Environmental Impacts and Costs of Hydrotreated Vegetable Oils, Transesterified Lipids and Woody BTL—A Review
Abstract
:1. Introduction
2. Methodology: Dimensions and Sources for Comparison
HVO | Transesterified Lipids | BTL | |
---|---|---|---|
Fuel composition | Alkanes | Esters | Alkanes |
Typical Volumetric yield (%) | 88–99 | 100 | |
Typical Mass yield (%) | 75–85 | 96 | 12–22 (wet input-30%) |
Density (kg/L) | 0.78 | 0.88 | 0.77 |
Lower heating value (MJ/kg) | 44 | 37–38 | 44 |
Cetane number | 70–90 | 50–65 | >75 |
By product yield (mass) | 5–14% | 10% | 1–13% |
3. Results and Discussion
3.1. Feedstock Comparison and Ranking
Study | Year | Indicator | Rape oil | Palm oil | Tallow | Tall oil | Waste oil |
---|---|---|---|---|---|---|---|
[14] | 2010 | GWP | 2 | 1* | |||
Total Energy Use | 2 | 1 * | |||||
Fossil Energy Use | 2 | 1 * | |||||
Acidification | 1 | 2 | |||||
Eutrophication | 2 | 1 * | |||||
[24] | 2010 | Ozone Depletion | 2 | 1 | |||
Acidification | 2 | 1 | |||||
Eutrophication | 2 | 1 | |||||
Photochemical Smog | 2 | 1 | |||||
Land Use | 2 | 1 (in 3 of 5 scenarios) | |||||
GWP | 2 | 1 (in 4 of 5 scenarios) | |||||
Biodiversity | Scenario dependent | Scenario dependent | |||||
[25] | 2007 | GHG | 3 | 2 | 1 | ||
UBP 06 | 3 | 2 | 1 | ||||
Non Renewable Energy | Similar | Similar | 1 | ||||
Smog | 2 | 3 | 1 | ||||
Eutrophication | 3 | 2 | 1 | ||||
Ecotoxicity | 2 | 3 | 1 | ||||
Acidification | 3 | 2 | 1 | ||||
Respiratory Diseases | 2 | 3 | 1 | ||||
Eco Indicator 99 | 3 | 2 | 1 | ||||
Land Use | 2 | 3 | 1 | ||||
[26] | 2009 | Net energy yield/ha | 2 | 1 | |||
GHG | 2 | 1 | |||||
[18,27] | 2008 | GHG | 2 or 3 | 2 or 3 | 1 | ||
Fossil energy use | 3 | 2 | 1 | ||||
Cumulative energy demand | 2 | 3 | 1 | ||||
[28] | 2009 | GHG | 2 | 1 | |||
Energy use | 2 | 1 | |||||
[29] | 2008 | GHG | Allocation dependent | Allocation dependent | 1 | ||
Fossil energy use | Allocation dependent | Allocation dependent | 1 | ||||
Total energy use | 2 | 3 | 1 | ||||
[30] | 2004 | Footprint | 3 | 2 | 1 | ||
[31] | 2010 | Energy Demand | 2 | 1 | |||
GHG | 2 | 1 | |||||
[32] | 2007 | GHG | 4 | 2 * | 3 | 1 | |
[33] | 2010 | GHG | 2 | 1 * | |||
[34] | 2010 | GHG | 2 | 1 | |||
Primary Energy Saving | 2 | 1 |
Year | Woody BTL | Transesterified Tall Oil | Transesterified Rapeseed Oil | Transesterified | Transesterified Tallow | Transesterified Used Cooking Oil | Fossil Diesel | |
---|---|---|---|---|---|---|---|---|
Reference | ||||||||
[11] | 83.8 | |||||||
[35] | 2008 | 30 | ||||||
[36] | 2008 | 18 | ||||||
[18] | 2009 | 8 | ||||||
[37] | 2009 | 10 | ||||||
[28] | 2009 | 2–9 | 44 | |||||
[30] | 2004 | 18 | ||||||
[29] | 2008 | 33–74 | 34–49 | 16–68 *** | ||||
[25] | 2007 | 50–70 | 45 | 10–15 | ||||
[26] | 2009 | 62 | 39 | |||||
[38] | 2010 | 48 | ||||||
[31] | 2010 | 35–54 | 23–26 | |||||
[39] | 2004 | 31–88 | ||||||
[40] | 2003 | 39–43 | 11–15 | |||||
[41] | 2010 | 8 | ||||||
[27] | 2008 | 40–45 | 30–55 | 7–20 | ||||
[42] | 2008 | 60–65 | ||||||
[33] | 2010 | 55–100 | 30–698 **** | |||||
[34] | 2006 | 30–60 ** | 23–38 * | |||||
[43] | 2009 | 5–25 | ||||||
Range | 8–30 | 2–9 | 30–100 | 23–698 | 16–68 | 7–26 | 83.8 |
3.2. Fuel Technology Ranking
3.2.1. Ranking of Transesterified Lipids vs. HVO
3.2.2. Ranking of BTL vs. Transesterified Lipids and/or HVO
Study | Year | Feedstock | Allocation | System boundary | Indicator | Transesterified Lipids | HVO | BTL |
---|---|---|---|---|---|---|---|---|
[20] * | 2008 | Soy | Displacement and allocation | Total Energy | No clear winner | No clear winner | NA | |
Fossil Energy Use | No clear winner | No clear winner | NA | |||||
GHG | No clear winner | No clear winner | NA | |||||
[18] | 2009 | Rape | Displacement and allocation | CED | 2 | 1 | 3 | |
Fossil energy savings | 3 | 2 | 1 | |||||
GHG | 3 | 2 | 1 | |||||
GHG savings per ton feedstock | 2 | 1 | 3 | |||||
[14] | 2010 | Palm and Rape | Displacement | GHG | 2 | 3 | 1 | |
Fossil energy use | 1 | 2 | NA | |||||
Total Energy Use | 2 | 1 | 3 | |||||
Acidification | 1 | 2 | NA | |||||
[22] | 2007 | NA | NA | Cradle to grave | Impact points | 2 | 1 | NA |
GHG | 2 | 1 | NA | |||||
[62] | 2007 | Soy | Total Energy Demand | No clear winner | No clear winner | NA | ||
Fossil energy Demand | 2 | 1 | NA | |||||
GHG | 2 | 1 | NA | |||||
[35] | 2008 | Different | GWP | 1 (UCO), 3 (palm and rape oil) | 2 (forest wood) | |||
UBP 06 ** | 1 (UCO), 3 (palm and rape oil) | 2 (forest wood) | ||||||
EI99 *** | 1 (UCO), 3 (palm and rape oil) | 2 (forest wood) | ||||||
[65] | 2010 | Soy | GWP | 2 | 1 | 1 NA | ||
[33] | 2010 | Rape/Palm | GWP | 2 (palm and rape oil) | 1 | |||
[27] | 2008 | Rape/Palm/Tallow | GWP**** | 2 | 1 | |||
Cumulative energy demand | 2 | 1 | ||||||
[64] | 2005 | NA | Single score | 2 | 1 | |||
emissions | 2 | 1 |
3.2.3. Discussion of the Environmental Impacts of Biodiesel Fuels
3.2.4. Climate Change Imposed by Land Use Changes
3.2.5. Climate Change Imposed by Fertilization
3.2.6. Climate Change and the Timing of GHG Emissions and Carbon Uptake
3.2.7. Land Use, Biodiversity and Water Use
3.2.8. Other Impacts Imposed by Agriculture and Forestry
3.2.9. Health and Safety Issues
3.3. Economic Assessment and Resource Availability
- According to FAO [115], total world production of palm oil in 2009 was approximately 41 million tons, where 0.5–0.6 tons were imported to EU for transesterified lipids production. Thus, 41 million tons of palm oil transesterified lipids could theoretically be produced from current production, but a large part of the world palm oil production is used for food and cosmetics. Palm is available at 450–547 USD/ton [22,116,117,118].
- European rapeseed oil in 2009 was approximately 21 million tons [119], of which more than 50% was destined for transesterified lipids production. This implies that 21 million tons of rapeseed oil transesterified lipids could be produced, but as for palm oil transesterified lipids, rapeseed oil has competing uses. Rapeseed oil is available at 650–824 USD/ton [22,116,117,118].
- Waste cooking oil production has been estimated in the US to be approximately 4–5 kg per capita per year [123]. With a population of approximately 500 million, the available waste oil could be 2–2.5 million tons per year in EU27. In UK, a potential of 1 million tons waste is estimated, which means that up to 16 kg waste oils per capita can be generated [124]. Using these numbers for the EU27 population, a range between 2–8 million tons of waste oils could be collected for transesterified lipids production, which implies a theoretical biodiesel production between 1.7–6.8 million tons. Waste oils are available at 100–300 USD/ton [116,125,126].
- In 2005, around 2.5 million tons of fats from the rendering industry was produced in EU17 [127], which means a theoretical production of 2.1 million tons of tallow transesterified lipids. Tallow has other uses, such as for food, pet food, chemicals and energy. Tallow is available at ∼200–550 USD/ton [45,64,121].
- A European study concluded that around 1270–1750 PJ/year of forest residues and forest industrial waste could be exploited for energy purposes in EU15. Energy crops could add an extra 1150 PJ/year. This could yield in total 1210–1450 PJ of BTL or 27.5–33 million tons BTL. This biomass must however compete with stationary uses and Edwards et al. [66] estimate that 824 PJ (18 million tons) syn-diesel could be produced annually, which constitutes 5.6% of the current (2007) fossil fuel use in EU25. Woody biomasss is available at 20–100 USD/ton (65%–70% dry mass) [15,128].
3.3.1. Costs of Producing Transesterified Lipids
3.3.2. Costs of Producing HVO
3.3.3. Costs of Producing BTL
3.3.4. Summary of Fuel Costs
Reference | Scale | Transesterified Rapeseed Oil | Transesterified Palm Oil | Transesterified Tallow | Transesterified Used Cooking Oil | Transesterified Tall Oil | Woody BTL |
---|---|---|---|---|---|---|---|
[130] | 5 kton/year | 0.88 EUR | |||||
[130] | 140 kton/year | 0.76 EUR | |||||
[39] | Large | 0.4 EUR | |||||
[39] | Small | 0.8 EUR | |||||
[116] | 143 million liter/year | 0.82 USD | |||||
[116] | 60 million liter/year | 0.88 USD | |||||
[116] | 137 million liter/year | 0.60 USD | |||||
[116] | 6 million liter/year | 0.85 USD | |||||
[118] | 100 kton/year | 0.94 USD | 0.70 USD | ||||
[45] | 113.4 million liter/year | 0.22–0.56 USD | |||||
[133] | 36 kton/year | 0.45 USD | |||||
[129] | 125 kton/year | 0.17 USD | |||||
[129] | 8 kton/year | 0.52 USD | |||||
[36] | 80 MWth | 1.12 EUR | |||||
[36] | 400 MWth | 0.85 EUR | |||||
[36] | 2000 MWth | 0.70 EUR | |||||
[15] | 106–118 kton/year | 0.65–1.05 EUR | |||||
[128] | 500 MWth | 0.95–1.24 USD | |||||
[142] | 120 kton/year | 1.02 EUR | |||||
[142] | 1200 kton/year | 0.82 EUR |
4. Concluding Remarks
References
- Lindfeldt, E.G.; Saxe, M.; Magnusson, M.; Mohseni, F. Strategies for a road transport system based on renewable resources-the case of an import-independent Sweden in 2025. Appl. Energy 2010, 87, 1836–1845. [Google Scholar] [CrossRef]
- Tsoskounoglou, M.; Ayerides, G.; Tritopoulou, E. The end of cheap oil: Current status and prospects. Energy Policy 2008, 36, 3797–3806. [Google Scholar] [CrossRef]
- Aleklett, K.; Hook, M.; Jakobsson, K.; Lardelli, M.; Snowden, S.; Soderbergh, B. The peak of the oil age-analyzing the world oil production reference scenario in world energy outlook 2008. Energy Policy 2010, 38, 1398–1414. [Google Scholar] [CrossRef]
- de Fraiture, C.; Giordano, M.; Liao, Y. Biofuels and implications for agricultural water use: Blue Impacts of green energy. Water Policy 2008, 10 (Suppl. 1), 67–81. [Google Scholar] [CrossRef]
- Hoekman, S.K.; Gertler, A.; Broch, A.; Robbins, C. Investigation of Biodistillates as Potential Blendstocks for Transportation Fuels; CRC Report No. AVFL-17; Coordinating Research Council, Inc.: Alpharetta, GA, USA, 2009. [Google Scholar]
- Smeets, E.M.; Faaij, A.P.; Lewandowski, I.M.; Turkenburg, W.C. A bottom-up assessment and review of global bio-energy potentials to 2050. Prog. Energy Combust. Sci. 2007, 33, 56–106. [Google Scholar] [CrossRef]
- Fischer, G.; Hizsnyik, E.; Prieler, S.; van Velthuizen, H. Assessment of Biomass Potentials for Biofuel Feedstock Production in Europe: Methodology and Results; Technical Report for REFUEL project sponsored by the European Commission under the Intelligent Energy Europe programme; International Institute for Applied Systems Analysis: Laxenburg, Austria, 2007. [Google Scholar]
- Fischer, G.; Prieler, S.; van Velthuizen, H.; Lensink, S.M.; Londo, M.; de Wit, M. Biofuel production potentials in europe: Sustainable use of cultivated land and pastures. Part I: Land productivity potentials. Biomass Bioenergy 2010, 34, 159–172. [Google Scholar] [CrossRef]
- Gallagher, E. The Gallagher Review of the Indirect Effects of Biofuels Production; Technical Report for Renewable Fuels Agency: St Leonards-on-Sea, UK, 2008. [Google Scholar]
- European Commission (EC). Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC; European Commission: Brussels, Belgium, 2009. [Google Scholar]
- European Commission (EC). Directive 2009/30/EC of the European Parliament and of the Council of 23 April 2009 amending Directive 98/70/EC as Regards the Specification of Petrol, Diesel and Gas-Oil and Introducing a Mechanism to Monitor and Reduce Greenhouse Gas Emissions and Amending Council Directive 1999/32/EC as Regards the Specification of Fuel Used by Inland Waterway Vessels and Repealing Directive 93/12/EEC; European Commission: Brussels, Belgium, 2009. [Google Scholar]
- Jamieson, A. The Long and Short of It: European Product Imbalances and Their Implications; Wood Mackenzie Report; Wood Mackenzie: Edinburgh, UK, 2005. [Google Scholar]
- Petrus, L.; Noordermeer, M. Biomass to biofuels, a chemical perspective. Green Chem. 2006, 8, 861–867. [Google Scholar] [CrossRef]
- Arvidsson, R.; Persson, S.; Froling, M.; Svanstrom, M. Life cycle assessment of hydrotreated vegetable oil from rape, oil palm and Jatropha. J. Clean. Prod. 2010, 19, 129–137. [Google Scholar] [CrossRef]
- Anonymous. Biomass to Liquid BTL Implementation Report; Technical Report for the German Energy Agency: Berlin, Germary, 2006. [Google Scholar]
- Baitz, M.; Binder, M.; Degen, W.; Deimling, S.; Krinke, S.; Rudloff, M. Comparative Life Cycle Assessment for SunDiesel (Choren Process) and Conventional Diesel Fuel, Executive Summary; Technical Report by DaimlerChrysler AG/Volkswagen AG; PE-Europe GmbH: Leinfelden-Echterdingen, Germany, 2004. [Google Scholar]
- Bridgwater, A. Technical and Economic Assessment of Thermal Processes for Biofuels; Technical Report for COPE Ltd.: Shetland, UK, 2009. [Google Scholar]
- Kalnes, T.N.; Koers, K.P.; Marker, T.; Shonnard, D.R. A technoeconomic and environmental life cycle comparison of green diesel to biodiesel and syndiesel. Environ. Prog. Sustain. Energy 2009, 28, 111–120. [Google Scholar] [CrossRef]
- Gerpen, J.V. Biodiesel processing and production. Fuel Process. Technol. 2005, 86, 1097–1107. [Google Scholar] [CrossRef]
- Huo, H.; Wang, M.; Bloyd, C.; Putsche, V. Life-cycle assessment of energy use and greenhouse gas emissions of soybean-derived biodiesel and renewable fuels. Environ. Sci. Technol. 2009, 43, 750–756. [Google Scholar] [CrossRef]
- Knothe, G. Biodiesel and renewable diesel: A comparison. Prog. Energy Combust. Sci. 2010, 36, 364–373. [Google Scholar] [CrossRef]
- Holmgren, J.; Gosling, C.; Marinangeli, R.; Marker, T.; Faraci, G.; Perego, C. New developments in renewable fuels offer more choices. Hydrocarb. Process. 2007, 86, 67–74. [Google Scholar]
- Huijbregts, M.; Rombouts, L.; Hellweg, S.; Frischknecht, R.; Hendriks, J.; van de Meent, D.; Ragas, M.J.; Reijnders, L.; Struijs, J. Is cumulative fossil energy demand a useful indicator for the environmental performance of products? Environ. Sci. Technol. 2006, 40, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.H. Comparative life cycle assessment of rapeseed oil and palm oil. Int. J. Life Cycle Assess. 2010, 15, 183–197. [Google Scholar] [CrossRef]
- Zah, R.; Boni, H.; Gauch, M.; Hischier, R.; Lehmann, M.; Wager, P. Life Cycle Assessment of Energy Products: Environmental Assessment of Biofuels-Executive Summary; Technical Report by Technology and Society Lab, Swiss Federal Laboratories for Materials Testing and Research (EMPA): St. Gallen, Switzerland, 2007. [Google Scholar]
- Thamsiriroj, T.; Murphy, J. Is it better to import palm oil from thailand to produce biodiesel in ireland than to produce biodiesel from indigenous irish rape seed? Appl. Energy 2009, 86, 595–604. [Google Scholar] [CrossRef]
- Kalnes, T.N.; Marker, T.; Shonnard, D.R.; Koers, K.P. Green diesel production by hydrorefining renewable feedstocks. Biofuels Technol. 2008, 4, 7–11. [Google Scholar]
- Tornvall, U.; Borjesson, P.; Tufvesson, L.M.; Hatti-Kaul, R. Biocatalytic production of fatty epoxides from rapeseed & tall oil derivatives: Process & environmental evaluation. Ind. Biotechnol. 2009, 5, 184–192. [Google Scholar]
- Nikander, S. Greenhouse gas and energy intensity of product chain: Case transport biofuel. Master’s Thesis, Department of Civil and Environmental Engineering, Faculty of Engineering and Architecture, Helsinki University of Technology, Helsinki, Finland, 2008. [Google Scholar]
- Niederl, A.; Narodoslawsky, M. Life Cycle Assessment Study of Biodiesel from Tallow and Used Vegetable Oil; Technical Report by Institute for Resource Efficient and Sustainable Systems, Graz University of TechnologyInstitute for Resource Efficient and Sustainable Systems Process Evaluation (Graz University of Technology): Graz, Austria, 2004. [Google Scholar]
- Thamsiriroj, T.; Murphy, J. The impact of the life cycle analysis methodology on whether biodiesel produced from residues can meet the eu sustainability criteria for biofuel facilities constructed after 2017. Renew. Energy 2011, 36, 50–63. [Google Scholar] [CrossRef]
- Beer, T.; Grant, T.; Campbell, P.K. The Greenhouse and Air Quality Emissions of Biodiesel Blends in Australia; Technical Report by CSIRO (Commonwealth Scientific and Industrial Research Organization): Clayton South, Australia, 2007. [Google Scholar]
- Stratton, R.; Wong, H.; Hileman, J. Life Cycle Greenhouse Gas Emissions from Alternative Jet Fuels; Massachusetts Institute of Technology: Cambridge, MA, USA, 2010. [Google Scholar]
- Gartner, S.O.; Helms, H.; Reinhardt, G.; Rettenmaier, N. An Assessment of Energy and Greenhouse Gases of NExBTL; Technical Report by ifeu-Institute for Energy and Environmental Research Heidelberg GmbH: Heidelberg, Germany, 2006. [Google Scholar]
- Jungbluth, N.; Busser, S.; Frischknecht, R.; Tuchschmid, M. Life Cycle Assessment of Biomass-to-Liquid Fuels; Technical Report by ESU-Services Ltd.: Uster, Switzerland, 2008. [Google Scholar]
- Van Vliet, O.P.; Faaij, A.P.; Turkenburg, W.C. Fischer-tropsch diesel production in a well-to-wheel perspective: A carbon, energy flow and cost analysis. Energy Convers. Manag. 2009, 50, 855–876. [Google Scholar] [CrossRef]
- Haase, M.; Skott, S.; Frohling, M. Ecological Evaluation of Selected 1st and 2nd Generation Biofuels-FT Fuel From Wood and Ethanol From Sugar Beets. In Challenges for Sustainable Biomass Utilisation; Proceedings of the Chilean-German Biociclo Workshop, Karlsruhe, Germany, March 2009; Universität Karlsruhe Universitätsbibliothek: Karlsruhe, Germany, 2009. [Google Scholar]
- Thamsiriroj, T.; Murphy, J.D. Can rape seed biodiesel meet the european union sustainability criteria for biofuels? Energy Fuels 2010, 24, 1720–1730. [Google Scholar] [CrossRef]
- Bernesson, S.; Nilsson, D.; Hansson, P.A. A limited LCA comparing large- and small-scale production of rape methyl ester (RME) under swedish conditions. Biomass Bioenergy 2004, 26, 545–559. [Google Scholar] [CrossRef]
- Elsayed, M.; Matthews, R.; Mortimer, N. Carbon and Energy Balances for a Range of Biofuels Options; DTI Publication URN 03/836; DTI Publication, Inc.: London, UK, 2003. [Google Scholar]
- Peiro, L.T.; Lombardi, L.; Mendez, G.V.; Durany, X.G. Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of the production of biodiesel from used cooking oil (UCO). Energy 2010, 35, 889–893. [Google Scholar] [CrossRef]
- Stephenson, A.; Dennis, J.; Scott, S. Improving the sustainability of the production of biodiesel from oilseed rape in the UK. Process Saf. Environ. Prot. 2008, 86, 427–440. [Google Scholar] [CrossRef]
- Broch, A.; Hoekman, S.K.; Gertler, A.; Robbins, C.; Natarajan, M. Biodistillate transportation fuels 3-life cycle impacts. SAE Int. J. Fuels Lubr. 2009, 2, 233–261. [Google Scholar] [CrossRef]
- Niederl-Schmidinger, A.; Narodoslawsky, M. Life cycle assessment as an engineer’s tool? J. Clean. Prod. 2008, 16, 245–252. [Google Scholar] [CrossRef]
- Nelson, R.G.; Schrock, M.D. Energetic and economic feasibility associated with the production, processing and conversion of beef tallow to a substitute diesel fuel. Biomass Bioenergy 2006, 30, 584–591. [Google Scholar] [CrossRef]
- Lopez, D.E.; Mullins, J.C.; Bruce, D.A. Energy life cycle assessment for the production of biodiesel from rendered lipids in the united states. Ind. Eng. Chem. Res. 2010, 49, 2419–2432. [Google Scholar] [CrossRef]
- Gaya, J.C.A.; Patel, M.K. Biodiesel from Rapeseed Oil and Used Frying Oil in European Union; Technical Report by Copernicus Institute for Sustainable Development and Innovation, Utrecht University: Utrecht, The Netherlands, 2003. [Google Scholar]
- Stigsson, L. Diesel Range Fuels from Carboxylic Acids with Plant Origin. Sweden Patent WO/2009/011639/PCT/SE2008/000457, 2009. [Google Scholar]
- Bernesson, S. Life Cycle Assessment of Rapeseed Oil, Rape Methyl Ester and Ethanol as Fuels—A Comparison between Large and Smallscale Production; Technical Report by Department of Biometry and Engineering, Swedish University of Agricultural Sciences: Uppsala, Sweden, 2004. [Google Scholar]
- Brandao, M.; Mila i Canals, L.; Clift, R. Soil organic carbon changes in the cultivation of energy crops: Implications for GHG balances and soil quality for use in LCA. Biomass Bioenergy 2011, in press. [Google Scholar] [CrossRef]
- Germer, J.; Sauerborn, J. Estimation of the impact of oil palm plantation establishment on greenhouse gas balance. Environ. Dev. Sustain. 2007, 10, 697–716. [Google Scholar] [CrossRef]
- Fitzherbert, E.B.; Struebig, M.J.; Morel, A.; Danielsen, F.; Bruhl, C.A.; Donald, P.F.; Phalan, B. How will oil palm expansion affect biodiversity? Trends Ecol. Evol. 2008, 23, 538–545. [Google Scholar] [CrossRef]
- Fargione, J.; Hill, J.; Tilman, D.; Polasky, S.; Hawthorne, P. Land clearing and the biofuel carbon debt. Science 2008, 319, 1235–1238. [Google Scholar] [CrossRef] [PubMed]
- Reijnders, L.; Huijbregts, M. Palm oil and the emission of carbon-based greenhouse gases. J. Clean. Prod. 2008, 16, 477–482. [Google Scholar] [CrossRef]
- Soimakallio, S.; Antikainen, R.; Thun, R. Assessing the Sustainability of Liquid Biofuels from Evolving Technologies; Technical Report by VTT Technical Research Centre of Finland: Espoo, Finland, 2009. [Google Scholar]
- Reinhardt, G.; Rettenmaier, N.; Gatner, S. Rain Forest for Biodiesel? Ecological Effects of Using Palm Oil as a Source of Energy; Technical Report by WWF Germany: Frankfurt am Main, Germany, 2007. [Google Scholar]
- Wicke, B.; Dornburg, V.; Junginger, M.; Faaij, A. Different palm oil production systems for energy purposes and their greenhouse gas implications. Biomass Bioenergy 2008, 32, 1322–1337. [Google Scholar] [CrossRef]
- Miller, S. Minimizing land use and nitrogen intensity of bioenergy. Environ. Sci. Technol. 2010, 44, 3932–3939. [Google Scholar] [CrossRef] [PubMed]
- Rathke, G.W.; Christen, O.; Diepenbrock, W. Effects of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L.) grown in different crop rotations. Field Crop. Res. 2005, 94, 103–113. [Google Scholar] [CrossRef]
- Halleux, H.; Lassaux, S.; Renzoni, R.; Germain, A. Comparative life cycle assessment of two biofuels ethanol from sugar beet and rapeseed methyl ester. Int. J. Life Cycle Assess. 2008, 13, 184–190. [Google Scholar] [CrossRef]
- Reijnders, L.; Huijbregts, M. Biogenic greenhouse gas emissions linked to the life cycles of biodiesel derived from european rapeseed and brazilian soybeans. J. Clean. Prod. 2008, 16, 1943–1948. [Google Scholar] [CrossRef]
- Kalnes, T.; Markery, T.; Shonnardz, D.R. Green diesel: A second generation biofuel. Int. J. Chem. React. Eng. 2007, 5, 1–9. [Google Scholar] [CrossRef]
- Neste Oil Website. Available online: http://www.nesteoil.com (accessed on 24 May 2011).
- Marker, T.; Petri, J.; Kalnes, T.; McCall, M.; Mackowiak, D.; Jerosky, B.; Reagan, B.; Nemeth, L.; Krawczyk, M.; Czernik, S.; et al. Opportunities for Biorenewables in Oil Refineries; Final Technical Report submitted to U.S. Department of Energy; UOP: Des Plaines, IL, USA, 2005. [Google Scholar]
- Garrain, D.; Herrera, I.; Lago, C.; Lechon, Y.; Saez, R. Renewable diesel fuel from processing of vegetable oil in hydrotreatment units: Theoretical compliance with european directive 2009/28/EC and ongoing projects in Spain. Smart Grid Renew. Energy 2010, 1, 70–73. [Google Scholar] [CrossRef]
- Edwards, R.; Griesemann, J.; Larivé, J.F.; Mahieu, V. Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context, Version 2c; Technical Report for EUCAR and CONCAWE and JRC; European Comission: Brussels, Belgium, 2007. [Google Scholar]
- Yee, K.F.; Tan, K.T.; Abdullah, A.Z.; Lee, K.T. Life cycle assessment of palm biodiesel: revealing facts and benefits for sustainability. Appl. Energy 2009, 86, 189–196. [Google Scholar] [CrossRef]
- Jungbluth, N.; Frischknecht, R.; Emmenegger, M.; Steiner, R.; Tuchschmid, M. Life Cycle Assessment of BTL-fuel production: Life Cycle Impact Assessment and Interpretation; Technical Report of ESU-Services Ltd.: Uster, Switzerland, 2007. [Google Scholar]
- Marland, G.; Schlamadinger, B. Forests for carbon sequestration or fossil fuel substitution? A sensitivity analysis. Biomass Bioenergy 1997, 13, 389–397. [Google Scholar] [CrossRef]
- Werner, F.; Taverna, R.; Hofer, P.; Thurig, E.; Kaufmann, E. National and global greenhouse gas dynamics of different forest management and wood use scenarios: A model-based assessment. Environ. Sci. Policy 2010, 13, 72–85. [Google Scholar] [CrossRef]
- Pingoud, K.; Pohjola, J.; Valsta, L. Assessing the integrated climatic impacts of forestry and wood products. Silva Fenn. 2010, 44, 155–175. [Google Scholar] [CrossRef]
- Perez-Garcia, J.; Lippke, B.; Comnick, J.; Manriquez, C. An assessment of carbon pools, storage, and wood products market substitution using life-cycle analysis results. Wood Fiber Sci. 2005, 37, 140–148. [Google Scholar]
- Kim, H.; Kim, S.; Dale, B.E. Biofuels, land use change, and greenhouse gas emissions: Some unexplored variables. Environ. Sci. Technol. 2008, 43, 961–967. [Google Scholar] [CrossRef]
- Watson, R.T.; Noble, I.R.; Bolin, B.; Ravindranath, N.H.; Verardo, D.J.; Dokken, D.J. Land Use, Land-Use Change and Forestry; Technical Report by Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2000. [Google Scholar]
- Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: a meta analysis. Global Change Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Houghton, R. Effects of land-use change on the carbon balance of terrestrial ecosystems. In Ecosystems and Land Use Change; Geophysical Monograph Series 153; Amer Geophysical Union: Washington, DC, USA, 2004; pp. 85–98. [Google Scholar]
- Majer, S.; Mueller-Langer, F.; Zeller, V.; Kaltschmitt, M. implications of biodiesel production and utilisation on global climate a literature review. Eur. J. Lipid Sci. Technol. 2009, 111, 747–762. [Google Scholar] [CrossRef]
- Anderson-Teixeira, K.J.; Delucia, E.H. The greenhouse gas value of ecosystems. Global Change Biol. 2010, 17, 425–438. [Google Scholar] [CrossRef]
- Muller-Wenk, R.; Brandao, M. Climatic impact of land use in lca-carbon transfers between vegetation/soil and air. Int. J. Life Cycle Assess. 2010, 15, 172–182. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char sequestration in terrestrial ecosystems a review. Mitigation and Adaptation Strategies for Global Change. 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Brinkmann, A. Greenhouse Gas Emissions from Palm Oil Production-Literature Review and Proposals from the RSPO Working Group on Greenhouse Gases; Technical Report by Brinkmann Consultancy: Hoevelaken, The Netherlands, 2009. [Google Scholar]
- Danielsen, F.; Beukema, H.; Burgess, N.; Parish, F.; Bruhl, C.A.; Donald, P.; Murdiyarso, D.; Phalan, B.; Reijnders, L.; Struebig, M.; et al. Biofuel plantations on forested lands: Double jeopardy for biodiversity and climate. Conserv. Biol. 2008, 23, 348–358. [Google Scholar] [CrossRef] [PubMed]
- Jandl, R.; Lindner, M.; Vesterdal, L.; Bauwens, B.; Baritz, R.; Hagedorn, F.; Johnson, D.W.; Minkkinen, K.; Byrne, K.A. How strongly can forest management influence soil carbon sequestration? Geoderma 2007, 137, 253–268. [Google Scholar] [CrossRef]
- Nabuurs, G.J.; Masera, O.; Andrasko, K.; Benitez-Ponce, P.; Boer, R.; Dutschke, M.; Elsiddig, E.; Ford-Robertson, J.; Frumhoff, P.; Karjalainen, T.; et al. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Volume 4, Agriculture, Forestry and Other Land Use; Technical Report by IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- Kowalski, A.S.; Loustau, D.; Berbigier, P.; Manca, G.; Tedeschi, V.; Borghetti, M.; Valentini, R.; Kolari, P.; Berninger, F.; Rannik, U.; et al. Paired comparisons of carbon exchange between undisturbed and regenerating stands in four managed forests in Europe. Global Change Biol. 2004, 10, 1707–1723. [Google Scholar] [CrossRef]
- Searchinger, T.; Hamburg, S.; Melillo, J.; Chameides, W.; Havlik, P.; Kammen, D.M.; Likens, G.E.; Lubowski, R.N.; Obersteiner, M.; Oppenheimer, M.; et al. Fixing a critical climate accounting error. Science 2009, 326, 527–528. [Google Scholar] [CrossRef] [PubMed]
- Vleeshouwers, L.; Verhagen, A. Carbon emission and sequestration by agricultural land use: A model study for Europe. Global Change Biol. 2002, 8, 519–530. [Google Scholar] [CrossRef]
- Levis, S. Modeling vegetation and land use in models of the earth system. Wiley Interdiscip. Rev. Climate Change 2010, 1, 840–856. [Google Scholar] [CrossRef]
- Strengers, B.J.; Muller, C.; Schaeffer, M.; Haarsma, R.J.; Severijns, C.; Gerten, D.; Schaphoff, S.; van den Houdt, R.; Oostenrijk, R. Assessing 20th century climate-vegetation feedbacks of land-use change and natural vegetation dynamics in a fully coupled vegetation-climate model. Int. J. Climatol. 2010, 30, 2055–2065. [Google Scholar] [CrossRef]
- Janulis, P. Reduction of eenergy consumption in biodiesel fuel life cycle. Renew. Energy 2004, 29, 861–871. [Google Scholar] [CrossRef]
- Crutzen, P.J.; Mosier, A.R.; Smith, K.A.; Winiwarter, W. N2O release from fertilizer use in biofuel production. Atmos. Chem. Phys. Discuss. 2007, 7, 11191–11205. [Google Scholar] [CrossRef]
- Prieur, A.; Bouvart, F.; Inra, B.G.; Lehuger, S. Well to Wheels Analysis of Biofuels vs. Conventional Fossil Fuels: A Proposal for Greenhouse Gases and Energy Savings Accounting in the French Context; Paper No. 2008-01-0673; SAE World Congress & Exhibition: Detroit, MI, USA, April 2008. [Google Scholar]
- Donald, P.F. Biodiversity impacts of some agricultural commodity production systems. Conserv. Biol. 2004, 18, 17–39. [Google Scholar] [CrossRef]
- Climate and Pollution Agency. State of the Environment Norway. Climate and Pollution Agency, Norway. Available online: http://www.miljostatus.no (accessed on 22 November 2010).
- Dahlberg, A.; Egnell, G.; Berg, J.; Rytter, L.; Westling, O. Miljöeffekter av Skogsbransleuttag och Askåterforing i Sverige; Rapport ER2006:44; Statens Energimyndighet: Bromma, Sweden, 2006. [Google Scholar]
- Hansen, K.H.; Clarke, N. O kologiske konsekvenser av hogstavfall til bioenergi. Glimt Skog Landskap 2009, 3. [Google Scholar]
- Stupak, I.; Asikainen, A.; Jonsell, M.; Karltun, E.; Lunnan, A.; Mizaraite, D.; Pasanen, K.; Parn, H.; Raulund-Rasmussen, K.; Roser, D.; et al. Sustainable utilisation of forest biomass for energy–possibilities and problems: Policy, legislation, certification, and recommendations and guidelines in the nordic, baltic, and other european Countries. Biomass Bioenergy 2007, 31, 666–684. [Google Scholar] [CrossRef]
- Eggers, J.; Troltzsch, K.; Falcucci, A.; Maiorano, L.; Verburg, P.H.; Framstad, E.; Louette, G.; Maes, D.; Nagy, S.; Ozinga, W.; et al. Is biofuel policy harming biodiversity in Europe? Global Change Biol. Bioenergy 2009, 1, 18–34. [Google Scholar] [CrossRef]
- Schmidt, J.H. Development of LCIA characterisation factors for land use impacts on biodiversity. J. Clean. Prod. 2008, 16, 1929–1942. [Google Scholar] [CrossRef]
- Weih, M. Intensive Short Rotation Forestry in Boreal Climates: Present and future perspectives. Can. J. For. Res. 2004, 34, 1369–1378. [Google Scholar] [CrossRef]
- Koh, L.P.; Wilcove, D.S. Is oil palm agriculture really destroying tropical biodiversity? Conserv. Lett. 2008, 1, 60–64. [Google Scholar] [CrossRef]
- Carrillo, A.M.R.; Frei, C. Water: A key resource in energy production. Energy Policy 2009, 37, 4303–4312. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Ismail, S.; Bhatia, S. Water recycling from palm oil mill effluent (pome) using membrane technology. Desalination 2003, 157, 87–95. [Google Scholar] [CrossRef]
- Kiwjaroun, C.; Tubtimdee, C.; Piumsomboon, P. LCA studies comparing biodiesel synthesized by conventional and supercritical methanol methods. J. Clean. Prod. 2009, 17, 143–153. [Google Scholar] [CrossRef]
- Voinov, A.; Cardwell, H. The Energy-Water Nexus: Why Should We Care? J. Contemp. Water Res. Educ. 2009, 143, 17–29. [Google Scholar] [CrossRef]
- Sverdrup-Thygeson, A.; Borg, P.; Lie, M. Landskapsøkologi i Boreal Skog-En Sammenstilling av Studier Innen Okologi og Friluftsliv med Relevans for Landskapsøkologisk Planlegging i Norsk Skogbruk; Norskog-rapport 2002-1; Norskog: Oslo, Norway, 2002. [Google Scholar]
- Swanson, K.J.; Madden, M.C.; Ghio, A. Biodiesel exhaust: The need for health effects research. Environ. Health Perspect. 2007, 115, 496–499. [Google Scholar] [CrossRef] [PubMed]
- Bunger, J.; Krahl, J.; Munack, A.; Ruschel, Y.; Schroder, O.; Emmert, B.; Westphal, G.; Muller, M.; Hallier, E.; Bruning, T. Strong mutagenic effects of diesel engine emissions using vegetable oil as fuel. Arch. Toxicol. 2007, 81, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Krahl, J.; Knothe, G.; Munack, A.; Ruschel, Y.; Schroder, O.; Hallier, E.; Westphal, G.; Bunger, J. Comparison of exhaust emissions and their mutagenicity from the combustion of biodiesel, vegetable oil, gas-to-liquid and petrodiesel fuels. Fuel 2009, 88, 1064–1069. [Google Scholar] [CrossRef]
- Wu, F.; Wang, J.; Chen, W.; Shuai, S. A study on emission performance of a diesel engine fueled with five typical methyl ester biodiesels. Atmos. Environ. 2009, 43, 1481–1485. [Google Scholar] [CrossRef]
- Aatola, H.; Larmi, M.; Sarjovaara, T.; Mikkonen, S. Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine. In Proceedings of the Powertrains, Fuels and Lubricants Meeting, Chicago, IL, USA, October 2008.
- Atadashi, I.; Aroua, M.; Aziz, A.A. High quality biodiesel and its diesel engine application: A review. Renew. Sustain. Energy Rev. 2010, 14, 1999–2008. [Google Scholar] [CrossRef]
- European Biodiesel Board. Available online: http://www.ebb-eu.org (accessed on 15 December 2010).
- Food and Agriculture Organization of the United Nations. Available online: http://www.faostat.fao.org (accessed on 28 October 2010).
- Demirbas, A. Political, economic and environmental impacts of biofuels: A review. Appl. Energy 2009, 86, 108–117. [Google Scholar] [CrossRef]
- Carter, C.; Finley, W.; Fry, J.; Jackson, D.; Willis, L. Palm oil markets and future supply. Eur. J. Lipid Sci. Technol. 2007, 109, 307–314. [Google Scholar] [CrossRef]
- Lam, M.K.; Tan, K.T.; Lee, K.T.; Mohamed, A.R. Malaysian palm oil: Surviving the food versus fuel dispute for a sustainable future. Renew. Sustain. Energy Rev. 2009, 13, 1456–1464. [Google Scholar] [CrossRef]
- Eurostat. Available online: http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/ (accessed on 10 January 2011).
- Crude Tall Oil (CTO) & Harmful Environmental Subsidies. Position Paper. Available online: http://www.harrpa.org (accessed on 7 January 2011).
- Babcock, R.E.; Clausen, E.C.; Popp, M.; Schulte, W.B. Yield Characteristics of Biodiesel Produced from Chicken Fat-Tall Oil Blended Feedstocks; Completion Report Project Number MBTC-2092; Mack-Blackwell Rural Transportation Center: Fayetteville, AR, USA, 2007. [Google Scholar]
- Lee, S.Y.; Hubbe, M.; Saka, S. Prospects for biodiesel as a byproduct of wood pulping-a review. BioResources 2006, 1, 150–171. [Google Scholar]
- Wiltsee, G. Urban Waste Grease Resource Assessment; Technical Report by National Renewable Energy Laboratory: Lakewood, CO, USA, 1998. [Google Scholar]
- Thornley, P.; Tomei, J.; Upham, P.; Panoutsou, C.; Yates, N. Theme 6 Resource Assessment Feedstock Properties; Technical Report by SUPERGEN Biomass and Bioenergy Consortium: Birmingham, UK, 2008. [Google Scholar]
- Sakai, T.; Kawashima, A.; Koshikawa, T. Economic assessment of batch biodiesel production processes using homogeneous and heterogeneous alkali catalysts. Bioresour. Technol. 2009, 100, 3268–3276. [Google Scholar] [CrossRef]
- Zhang, Y.; Dube, M.A.; McLean, D.D.; Kates, M. Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour. Technol. 2003, 90, 229–240. [Google Scholar] [CrossRef]
- European Fat Processors and Renderers Association. Available online: http://www.efpra.eu (accessed on 18 April 2011).
- Bright, R.M.; Strømman, A.H. Incentivizing wood-based fischer-tropsch diesel through financial policy instruments: An economic assessment for Norway. Energy Policy 2010, 38, 6849–6859. [Google Scholar] [CrossRef]
- van Kasteren, J.; Nisworo, A. A process model to estimate the cost of industrial scale biodiesel production from waste cooking oil by supercritical transesterification. Resour. Conserv. Recycl. 2007, 50, 442–458. [Google Scholar] [CrossRef]
- Apostolakou, A.; Kookos, I.; Marazioti, C.; Angelopoulos, K. Techno-economic analysis of a biodiesel production process from vegetable oils. Fuel Process. Technol. 2009, 90, 1023–1031. [Google Scholar] [CrossRef]
- West, A.H.; Posarac, D.; Ellis, N. Assessment of four biodiesel production processes using HYSYS.Plant. Bioresour. Technol. 2008, 99, 6587–6601. [Google Scholar] [CrossRef] [PubMed]
- Haas, M.J.; McAloon, A.J.; Yee, W.C.; Foglia, T.A. A process model to estimate biodiesel production costs. Bioresour. Technol. 2006, 97, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, J.; Miguel, V.; Errazu, A. Techno-economic study of different alternatives for biodiesel production. Fuel Process. Technol. 2008, 89, 740–748. [Google Scholar] [CrossRef]
- de Wit, M.; Junginger, M.; Lensink, S.; Londo, M.; Faaij, A. Competition between biofuels: modeling technological learning and cost reductions over time. Biomass Bioenergy 2010, 34, 203–217. [Google Scholar] [CrossRef]
- Moser, B.R. Biodiesel production, properties and feedstocks. Vitro Cell. Dev. Biol. Plant 2009, 45, 229–266. [Google Scholar] [CrossRef]
- Stumborg, M.; Wong, A.; Hogan, E. Hydroprocessed vegetable oils for diesel fuel improvement. Bioresour. Technol. 1996, 56, 13–18. [Google Scholar] [CrossRef]
- Holmgren, J.; Marinangeli, R.; Marker, T.; McCall, M.; Petri, J.; Czernik, S.; Elliott, D.; Shonnard, D. Opportunities for Biorenewables in Petroleum Refineries; Technical Report by UOP-Honeywell: Des Plaines, IL, USA, 2006. [Google Scholar]
- Boerrigter, H. Economy of Biomass-to-Liquids (BTL) Plants-An Engineering Assessment; Technical Report by ECN Biomass, Coal and Environmental Research: ZG Petten, The Netherlands, 2006. [Google Scholar]
- Tijmensen, M.J.A.; Faaij, A.P.C.; Hamelinck, C.N.; van Hardeveld, M.R.M. Exploration of the possibilities for production of fischer-tropsch liquids and power via biomass gasification. Biomass Bioenergy 2002, 23, 129–152. [Google Scholar] [CrossRef]
- Vogel, A.; Mueller-Langer, F.; Kaltschmitt, M. Analysis and evaluation of technical and economic potentials of BTL-fuels. Chem. Eng. Technol. 2008, 31, 755–764. [Google Scholar] [CrossRef]
- Argent Energy. Available online: http://www.argentenergy.com (accessed on 8 November 2010).
- Festel, G.W. Biofuels—Economic aspects. Chem. Eng. Technol. 2008, 31, 715–720. [Google Scholar] [CrossRef]
- DeSimone, L.; Popoff, F. Eco-Efficiency: The Business Link to Sustainable Development; The MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Zamagni, A.; Buttol, P.; Buonamici, R.; Masoni, P.; Guinee, J.; Huppes, G.; Heijungs, R.; van der Voet, E.; Ekvall, T.; Rydberg, T. Calcas-D20 Blue Paper on Life Cycle Sustainability Analysis; Technical Report for Co-ordination Action for innovation in Life-Cycle Analysis for Sustainability. CML Leiden University: Leiden, The Netherlands, 2009. [Google Scholar]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sunde, K.; Brekke, A.; Solberg, B. Environmental Impacts and Costs of Hydrotreated Vegetable Oils, Transesterified Lipids and Woody BTL—A Review. Energies 2011, 4, 845-877. https://doi.org/10.3390/en4060845
Sunde K, Brekke A, Solberg B. Environmental Impacts and Costs of Hydrotreated Vegetable Oils, Transesterified Lipids and Woody BTL—A Review. Energies. 2011; 4(6):845-877. https://doi.org/10.3390/en4060845
Chicago/Turabian StyleSunde, Kathrin, Andreas Brekke, and Birger Solberg. 2011. "Environmental Impacts and Costs of Hydrotreated Vegetable Oils, Transesterified Lipids and Woody BTL—A Review" Energies 4, no. 6: 845-877. https://doi.org/10.3390/en4060845
APA StyleSunde, K., Brekke, A., & Solberg, B. (2011). Environmental Impacts and Costs of Hydrotreated Vegetable Oils, Transesterified Lipids and Woody BTL—A Review. Energies, 4(6), 845-877. https://doi.org/10.3390/en4060845