Improving Production of Bioethanol from Duckweed (Landoltia punctata) by Pectinase Pretreatment
Abstract
:1. Introduction
2. Experimental Section
2.1. Duckweed Collection and Preparation
2.2. Microorganism and Media
2.3. Enzymatic Pretreatment
2.4. Experimental Design and Statistical Analysis
Independent variables | Symbols | Coded levels | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Pretreatment temperature (°C) | X1 | 45 | 50 | 55 |
Pretreatment time (min) | X2 | 60 | 180 | 300 |
Pectinase dose (PECTU/g mash) | X3 | 5 | 17.5 | 30 |
2.5. Ethanol Fermentation
2.6. Scanning Electron Microscopy
2.7. Analytical Methods
3. Results and Discussion
3.1. Raw Material Composition
Component | % w/w DM |
---|---|
Extractives | 13.04 ± 1.98 |
Crude protein | 16.27 ± 0.12 |
Starch | 24.59 ± 0.67 |
Cellulose | 13.31 ± 0.41 |
Xylose | 1.61 ± 0.01 |
Galactose | 3.46 ± 0.32 |
Arabinose | 1.32 ± 0.02 |
Acid insoluble lignin | 5.55 ± 0.36 |
Ash | 3.48 ± 1.0 |
3.2. Ethanol Fermentation of the Pectinase Pretreated Duckweed Mash
3.3. Optimization of Pectinase Pretreatment
Run No. | Coded variables | Glucose yield (mg/g DM) | |||
---|---|---|---|---|---|
X1 | X2 | X3 | Observed | Predicted | |
1 | −1 | −1 | 0 | 188.53 | 186.82 |
2 | 1 | −1 | 0 | 181.99 | 178.39 |
3 | −1 | 1 | 0 | 206.48 | 210.08 |
4 | 1 | 1 | 0 | 204.94 | 206.66 |
5 | −1 | 0 | −1 | 171.67 | 174.11 |
6 | 1 | 0 | −1 | 174.41 | 177.73 |
7 | −1 | 0 | 1 | 200.52 | 197.20 |
8 | 1 | 0 | 1 | 184.17 | 181.73 |
9 | 0 | −1 | −1 | 168.97 | 168.25 |
10 | 0 | 1 | −1 | 201.15 | 201.57 |
11 | 0 | −1 | 1 | 189.82 | 189.36 |
12 | 0 | 1 | 1 | 203.63 | 207.55 |
13 | 0 | 0 | 0 | 192.93 | 188.05 |
14 | 0 | 0 | 0 | 187.67 | 188.05 |
15 | 0 | 0 | 0 | 186.54 | 188.05 |
Factor | Coefficient estimate | Standard error | F value | p value |
---|---|---|---|---|
Intercept | 189.05 | 1.991729427 | - | - |
X1 | −2.71125 | 1.219680201 | 4.9413678 | 0.0768 |
X2 | 10.86125 | 1.219680201 | 79.298993 | 0.0003 |
X3 | 7.7425 | 1.219680201 | 40.296793 | 0.0014 |
X1X2 | 1.2500 | 1.724888281 | 0.5251678 | 0.5011 |
X1X3 | −4.7725 | 1.724888281 | 7.655436 | 0.0395 |
X2X3 | −4.5925 | 1.724888281 | 7.0888598 | 0.0447 |
X1X1 | −0.880833333 | 1.795320644 | 0.2407152 | 0.6445 |
X2X2 | 7.319166667 | 1.795320644 | 16.620314 | 0.0096 |
X3X3 | −5.473333333 | 1.795320644 | 9.2943655 | 0.0285 |
Source | Sum of squares | Degree of freedom | Mean square | F value | p > F |
---|---|---|---|---|---|
Model | 2000.8 | 9 | 222.31 | 18.68 | 0.0025 |
Residual | 59.5 | 5 | 11.9 | - | - |
Lack of Fit | 36.25 | 3 | 12.08 | 1.04 | 0.5246 |
Pure Error | 23.26 | 2 | 11.63 | - | - |
3.4. Validation of the Experimental Design
3.5. Fermentation of the Mash with the Optimal Pretreatment Conditions
4. Conclusions
Acknowledgements
References
- Sanchez, O.J.; Cardona, C.A. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 2008, 99, 5270–5295. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.L.; Wang, P.; Mou, H.J. Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renew. Energy 2011, 36, 84–89. [Google Scholar] [CrossRef]
- Papong, S.; Malakul, P. Life-cycle energy and environmental analysis of bioethanol production from cassava in Thailand. Bioresour. Technol. 2011, 101, S112–S118. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Q.; Jin, Y.L.; Xue, H.L.; Guan, J.F.; Wang, Z.Y.; Zhao, H. Energy-saving direct ethanol production from viscosity reduction mash of sweet potato at very high gravity (VHG). Fuel Process. Technol. 2010, 91, 1845–1850. [Google Scholar] [CrossRef]
- Sarkar, N.; Ghosh, S.K.; Bannerjee, S.; Aikat, K. Bioethanol production from agricultural wastes: An overview. Renew. Energy 2012, 37, 19–27. [Google Scholar] [CrossRef]
- Oron, G.; Porath, D.; Wildschut, L.R. Wastewater treatment and renovation by different duckweed species. J. Environ. Eng. 1986, 112, 247–263. [Google Scholar] [CrossRef]
- Chaiprapat, S.; Cheng, J.J.; Classen, J.J.; Liehr, S.K. Role of internal nutrient storage in duckweed growth for swine wastewater treatment. Trans. ASAE 2005, 48, 2247–2258. [Google Scholar] [CrossRef]
- Landolt, E. Biosystematic Investigation on the Family of Duckweeds: The Family of Lemnaceae—A Monograph Study; Geobotanischen Institute ETH: Zurich, Switzerland, 1986; p. 38. [Google Scholar]
- Landolt, E.; Kandeler, R. Biosystematic investigations in the family of duckweeds (Lemnaceae). In The Family of Lemnaceae: A Monographic Study, Vol. 2 and Phytochemistry, Physiology, Application and Bibliography, Vol. 4; Geobotanischen Instutites ETH: Zurich, Switzerland, 1987. [Google Scholar]
- Körner, S.; Vermaat, J.E.; Veenstra, S. The capacity of duckweed to treat wastewater: Ecological considerations for a sound design. J. Environ. Qual. 2003, 32, 1583–1590. [Google Scholar] [CrossRef] [PubMed]
- Oron, G. Duckweed culture for wastewater renovation and biomass production. Agric. Water Manag. 1994, 26, 27–40. [Google Scholar] [CrossRef]
- Alaerts, G.J.; Mahbubar, M.R.; Kelderman, P. Performance analysis of a full-scale duckweed-covered sewage lagoon. Water Res. 1996, 30, 843–852. [Google Scholar] [CrossRef]
- Culley, D.D.; Epps, E.A. Use of duckweed for waste treatment and animal feed. J. Water Pollut. Control Fed. 1973, 45, 337–347. [Google Scholar]
- El-Shafai, S.A.; El-Gohary, F.A.; Nasr, F.A.; van der Steen, N.P.; Gijzen, H.J. Nutrient recovery from domestic wastewater using a UASB-duckweed ponds system. Bioresour. Technol. 2007, 98, 798–807. [Google Scholar] [CrossRef] [PubMed]
- Van der Steen, P.; Brenner, A.; Oron, G. An integrated duckweed and algae pond system for nitrogen removal and renovation. Water Sci. Technol. 1998, 38, 335–343. [Google Scholar] [CrossRef]
- Edwards, P.; Hassan, M.S.; Chao, C.H.; Pacharaprakiti, C. Cultivation of duckweeds in septage-loaded earthen ponds. Bioresour. Technol. 1992, 40, 109–117. [Google Scholar] [CrossRef]
- Oron, G. Economic considerations in wastewater treatment with duckweed for effluent and nitrogen renovation. Res. J. Water Pollut. Control. 1990, 62, 692–696. [Google Scholar]
- Food and Agriculture Organization (FAO). FAOSTAT. Available online: http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor (accessed on 2 June 2012).
- Perlack, R.D.; Turhollow, A.F. Feedstock cost analysis of corn stover residues for further processing. Energy 2003, 28, 1395–1403. [Google Scholar] [CrossRef]
- Bergmann, B.A.; Cheng, J.J.; Classen, J.J.; Stomp, A.M. In vitro selection of duckweed geographical isolates for potential use in swine lagoon effluent renovation. Bioresour. Technol. 2000, 73, 13–20. [Google Scholar] [CrossRef]
- Reid, M.S.; Bieleski, R.L. Response of Spirodela oligorrhiza to phosphorus deficiency. Plant Physiol. 1970, 46, 609–613. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.J.; Stomp, A.M. Growing duckweed to recover nutrients from wastewaters and for production of fuel ethanol and animal feed. Clean-Soil Air Water 2009, 37, 17–26. [Google Scholar] [CrossRef]
- Cui, W.H.; Xu, J.L.; Cheng, J.J.; Stomp, A.M. Growing duckweed for bio-ethanol production. Am. Soc. Agric. Biol. Eng. 2010, 1–7, Paper No. 1009440. [Google Scholar]
- Xu, J.L.; Cui, W.H.; Cheng, J.J.; Stomp, A.M. Production of high-starch duckweed and its conversion to bioethanol. Biosyst. Eng. 2011, 110, 67–72. [Google Scholar] [CrossRef]
- Oberoi, H.S.; Vadlani, P.V.; Nanjundaswamy, A.; Bansal, S.; Singh, S.; Kaur, S.; Babbar, N. Enhanced ethanol production from Kinnow mandarin (Citrus reticulata) waste via a statistically optimized simultaneous saccharification and fermentation process. Bioresour. Technol. 2011, 102, 1593–1601. [Google Scholar] [CrossRef] [PubMed]
- Spagnuolo, M.; Crecchio, C.; Pizzigallo, M.D.R.; Ruggiero, P. Synergistic effects of cellulolytic and pectinolytic enzymes in degrading sugar beet pulp. Bioresour. Technol. 1997, 60, 215–222. [Google Scholar] [CrossRef]
- Kataria, R.; Ghosh, S. Saccharification of Kans grass using enzyme mixture from Trichoderma reesei for bioethanol production. Bioresour. Technol. 2011, 102, 9970–9975. [Google Scholar] [CrossRef] [PubMed]
- Wi, S.G.; Chung, B.Y.; Lee, Y.G.; Yang, D.J.; Bae, H.J. Enhanced enzymatic hydrolysis of rapeseed straw by popping pretreatment for bioethanol production. Bioresour. Technol. 2011, 102, 5788–5793. [Google Scholar] [CrossRef] [PubMed]
- National Renewable Energy Laboratory. Standard Biomass Analytical Procedures. Available online: http://www.nrel.gov/biomass/analytical_procedures.html (accessed on 2 June 2012).
- Wang, L.S.; Ge, X.Y.; Zhang, W.G. Improvement of ethanol yield from raw corn flour by Rhizopus sp. World J. Microbiol. Biotechnol. 2007, 23, 461–465. [Google Scholar] [CrossRef]
- Negesse, T.; Makkar, H.P.S.; Becker, K. Nutritive value of some non-conventional feed resources of Ethiopia determined by chemical analyses and an in vitro gas method. Anim. Feed Sci. Technol. 2009, 154, 204–217. [Google Scholar] [CrossRef]
- Hossain, A.B.M.S.; Ahmed, S.A.; Alshammari, A.M.; Adnan, F.M.A.; Annuar, M.S.M.; Mustafa, H.; Hammad, N. Bioethanol fuel production from rotten banana as an environmental waste management and sustainable energy. Afr. J. Microbiol. Res. 2011, 5, 586–598. [Google Scholar]
- Chandel, A.K.; Singh, O.V.; Rao, L.V.; Chandrasekhar, G.; Narasu, M.L. Bioconversion of novel substrate Saccharum spontaneum, a weedy material, into ethanol by Pichia stipitis NCIM3498. Bioresour. Technol. 2011, 102, 1709–1714. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.; Gil, N.; Queiroz, J.A.; Duarte, A.P.; Domingues, F.C. An evaluation of the potential of Acacia dealbata as raw material for bioethanol production. Bioresour. Technol. 2011, 102, 4766–4773. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Liu, M.; Liu, J.T.; Dai, H.Q.; Zhou, X.L.; Liu, X.Y.; Zhou, Y.; Zhang, W.Q.; Zhang, L.X. Medium optimization for the production of avermectin B1a by Streptomyces avermitilis 14–12A using response surface methodology. Bioresour. Technol. 2009, 100, 4012–4016. [Google Scholar] [CrossRef] [PubMed]
- Shinozaki, Y.; Kitamoto, H.K. Ethanol production from ensiled rice straw and whole-crop silage by the simultaneous enzymatic saccharification and fermentation process. J. Biosci. Bioeng. 2011, 111, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Srichuwong, S.; Fujiwara, M.; Wang, X.H.; Seyama, T.; Shiroma, R.; Arakane, M.; Mukojima, N.; Tokuyasu, K. Simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash for the production of ethanol. Biomass Bioenerg. 2009, 33, 890–898. [Google Scholar] [CrossRef]
- Theoretical Ethanol Yield Calculator. Available online: http://www1.eere.energy.gov/biomass/ethanol_yield_calculator.html (accessed on 2 June 2012).
- Kessano, M. Sustainable Management of Duckweed Biomass Grown for Nutrient Control in Municipal Wastewaters. Master’s Thesis, Civil and Environmental Engineering, Utah State University, Logan, UT, USA, 2011. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Chen, Q.; Jin, Y.; Zhang, G.; Fang, Y.; Xiao, Y.; Zhao, H. Improving Production of Bioethanol from Duckweed (Landoltia punctata) by Pectinase Pretreatment. Energies 2012, 5, 3019-3032. https://doi.org/10.3390/en5083019
Chen Q, Jin Y, Zhang G, Fang Y, Xiao Y, Zhao H. Improving Production of Bioethanol from Duckweed (Landoltia punctata) by Pectinase Pretreatment. Energies. 2012; 5(8):3019-3032. https://doi.org/10.3390/en5083019
Chicago/Turabian StyleChen, Qian, Yanling Jin, Guohua Zhang, Yang Fang, Yao Xiao, and Hai Zhao. 2012. "Improving Production of Bioethanol from Duckweed (Landoltia punctata) by Pectinase Pretreatment" Energies 5, no. 8: 3019-3032. https://doi.org/10.3390/en5083019
APA StyleChen, Q., Jin, Y., Zhang, G., Fang, Y., Xiao, Y., & Zhao, H. (2012). Improving Production of Bioethanol from Duckweed (Landoltia punctata) by Pectinase Pretreatment. Energies, 5(8), 3019-3032. https://doi.org/10.3390/en5083019