 1.12 | 0.93 | 1.11 | 0.87 | 0.81 |
Dillingen | Danube | 11,350 km2 | 1.14 | 0.93 | 1.13 | 0.84 | 0.72 |
Oberaudorf | Inn | 9715 km2 | 0.99 | 0.80 | 0.94 | 0.81 | 0.80 |
Plattling | Isar | 8435 km2 | 1.03 | 0.88 | 1.08 | 0.75 | 0.47 |
Laufen | Salzach | 6112 km2 | 0.93 | 0.85 | 0.86 | 0.85 | 0.80 |
Heitzenhofen | Naab | 5431 km2 | 1.01 | 0.86 | 0.99 | 0.78 | 0.79 |
Weilheim | Ammer | 607 km2 | 1.09 | 0.88 | 0.98 | 0.63 | 0.69 |
3.4. Meteorological Input Data and Climate Trends
Climate Trend | Temperature Increase (K) | Precipitation Changes (%) | ||
---|---|---|---|---|
Annual | Annual | Winter (November–April) | Summer (May–October) | |
IPCC regional | +3.3 | −4.4 | +2.1 | −10.2 |
MM5 regional | +4.7 | −3.5 | +10.1 | −14.6 |
REMO regional | +5.2 | −12.6 | +7.3 | −16.6 |
Extrapolation | +5.2 | −16.4 | +9.0 | −30.7 |
4. Results and Discussion of Future Scenarios
4.1. Future Meteorological and Hydrological Development in the Upper Danube Basin
Meteorological and hydrological variables | 1991–2000 | Climate trend | 2021–2030 | 2051–2060 | ||
---|---|---|---|---|---|---|
Av. | Δ | Av. | Δ | |||
Mean annual air temperature (°C) | 7.01 | IPCC | 8.04 | +1.03 | 9.18 | +2.17 |
MM5 | 8.26 | +1.25 | 9.70 | +2.69 | ||
REMO | 8.43 | +1.42 | 10.06 | +3.05 | ||
Extrapolation | 8.08 | +1.07 | 9.75 | +2.74 | ||
Mean annual precipitation sum (mm) | 1060 | IPCC | 1071 | +1% | 1053 | −1% |
MM5 | 1052 | −1% | 1055 | 0% | ||
REMO | 1020 | −4% | 1013 | −4% | ||
Extrapolation | 1061 | 0% | 959 | −10% | ||
Mean annual snow precipitation fraction (%) | 22 | IPCC | 21 | −1 | 18 | −5 |
MM5 | 20 | −2 | 17 | −5 | ||
REMO | 21 | −2 | 13 | −10 | ||
Extrapolation | 22 | 0 | 16 | −6 | ||
Mean annual evapotranspiration (mm) | 416 | IPCC | 445 | +7% | 459 | +10% |
MM5 | 415 | 0% | 429 | +3% | ||
REMO | 419 | +1% | 442 | +6% | ||
Extrapolation | 426 | +2% | 433 | +4% | ||
Mean runoff at Achleiten outlet gauge (m3/s) | 1480 | IPCC | 1568 | +6% | 1408 | −5% |
MM5 | 1482 | 0% | 1444 | −2% | ||
REMO | 1397 | −6% | 1315 | −11% | ||
Extrapolation | 1546 | +4% | 1286 | −13% | ||
Water stored as glacier ice (106 m3) | 16,591 | IPCC | 3979 | −76% | 292 | −98% |
MM5 | 4044 | −76% | 199 | −99% | ||
REMO | 3833 | −77% | 188 | −99% | ||
Extrapolation | 4157 | −75% | 214 | −99% | ||
Average amount of snowmelt (mm) | 332 | IPCC | 319 | −4% | 271 | −18% |
MM5 | 306 | −8% | 259 | −22% | ||
REMO | 297 | −11% | 224 | −33% | ||
Extrapolation | 339 | +2% | 270 | −19% |
4.2. Hydropower Development in the Upper Danube Basin
4.2.1. Development of Annual Production
1991–2000 | 2021–2030 | 2051–2060 | ||||
---|---|---|---|---|---|---|
(TWh) | (TWh) | (%) | (TWh) | (%) | ||
Annual | Reference | 17.6 | − | − | − | − |
IPCC regional | − | 17.9 | +1.5 | 17.2 | −2.2 | |
MM5 regional | − | 17.2 | −2.5 | 16.9 | −3.8 | |
REMO regional | − | 16.8 | −4.7 | 16.4 | −6.7 | |
Extrapolation | − | 17.1 | −3.0 | 15.0 | −15.0 | |
Summer | Reference | 11.1 | − | − | − | − |
IPCC regional | 10.4 | −6.4 | 9.4 | −15.3 | ||
MM5 regional | 9.8 | −11.7 | 8.8 | −20.5 | ||
REMO regional | 9.4 | −15.1 | 8.5 | −23.0 | ||
Extrapolation | 9.6 | −13.5 | 7.1 | −35.6 | ||
Winter | Reference | 6.5 | − | − | − | − |
IPCC regional | − | 7.5 | +15.0 | 7.8 | +19.9 | |
MM5 regional | − | 7.4 | +12.3 | 8.1 | +24.5 | |
REMO regional | − | 7.4 | +12.7 | 7.9 | +21.0 | |
Extrapolation | − | 7.5 | +14.7 | 7.8 | +19.8 |
4.2.2. Development in Winter
4.2.3. Development in Summer
4.2.4. Development of the Summer and Winter Fraction
1991–2000 | 2021–2030 | 2051–2060 | ||||
---|---|---|---|---|---|---|
Summer | Winter | Summer | Winter | Summer | Winter | |
Reference | 63.1 | 36.9 | ||||
IPCC regional | 58.1 | 41.9 | 54.7 | 45.3 | ||
MM5 regional | 57.0 | 43.0 | 52.1 | 47.9 | ||
REMO regional | 56.0 | 44.0 | 51.8 | 48.2 | ||
Extrapolation | 56.1 | 43.9 | 47.3 | 52.7 |
4.3. Regional Differences within the Upper Danube Basin
(a) Donauwoerth | (b) Wasserburg | (c) Kaunertal | |
---|---|---|---|
Location at river/reservoir | river Danube | river Inn | Gepatsch reservoir, filled by the stream Faggenbach and several water transfers |
Geogr. coordinates | E 10.77°, N 48.70° | E 12.22°, N 48.06° | E 10.74°, N 46.96° |
Type of hydropower plant | runoff-river power plant | runoff-river power plant | reservoir power plant |
Start year of operation | 1984 | 1938 | 1964 |
Mean hydraulic head | 5.5 m | 7.0 m | 844.0 m |
Maximum turbine discharge | 200 m3/s | 465 m3/s * | 54 m³/s |
Maximum capacity | 8.5 MW | 24 MW * | 370 MW |
Mean annual hydroelectric power generation | 54.8 GWh | 148.3 GWh * | 661.0 GWh |
Data base | [70,71] | [70,72] | [73] |
4.3.1. Hydrological and Hydroelectric Characteristics
- (1)
- The Donauwoerth runoff-river power plant is situated at the upper part of the river Danube with a catchment area of 12,693 km2. It is dominated by the mid-altitude mountains in the Northwest and has little alpine influence from the tributary Iller in the South. Therefore the present runoff regime is predominantly characterised by rain (pluvial). Donauwoerth is a medium sized runoff-river power plant with a mean annual hydroelectric power generation of approx. 60 GWh and a maximum turbine discharge of 200 m3/s.
- (2)
- The Wasserburg runoff-river power plant at the lower part of the river Inn with a catchment area of 11,980 km2 is mostly influenced by the snow storage and also partly by the ice storage of the Central Alps. The present runoff regime is predominantly influenced by snow-melt (nival). Wasserburg is a large runoff-river power plant with a mean annual hydroelectric power generation of approx. 150 GWh and a maximum turbine discharge of approx. 500 m3/s.
- (3)
- The Kaunertal reservoir hydropower plant has a small catchment area of 279 km2 and is situated in a highly glaciated alpine head-watershed in the Austrian Central Alps. Therefore the present runoff regime is predominantly composed by the snow and ice storage (glacio-nival). With a mean annual hydroelectric power generation of 661 GWh, the power plant has a maximum turbine discharge of 54 m3/s and a mean hydraulic head of 844 m, depending on the filling line of the Gepatsch reservoir. The reservoir outflow and storage volume is determined using a standard monthly operation plan (see Figure 3).
4.3.2. Contribution of the Runoff Components Rain, Snow- and Ice-Melt
4.3.3. Development of Hydroelectric Power Generation
- (1)
- During the reference period the mean annual course of hydroelectric power generation at Donauwoerth is generally balanced with small peaks in January, March and July. In the past, the variability was very low; each month had a mean fraction of 8 to 9% of the mean total annual production. In the future, depending on the intensity of the respective climate trend, the production declines in the summer and autumn months and increases slightly in the winter months, leading to an increase of the monthly variability with a range from 4 to 9.5% of the mean total annual production considering all climate trends. Whilst the development for all trends is less pronounced until 2030 and for the trend IPCC regional also until 2060, due to a large decline in summer precipitation Extrapolation shows an extraordinarily severe decline in the second scenario period with distinct minima in September and October, whereas the trends MM5 regional and REMO regional indicate the future minimum in August. Because the runoff component rain has the highest influence at this location, the changes are predominately triggered by changes in precipitation with a distinct decrease in summer and a marked increase in winter. The future decrease of the runoff component snow-melt plays only a minor role because its contribution is generally very low. The development of hydroelectric power generation at this site is mainly influenced by changes in runoff variability. However, low-flow events become more severe in summer at less alpine influenced sites, leading to possible production restrictions, especially during the second simulation period.
- (2)
- Regarding Wasserburg, the graph of hydroelectric power generation in the past shows a distinct annual cycle with a minimum in February due to the highest snow storage during this month, and its maximum in July depending on snow- and ice-melt and a the summer precipitation peak. The inter-annual variability is high with mean monthly fractions of 4.5 to 11% of the mean total annual production. The trends show a shift of the former July-maximum towards April and May, whilst the summer months with their former high production values tend to reach a clear minimum especially under the climate trend Extrapolation in the second scenario decade. This is triggered by a general reduction of the snow-melt and due to warmer temperatures to an earlier outset of the snow-melting season in spring. However, the former minimum in February still remains, because during this month the snow storage is still highest. But the reduction of the February-minimum indicates a higher winter rain contribution and a general decrease of the snow storage. Moreover, less low-flow occurs in winter, which leads to fewer restrictions in hydroelectric power generation. The main reason for this is the transformation of snowfall into rainfall in winter leading to more runoff in this time period. In contrast to Donauwoerth, the inter-annual variability experiences a slight decline with a future range of mean monthly fractions of 5.5 to 10.5% until 2060, because the future mean minima and maxima values are less pronounced than during the reference period. Summarized, at this location the inter-annual changes are mostly triggered by changes of the snow storage with an increasing influence of the runoff component rain. Thus, the development of the hydroelectric power generation will be more and more triggered by the runoff component rain.
- (3)
- As described in Section 3.1, a standard monthly-based operation plan for the Gepatsch reservoir of the Kaunertal power plant is included, which shifts the natural annual runoff course due to assumed electricity demands. The management plan refers to present conditions and is not changed for the future simulations because of an uncertain development in energy strategies and demand. However, only monthly values were assumed, not taking into account detailed management structures. Due to no further detailed information about a higher temporal resolution, this assumption should be seen as a reasonable approach. The past annual course of the hydroelectric power generation has, because of its highly alpine character, a greater variability than Wasserburg or Donauwoerth with mean monthly fractions of 2 to 17% of the mean total annual production. Although the implemented management plan shifts the reservoir inflows temporarily, in August a clear maximum occurred due to large snow- and ice-melting rates, whereas in February a clear minimum due to high winter snow storage, was observed. In the future, the development of the four climate trends is similar to Wasserburg, however, with a drastic decline in ice-melt influence until 2060. The monthly production variability decreases slightly during the decades 2021–2030 and 2051–2060 because of less pronounced mean minima and maxima values. But there still remains a high variability of 2.5 to 15% until 2060. Like at the Wasserburg location, the reduction of the February-minimum indicates a higher winter rain contribution for the future, especially for the trend MM5 regional. Because of earlier snow-melt, glacier ice will become snow-free sooner in the year, which increases glacier melting. In 2051–2060 the highest energy production occurs in May for all four climate trends. Hydroelectric power generation will still be high during summer, but will experience a strong decline due to a decrease of the snow storage and glacier retreat resulting in less snow-and ice-melt, especially in the second future decade. This summer development is especially pronounced for the trend Extrapolation.
5. Conclusions
Acknowledgements
References
- IPCC. Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the Forth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Cambridge, UK, 2007. [Google Scholar]
- REN21 (Renewable Energy Policy Network for the 21st Century). Renewables 2010. Global Status Report; REN21 Secretary: Paris, France, 2010. [Google Scholar]
- Energiestatus Österreich; Bundesministerium für Wirtschaft, Familie und Jugend: Vienna, Austria, 2011; Available online: http://www.bmwfj.gv.at/EnergieUndBergbau/Energieversorgung/Documents/A4_Kern_doppelseitig%20gross%20%28korr%29.pdf (accessed on 18 August 2011).
- Wasserkraftnutzung. Fakten und Zahlen; Bundesamt für Energie: Bern, Switzerland, 2010; Available online: http://www.bfe.admin.ch/themen/00490/00491/index.html?lang=de&dossier_id=00803 (accessed on 18 August 2011).
- Schaefli, B.; Hingray, B.; Musy, A. Climate change and hydropower production in the Swiss Alps: Quantification of potential impacts and related modelling. Hydrol. Earth Syst. Sci. 2007, 11, 1191–1205. [Google Scholar] [CrossRef]
- Beniston, M.; Stoffel, M.; Hill, M. Impacts of climate change on water and natural hazards in the Alps: Can current water governance cope with future challenges? Examples from the European “ACQWA” project. Environ. Sci. Policy 2011, in press. [Google Scholar]
- Blöschl, G.; Schöner, W.; Kroiß, H.; Blaschke, A.P.; Böhm, R.; Haslinger, K.; Kreuzinger, N.; Merz, R.; Parajka, J.; Salinas, J.L.; et al. Anpassungsstrategien an den Klimawandel für Österreichs Wasserwirtschaf—Ziele und Schlussfolgerungen der Studie für Bund und Länder. Oesterr. Wasser-Abfallwirtsch. 2011, 1–2, 1–20. [Google Scholar] [CrossRef]
- Klein, B.; Krahe, P.; Lingemann, I.; Nilson, E.; Kling, H.; Fuchs, M. Assessing Climate Change Impacts on Water Balance in the Upper Danube Basin based on a 23 Member RCM Ensemble. In Proceedings of the XXVth Conference of the Danubian Countries, Budapest, Hungary, 16–17 June 2011.
- Dobler, C.; Stötter, J.; Schöberl, F. Assessment of climate change impacts on the hydrology of the Lech Valley in northern Alps. J. Water Clim. Change 2010, 1, 207–218. [Google Scholar] [CrossRef]
- Weber, M.; Braun, L.; Mauser, W.; Prasch, M. Contribution of rain, snow- and icemelt in the Upper Danube discharge today and in the future. Geogr. Fis. Dinam. Quat. 2010, 33, 221–230. [Google Scholar]
- Weber, W.; Braun, L.; Mauser, W.; Prasch, M. Die Bedeutung der Gletscherschmelze für den Abfluss der Donau gegenwärtig und in der Zukunft. Mitt. Hydrogr. Dienstes Österreich 2009, 86, 1–29. [Google Scholar]
- Weingartner, R.; Viviroli, D.; Schädler, B. Water resources in mountain regions: A methodological approach to assess the water balance in a highlandlowland-system. Hydrol. Process. 2007, 21, 578–585. [Google Scholar] [CrossRef]
- Horton, P.; Schaefli, B.; Mezghani, A.; Hingray, B.; Musy, A. Assessment of climate-change impacts on alpine discharge regimes with climate model uncertainty. Hydrol. Process. 2006, 20, 2091–2109. [Google Scholar] [CrossRef]
- Beniston, M. Mountain climates and climatic change: An overview of processes focusing on the European Alps. Pure Appl. Geophys. 2005, 162, 1587–1606. [Google Scholar] [CrossRef]
- Zierl, B.; Bugmann, H. Global change impacts on hydrological processes in Alpine catchments. Water Resour. Res. 2005, 41, 1–13. [Google Scholar] [CrossRef]
- Beniston, M. Climatic change in mountain regions: A review of possible impacts. Clim. Change 2003, 59, 5–31. [Google Scholar] [CrossRef]
- Viviroli, D.; Weingartner, R.; Messerli, B. Assessing the hydrological significance of the world’s mountains. Mt. Res. Dev. 2003, 23, 32–40. [Google Scholar] [CrossRef]
- Arnell, N.W. The effect of climate change on hydrological regimes in Europe: A continental perspective. Glob. Environ. Change 1999, 9, 5–23. [Google Scholar] [CrossRef]
- Huss, M.; Jouvet, G.; Farinotti, D.; Bauer, A. Future high-mountain hydrology: A new parameterization of glacier retreat. Hydrol. Earth Syst. Sci. 2010, 14, 815–829. [Google Scholar] [CrossRef]
- Braun, L.; Weber, M.; Schulz, M. Consequences of climate change for runoff from Alpine regions. Ann. Glaciol. 2000, 31, 19–25. [Google Scholar] [CrossRef]
- Stanzel, P.; Nachtnebel, H.P. Mögliche Auswirkungen des Klimawandels auf den Wasserhaushalt und die Wasserkraftnutzung in Österreich. Oesterr. Wasser-Abfallwirtsch. 2010, 62/9–10, 180–187. [Google Scholar] [CrossRef]
- Kuhn, M.; Olefs, M. Auswirkungen von Klimaänderungen auf das Abflussverhalten von vergletscherten Einzugsgebieten im Hinblick auf die Speicherkraftwerke. In StartClim2007E; Institute of Meteorology and Geophysics, University of Innsbruck: Vienna, Austria, 2007. [Google Scholar]
- Lehner, B.; Czisch, G.; Vassolo, S. The impact of global change on hydropower potential of Europe: A model-based analysis. Energy Policy 2005, 33, 839–855. [Google Scholar] [CrossRef]
- Piot, M. Auswirkungen der klimaerwärmung auf die wasserkraftproduktion der schweiz. Wasser Energie Luft 2005, 97, 365–367. [Google Scholar]
- Madani, K.; Lund, J.R. Estimated impacts of climate warming on California’s high-elevation hydropower. Clim. Change 2010, 102, 521–538. [Google Scholar] [CrossRef]
- Payne, J.T.; Wood, A.W.; Hamlet, A.F.; Palmer, R.N.; Lettenmaier, D.P. Mitigating the effects of climate change on water resources of the Columbia river basin. Clim. Change 2004, 62, 233–256. [Google Scholar] [CrossRef]
- Vicuna, S.; Dracup, J.A. The evolution of climate change impact studies on hydrology and water resources in California. Clim. Change 2007, 82, 327–350. [Google Scholar] [CrossRef]
- Christensen, N.; Wood, A.W.; Voisan, N.; Lettenmaier, D.P.; Palmer, N.R. The effect of climate change on the hydrology and water resources of the Colorado River basin. Clim. Change 2004, 62, 337–363. [Google Scholar] [CrossRef]
- GLOWA-Danube Projekt. Global Change Atlas Einzugsgebiet Obere Donau, 6th ed.; LMU Munich, Department of Geography: Munich, Germany, 2010; Available online: http://www.glowa-danube.de (accessed on 27 September 2011).
- Mauser, W.; Ludwig, R. GLOWA-Danube—A Research Concept to Develop Integrative Techniques, Scenarios and Strategies Regarding Global Changes of the Water Cycle. In Climate Change: Implications for the Hydrological Cycle and for Water Management, Advances in Global Research; Beniston, M., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands and Boston, MA, USA, 2002; Volume 10, pp. 171–188. [Google Scholar]
- Ludwig, R.; Mauser, W.; Niemeyer, S.; Colgan, A.; Stolz, R.; Escher-Vetter, H.; Kuhn, M.; Reichstein, M.; Tenhunen, J.; Kraus, A.; et al. Web-based modelling of energy, water and matter fluxes to support decision making in mesoscale catchments—The integrative perspective of GLOWA Danube. Phys. Chem. Earth 2003, 28, 621–634. [Google Scholar] [CrossRef]
- Mauser, W.; Bach, H. PROMET—Large scale distributed hydrological modelling to study the impact of climate change of the water flows of mountain watersheds. J. Hydrol. 2009, 376, 362–377. [Google Scholar] [CrossRef]
- Prasch, M.; Bernhardt, M.; Weber, M.; Strasser, U.; Mauser, W. Physically based Modelling of Snow Cover Dynamics in Alpine Regions. In Proceedings of the Innsbruck Conference, Innsbruck, Austria, 15–17 October 2007; Volume 2, pp. 323–330.
- Amt der Tiroler Landesregierung, Abteilung Wasser-, Forst- und Energierecht. Tiroler Energiestrategie 2020. Grundlage für die Tiroler Energiepolitik; Tiroler Landesregierung, Abteilung Wasser-, Forst- und Energierecht: Innsbruck, Austria, 2008. [Google Scholar]
- Bayerisches Staatsministerium für Wirtschaft, Infrastruktur, Verkehr und Technologie. Eckpunkte der bayerischen Energiepolitik; Bayerisches Staatsministerium für Wirtschaft, Infrastruktur, Verkehr und Technologie: Munich, Germany, 2008. [Google Scholar]
- Strasser, U.; Mauser, W. Modelling the spatial and temporal variations of the water balance for the Weser catchment 1965–1994. J. Hydrol. 2001, 254, 199–214. [Google Scholar] [CrossRef]
- Prasch, M.; Mauser, W. GLOWA-Danube: Integrative Techniques, Scenarios and Strategies Fort he Future of Water in the Upper Danube Basin. In Proceedings of the XXVth Conference of the Danubian Countries in Budapest, Budapest, Hungary, 16–17 June 2011.
- Prasch, M.; Marke, T.; Strasser, U.; Mauser, W. Large scale integrated hydrological modelling of the impact of climate change on the water balance with DANUBIA. Adv. Sci. Res. 2011, 7, 61–70. [Google Scholar] [CrossRef]
- Prasch, M. Distributed Process Oriented Modelling of the Future Impact of Glacier Melt Water on Runoff in the Lhasa River Basin in Tibet. Ph.D. Thesis, Faculty of Geosciences, LMU Munich, Munich, Germany, 2010. Available online: http://edoc.ub.uni-muenchen.de/13031/ (accessed on 25 August 2011). [Google Scholar]
- Strasser, U.; Franz, H.; Mauser, W. Distributed Modelling of Snow Processes in the Berchtesgaden National Park (Germany). In Proceedings of the Alpine Snow Workshop, Munich, Germany, 5–6 October 2006; Volume 53, pp. 117–130.
- Bayerisches Landesamt für Umwelt. Québec-Bavarian International Collaboration on Climate Change—Klimawandel und Flussgebietsmanagement; Hof, Germany, 2011. Available online: http://www.lfu.bayern.de/wasser/klima_wandel/projekte/kliflum/index.htm (accessed on 25 August 2011).
- Climb Project. Climate Induced Changes on the Hydrology of Mediterranean Basins. Reducing Uncertainty and Quantifying Risk through an Integrated Monitoring and Modelling System. 2010. Available online: http://www.climb-fp7.eu (accessed on 25 August 2011).
- Blöschl, G.; Montanari, A. Climate change impacts—Throwing the dice? Hydrol. Process. 2010, 24, 374–381. [Google Scholar]
- Beven, K. Changing ideas in hydrology—The case of physically-based models original research article. J. Hydrol. 1989, 105, 157–172. [Google Scholar] [CrossRef]
- Cunge, J.A. On the subject of a flood propagation computation method (Muskingum method). J. Hydraul. Res. 1969, 7, 205–230. [Google Scholar] [CrossRef]
- Todini, E. A mass conservative and water storage consistent variable parameter Muskingum-Cunge approach. Hydrol. Earth Syst. Sci. 2007, 4, 1549–1592. [Google Scholar] [CrossRef]
- Ostrowski, M.; Lohr, H. Modellgestützte bewirtschaftung von talsperrensystemen. Wasser und Abfall 2002, 1–3, 40–45. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models, a discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Schaefli, B.; Gupta, H.V. Do Nash values have value? Hydrol. Process. 2007, 21, 2075–2080. [Google Scholar] [CrossRef]
- Wenn bei Starkregen die Produktion einbricht. Energiespektrum 2010, 9–10, 40–41. Available online: http://www.energiespektrum.de/index.cfm?pid=1705&pk=98082 (accessed on 27 September 2011).
- EEX transparency platform publishing market-relevant energy generation and consumption data. European Energy Exchange AG: Leipzig, Germany, 2011; Available online: http://www.transparency.eex.com/en/ (accessed on 28 June 2011).
- Mauser, W.; Prasch, M.; Strasser, U. Physically based Modelling of Climate Change Impact of Snow Cover Dynamics in Alpine Regions Using a Stochastic Weather Generator. In Proceedings of the International Congress on Modelling and Simulation MODSIM07, Christchurch, New Zealand, 10–13 December 2007; pp. 2138–2145.
- Orlowsky, B.; Gerstengarbe, F.W.; Werner, P.C. A resampling scheme for regional climate simulations and its performance compared to a dynamic RCM. Theor. Appl. Climatol. 2007, 92, 209–223. [Google Scholar] [CrossRef]
- Yates, D.; Gangopadhyay, S.; Rajagopalan, B.; Strzepek, K. A technique for generating regional climate scenarios using a nearest neighbour algorithm. Water Resour. Res. 2003, 39, 1–15. [Google Scholar] [CrossRef]
- Buishand, T.A.; Brandsma, T. Multiscale simulation of daily precipitation and temperature in the Rhine Basin by nearest-neighbour resampling. Water Resour. Res. 2001, 37, 2761–2776. [Google Scholar] [CrossRef]
- Young, K.C. A multivariate chain model for simulating climatic parameters from daily data. J. Appl. Meteorol. 1994, 33, 661–671. [Google Scholar] [CrossRef]
- Richardson, C.W. Stochastic simulation of daily precipitation, temperature and solar radiation. Water Resour. Res. 1981, 17, 182–190. [Google Scholar] [CrossRef]
- Semenov, M.A.; Brooks, R.J.; Barrow, E.M.; Richardson, C.W. Comparison of WGEN and LARS-WG stochastic weather generators for diverse climates. Clim. Res. 1998, 10, 95–107. [Google Scholar] [CrossRef]
- Racsko, P.; Szeidl, L.; Semenov, M.A. A serial approach to local stochastic weather models. Ecol. Model. 1991, 57, 27–41. [Google Scholar] [CrossRef]
- Jacob, D.; Goettel, H.; Kotlarski, S.; Lorenz, P.; Sieck, K. Klimaauswirkungen und Anpassungen in Deutschland. In Climate Change; Federal Environmental Agency: Dessau-Roßlau, Germany, 2008; Volume 11/08. [Google Scholar]
- Frei, C.; Christensen, J.H.; Déqué, M.; Jacob, D.; Jones, R.G.; Vidale, P.L. Daily precipitationstatistics in regional climate models: Evaluation and intercomparison for the European Alps. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Beniston, M.; Stephenson, D.B.; Christensen, O.B.; Ferro, C.A.T.; Frei, C.; Goyette, S.; Halsnaes, K.; Holt, T.; Jylhä, K.; Koffi, B.; et al. Future extreme events in European climate: An exploration of regional climate model projections. Clim. Change 2007, 81, 71–95. [Google Scholar] [CrossRef]
- van der Linden, P.; Mitchell, J.F.B. (Eds.) ENSEMBLES: Climate Change and Its Impacts Summary of Research and Results from the ENSEMBLES Project; Met Office Hadley Centre: Exter, UK, 2009; p. 164. Available online: http://www.ensembles-eu.org (accessed on 25 August 2011).
- Jacob, D.; Bärring, L.; Christensen, O.B.; Christensen, J.H.; de Castro, M.; Déqué, M.; Giorgi, F.; Hagemann, S.; Hirschi, M.; Jones, R.; et al. An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim. Change 2007, 81, 31–52. [Google Scholar] [CrossRef]
- Pfeiffer, A.; Zaengl, G. Validation of climate-mode MM5-simulations for the European Alpie region. Theor. Appl. Climatol. 2009, 101, 93–108. [Google Scholar] [CrossRef]
- Reiter, A.; Weidinger, R.; Mauser, W. Recent climate change at the Upper Danube—A temporal and spatial analysis of temperature and precipitation time series. Clim. Change 2011. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric test against trends. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Griffin: London, UK, 1970. [Google Scholar]
- Mauser, W.; Marke, T. Climate Change and Water Resources: Scenarios of Low-flow Conditions in the Upper Danube River Basin. IOP Conf. Ser. 2008, 4. [Google Scholar] [CrossRef]
- Die Wettbewerbsfähigkeit von großen Laufwasserkraftwerken im liberalisierten deutschen Strommarkt. Endbericht für das Bundesministerium für Wirtschaft und Arbeit (BMWA); Fichtner GmbH & Co KG: Stuttgart, Germany, 2003; Available online: http://www.emissionshandel-fichtner.de/pdf/BMWA_Langfassung.pdf (accessed on 12 May 2011).
- Mittlere Donaukraftwerke AG (MDK); BEW (Bayerische Elektrizitätswerke GmbH): Augsburg, Germany, 2011; Available online: http://www.bew-augsburg.de/cms_bew_inter/kraftwerke/wasserkraft/technikmdk.asp (accessed on 12 May 2011).
- Strasser, K.-H. Aktuelle Neubauprojekte der E.ON Wasserkraft—Verändertes Umfeld und deren Auswirkungen. Wasserwirtschaft 2007, 10, 102–104. [Google Scholar]
- Das Kraftwerk Kaunertal; TIWAG (Tiroler Wasserkraft AG): Innsbruck, Austria, 2006.
- Wasserkraftausbau; TIWAG (Tiroler Wasserkraft AG): Innsbruck, Austria, 2011; Available online: http://www.tiroler-wasserkraft.at/de/hn/wasserkraftausbau/index.php (accessed on 9 June 2011).
- E.ON Wasserkraft GmbH and Bayerische Elektrizitätswerke GmbH. Masterplan. Ausbaupotentiale Wasserkraft in Bayern. Bericht aus Sicht der beiden großen Betreiber von Wasserkraftanlagen in Bayern; Landshut: Augsburg, Germany, 2009; Available online: http://www.lfu.bayern.de/wasser/fachinformationen/fliessgewaesser_wasserkraft/anlagenstatistik/doc/potentialstudie.pdf (accessed on 9 June 2011).
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Koch, F.; Prasch, M.; Bach, H.; Mauser, W.; Appel, F.; Weber, M. How Will Hydroelectric Power Generation Develop under Climate Change Scenarios? A Case Study in the Upper Danube Basin. Energies 2011, 4, 1508-1541. https://doi.org/10.3390/en4101508
Koch F, Prasch M, Bach H, Mauser W, Appel F, Weber M. How Will Hydroelectric Power Generation Develop under Climate Change Scenarios? A Case Study in the Upper Danube Basin. Energies. 2011; 4(10):1508-1541. https://doi.org/10.3390/en4101508
Chicago/Turabian StyleKoch, Franziska, Monika Prasch, Heike Bach, Wolfram Mauser, Florian Appel, and Markus Weber. 2011. "How Will Hydroelectric Power Generation Develop under Climate Change Scenarios? A Case Study in the Upper Danube Basin" Energies 4, no. 10: 1508-1541. https://doi.org/10.3390/en4101508
APA StyleKoch, F., Prasch, M., Bach, H., Mauser, W., Appel, F., & Weber, M. (2011). How Will Hydroelectric Power Generation Develop under Climate Change Scenarios? A Case Study in the Upper Danube Basin. Energies, 4(10), 1508-1541. https://doi.org/10.3390/en4101508