Preparation and Doping Mode of Doped LiMn2O4 for Li-Ion Batteries
Abstract
:1. Introduction
2. Preparation
2.1. Solid State Reaction
2.2. Solution Synthetic Method
2.3. Other Methods
3. Doping Mode
3.1. Bulk Doping
3.1.1. Single-Ion Doping
3.1.2. Multiple-Ion Doping
3.2. Surface Doping or Coating
3.3. Combined Doping
4. Conclusions and Prospects
Acknowledgments
References
- Zhang, S.S. The effect of the charging protocol on the cycle life of a Li-ion battery. J. Power Sour. 2006, 161, 1385–1391. [Google Scholar] [CrossRef]
- Zhang, S.S.; Xu, K.; Jow, T.R. Charge and discharge characteristics of a commercial LiCoO2-based 18650 Li-ion battery. J. Power Sour. 2006, 160, 1403–1409. [Google Scholar] [CrossRef]
- Michalska, M.; Lipinska, L.; Mirkowska, M.; Aksienionek, M.; Diduszko, R.; Wasiucionek, M. Nanocrystalline lithium-manganese oxide spinels for Li-ion batteries-Sol-gel synthesis and characterization of their structure and selected physical properties. Solid State Ion. 2011, 188, 160–164. [Google Scholar] [CrossRef]
- Iturrondobeitia, A.; Goni, A.; Palomares, V.; Gil de Muro, I.; Lezama, L.; Rojo, T. Effect of doping LiMn2O4 spinel with a tetravalent species such as Si(IV) versus with a trivalent species such as Ga(III). Electrochemical, magnetic and ESR study. J. Power Sour. 2012, 216, 482–488. [Google Scholar] [CrossRef]
- Zhang, D.; Popov, B.N.; White, R.E. Electrochemical investigation of CrO2.65 doped LiMn2O4 as a cathode material for lithium-ion batteries. J. Power Sour. 1998, 76, 81–90. [Google Scholar] [CrossRef]
- Mandal, S.; Rojas, R.M.; Amarilla, J.M.; Calle, P.; Kosova, N.V.; Anufrienko, V.F.; Rojo, J.M. High temperature co-doped LiMn2O4-based spinels. Structural, electrical, and electrochemical characterization. Chem. Mater. 2002, 14, 1598–1605. [Google Scholar] [CrossRef]
- Liang, R.F.; Wang, Z.X.; Guo, H.J.; Li, X.H.; Peng, W.J.; Wang, Z.G. Fabrication and electrochemical properties of lithium-ion batteries for power tools. J. Power Sour. 2008, 184, 598–603. [Google Scholar] [CrossRef]
- Yang, S.T.; Jia, J.H.; Ding, L.; Zhang, M.C. Studies of structure and cycleability of LiMn2O4 and LiNd0.01Mn1.99O4 as cathode for Li-ion batteries. Electrochim. Acta 2003, 48, 569–573. [Google Scholar] [CrossRef]
- Singhal, R.; Das, S.R.; Tomar, M.S.; Ovideo, O.; Nieto, S.; Melgarejo, R.E.; Katiyar, R.S. Synthesis and characterization of Nd doped LiMn2O4 cathode for Li-ion rechargeable batteries. J. Power Sour. 2007, 164, 857–861. [Google Scholar] [CrossRef]
- Chan, H.W.; Duh, J.G.; Sheen, S.R. Electrochemical performance of LBO-coated spinel lithium manganese oxide as cathode material for Li-ion battery. Surf. Coat. Tech. 2004, 188, 116–119. [Google Scholar] [CrossRef]
- Thirunakaran, R.; Kim, K.T.; Kang, Y.M.; Lee, J.Y. Solution synthesis of boron substituted LiMn2O4 spinel oxide for use in lithium rechargeable battery. Ionics 2004, 10, 188–192. [Google Scholar] [CrossRef]
- Chan, H.W.; Duh, J.G.; Sheen, S.R. Surface treatment of the lithium boron oxide coated LiMn2O4 cathode material in Li-ion battery. In High-Performance Ceramics Iii, Pts 1 and 2; Pan, W., Gong, J.H., Ge, C.C., Li, J.F., Eds.; Trans Tech Publications Ltd: Zurich-Uetikon, Switzerland, 2005; Volume 280–283, pp. 671–675. [Google Scholar]
- Chen, Y.B.; Hu, Y.; Lian, F.; Liu, Q.G. Synthesis and characterization of spinel Li1.05Cr0.1Mn1.9O4−zFz as cathode materials for lithium-ion batteries. Int. J. Metall. Mater. 2010, 17, 220–224. [Google Scholar] [CrossRef]
- Feng, C.Q.; Li, H.; Zhang, P.; Guo, Z.P.; Liu, H.K. Synthesis and modification of non-stoichiometric spinel (Li1.02Mn1.90Y0.02O4−yF0.08) for lithium-ion batteries. Mater. Chem. Phys. 2010, 119, 82–85. [Google Scholar] [CrossRef]
- Jayaprakash, N.; Kalaiselvi, N.; Doh, C.H.; Gangulibabu; Bhuvaneswari, D. A new class of Sol-gel derived LiM1xM2yMn2−x−yO3.8F0.2 (M1 = Cr, M2 = V; x = y = 0.2) cathodes for lithium batteries. J. Appl. Electrochem. 2010, 40, 2193–2202. [Google Scholar] [CrossRef]
- Molenda, M.; Dziembaj, R.; Podstawka, E.; Proniewicz, L.M.; Piwowarska, Z. An attempt to improve electrical conductivity of the pyrolysed carbon-LiMn2O4−ySy (0 <= y <= 0.5) composites. J. Power Sour. 2007, 174, 613–618. [Google Scholar]
- Du, G.; Sharma, N.; Peterson, V.K.; Kimpton, J.A.; Jia, D.; Guo, Z. Br-Doped Li4Ti5O12 and composite TiO2 anodes for Li-ion batteries: Synchrotron X-ray and in situ neutron diffraction studies. Adv. Funct. Mater. 2011, 21, 3990–3997. [Google Scholar] [CrossRef]
- Singh, P.; Sil, A.; Nath, M.; Ray, S. Synthesis and characterization of LiMn2−xMgxO4 (x = 0.0–0.3) prepared by sol-gel synthesis. Ceramics-Silikaty 2010, 54, 38–46. [Google Scholar]
- Amaral, F.A.; Bocchi, N.; Brocenschi, R.F.; Biaggio, S.R.; Rocha-Filho, R.C. Structural and electrochemical properties of the doped spinels Li1.05M0.02Mn1.98O3.98N0.02 (M = Ga3+, Al3+, or Co3+; N = S2− or F−) for use as cathode material in lithium batteries. J. Power Sour. 2010, 195, 3293–3299. [Google Scholar] [CrossRef]
- Liu, D.Q.; Liu, X.Q.; He, Z.Z. The elevated temperature performance of LiMn2O4 coated with Li4Ti5O12 for lithium ion battery. Mater. Chem Phys. 2007, 105, 362–366. [Google Scholar] [CrossRef]
- Lu, W.; Belharouak, I.; Liu, J.; Amine, K. Thermal properties of Li4/3Ti5/3O4/LiMn2O4 cell. J. Power Sour. 2007, 174, 673–677. [Google Scholar] [CrossRef]
- Peng, Z.D.; Jiang, Q.L.; Du, K.; Wang, W.G.; Hu, G.R.; Liu, Y.X. Effect of Cr-sources on performance of Li1.05Cr0.04Mn1.96O4 cathode materials prepared by slurry spray drying method. J. Alloy. Compd. 2010, 493, 640–644. [Google Scholar] [CrossRef]
- Xu, W.M.; Yuan, A.B.; Tian, L.; Wang, Y.Q. Improved high-rate cyclability of sol-gel derived Cr-doped spinel LiCryMn2-y O4 in an aqueous electrolyte. J. Appl. Electrochem. 2011, 41, 453–460. [Google Scholar] [CrossRef]
- Singh, P.; Sil, A.; Nath, M.; Ray, S. Preparation and characterization of Li Mn2−xFexO4(x = 0.0–0.6) spinel nanoparticles as cathode materials for lithium ion battery. In Nanomaterials and Devices: Processing and Applications; Ray, S., Nath, S.K., Kumar, A., Agarwala, R.C., Agarwala, V., Chaudhari, G.P., Daniel, B.S.S., Eds.; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2009; Volume 67, pp. 233–238. [Google Scholar]
- Luo, Q.; Manthiram, A. Effect of low-temperature fluorine doping on the properties of spinel LiMn2–2yLiyMyO4-eta Feta (M = Fe, Co, and Zn) cathodes. J. Electrochem. Soc. 2009, 156, A84–A88. [Google Scholar] [CrossRef]
- Sakunthala, A.; Reddy, M.V.; Selvasekarapandian, S.; Chowdari, B.V.R.; Selvin, P.C. Synthesis of compounds, Li(MMn11/6)O4 (M = Mn1/6, Co1/6, (Co1/12Cr1/12), (Co1/12Al1/12), (Cr1/12Al1/12)) by polymer precursor method and its electrochemical performance for lithium-ion batteries. Electrochim. Acta 2010, 55, 4441–4450. [Google Scholar] [CrossRef]
- Shenouda, A.Y.; El Sayed, E.S.M.; Liu, H.K. Preparation, characterization and electrochemical performance of LiNixCoyCuzMn2−x−y−zO4 as positive electrodes in lithium rechargeable batteries. J. New Mater. Electrochem. Syst. 2011, 14, 19–26. [Google Scholar]
- Wu, H.M.; Tu, J.P.; Chen, X.T.; Li, Y.; Zhao, X.B.; Cao, G.S. Effects of Ni-ion doping on electrochemical characteristics of spinel LiMn2O4 powders prepared by a spray-drying method. J. Solid State Electrochem. 2007, 11, 173–176. [Google Scholar] [CrossRef]
- Ein Eli, Y.; Urian, R.C.; Wen, W.; Mukerjee, S. Low temperature performance of copper/nickel modified LiMn2O4 spinels. Electrochim. Acta 2005, 50, 1913–1937. [Google Scholar]
- Liu, H.W.; Cheng, C.X.; Hu, Z.Q.; Zhang, K.L. The effect of ZnO coating on LiMn2O4 cycle life in high temperature for lithium secondary batteries. Mater. Chem. Phys. 2007, 101, 276–279. [Google Scholar] [CrossRef]
- Tu, J.; Zhao, X.B.; Xie, J.; Cao, G.S.; Zhuang, D.G.; Zhu, T.J.; Tu, J.P. Enhanced low voltage cycling stability of LiMn2O4 cathode by ZnO coating for lithium ion batteries. J. Alloy Compd. 2007, 432, 313–317. [Google Scholar] [CrossRef]
- Sclar, H.; Haik, O.; Menachem, T.; Grinblat, J.; Leifer, N.; Meitav, A.; Luski, S.; Aurbach, D. The Effect of ZnO and MgO Coatings by a Sono-Chemical Method, on the Stability of LiMn1.5Ni0.5O4 as a Cathode Material for 5 V Li-Ion Batteries. J. Electrochem. Soc. 2012, 159, A228–A237. [Google Scholar] [CrossRef]
- Liu, D.Q.; He, Z.Z.; Liu, X.Q. Synthesis and characterization of LiGaxMn2−xO4 (0 <= x <= 0.05) by triethanolamine-assisted sol-gel method. J. Alloy. Compd. 2007, 440, 69–73. [Google Scholar]
- Wu, H.M.; Belharouak, I.; Abouimrane, A.; Sun, Y.K.; Amine, K. Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO2 for lithium-ion batteries. J. Power Sour. 2010, 195, 2909–2913. [Google Scholar] [CrossRef]
- Wang, H.L.; Tan, T.A.; Yang, P.; Lai, M.O.; Lui, L. High-rate performances of the Ru-doped spinel LiNi0.5Mn1.5O4: Effects of doping and particle size. J. Phys. Chem. 2011, 115, 6102–6110. [Google Scholar] [CrossRef]
- Son, J.T.; Park, K.S.; Kim, H.G.; Chung, H.T. Surface-modification of LiMn2O4 with a silver-metal coating. J. Power Sour. 2004, 126, 182–185. [Google Scholar] [CrossRef]
- Zhou, W.J.; He, B.L.; Li, H.L. Synthesis, structure and electrochemistry of Ag-modified LiMn2O4 cathode materials for lithium-ion batteries. Mater. Res. Bul. 2008, 43, 2285–2294. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, J.S.; Guo, S.H.; He, X.M.; Jiang, C.Y.; Wan, C.R. Investigation of SnO2-modified LiMn2O4 composite as cathode material for lithium-ion batteries. Int. J. Electrochem. Sci. 2010, 5, 1113–1126. [Google Scholar]
- Tu, J.; Zhao, X.B.; Cao, G.S.; Tu, J.P.; Zhu, T.J. Improved performance of LiMn2O4 cathode materials for lithium ion batteries by gold coating. Mater. Lett. 2006, 60, 3251–3254. [Google Scholar] [CrossRef]
- Sun, H.B.; Chen, Y.G.; Xu, C.H.; Zhu, D.; Huang, L.H. Electrochemical performance of rare-earth doped LiMn2O4 spinel cathode materials for Li-ion rechargeable battery. J. Solid State Electrochem. 2012, 16, 1247–1254. [Google Scholar] [CrossRef]
- Ha, H.W.; Yun, N.J.; Kim, K. Improvement of electrochemical stability of LiMn2O4 by CeO2 coating for lithium-ion batteries. Electrochim. Acta 2007, 52, 3236–3241. [Google Scholar] [CrossRef]
- Iqbal, M.J.; Ahmad, Z. Electrical and dielectric properties of lithium manganate nanomaterials doped with rare-earth elements. J. Power Sour. 2008, 179, 763–769. [Google Scholar] [CrossRef]
- Suryakala, K.; Marikkannu, K.R.; Kalaignan, G.P.; Vasudevan, T. Synthesis and electrochemical characterization of LiMn2O4 and LiNd0.3Mn1.7O4 as cathode for lithium ion battery. Int. J. Electrochem. Sci. 2008, 3, 136–144. [Google Scholar]
- Balaji, S.R.K.; Mutharasu, D.; Shanmugan, S.; Subramanian, N.S.; Ramanathan, K. Influence of Sm3+ ion in structural, morphological, and electrochemical properties of LiMn2O4 synthesized by microwave calcination. Ionics 2010, 16, 351–360. [Google Scholar] [CrossRef]
- Helan, M.; Berchmans, L.J.; Kumari, V.S.S.; RaviSankar, R.; Shanmugam, V.M. Molten salt synthesis of LiGd0.01Mn1.99O4 using chloride-carbonate melt. Mater. Res. Innov. 2011, 15, 130–134. [Google Scholar] [CrossRef]
- Li, C.; Fan, Y.L.; Li, S.Z.; Xie, B.; Bi, L.; Yang, S.T. Synthesis and electrochemical properties of Th-doped LiMn2O4 powders for lithium-ion batteries. Rare Metals 2006, 25, 58–61. [Google Scholar] [CrossRef]
- Eftekhari, A.; Moghaddam, A.B.; Solati Hashjin, M. Electrochemical properties of LiMn2O4 cathode material doped with an actinide. J. Alloy Compd. 2006, 424, 225–230. [Google Scholar] [CrossRef]
- Li, X.F.; Xu, Y.L. Enhanced cycling performance of spinel LiMn2O4 coated with ZnMn2O4 shell. J. Solid State Electrochem. 2008, 12, 851–855. [Google Scholar] [CrossRef]
- Shi, J.Y.; Yi, C.W.; Kim, K. Improved electrochemical performance of AlPO4-coated LiMn1.5Ni0.5O4 electrode for lithium-ion batteries. J. Power Sour. 2010, 195, 6860–6866. [Google Scholar] [CrossRef]
- Son, J.T. High electrochemical performances of LiFePO4 Cathode material prepared from surface modification by carbon coating using sucrose via sol-gel method. J. New Mater. Electrochem. Syst. 2010, 13, 301–304. [Google Scholar]
- Qing, C.B.; Bai, Y.; Yang, J.M.; Zhang, W.F. Enhanced cycling stability of LiMn2O4 cathode by amorphous FePO4 coating. Electrochim. Acta 2011, 56, 6612–6618. [Google Scholar] [CrossRef]
- Li, C.; Zhang, H.P.; Fu, L.J.; Liu, H.; Wu, Y.P.; Ram, E.; Holze, R.; Wu, H.Q. Cathode materials modified by surface coating for lithium ion batteries. Electrochim. Acta 2006, 51, 3872–3883. [Google Scholar] [CrossRef]
- Kamarulzaman, N.; Osman, Z.; Muhamad, M.R.; Ibrahim, Z.A.; Arof, A.K.; Mohamed, N.S. Performance characteristics of LiMn2O4/polymer/carbon electrochemical cells. J. Power Sour. 2001, 97–98, 722–725. [Google Scholar] [CrossRef]
- Proell, J.; Kohler, R.; Torge, M.; Ulrich, S.; Ziebert, C.; Bruns, M.; Seifert, H.J.; Pfleging, W. Laser microstructuring and annealing processes for lithium manganese oxide cathodes. Appl. Surf. Sci. 2011, 257, 9968–9976. [Google Scholar] [CrossRef]
- Tang, S.B.; Lai, M.O.; Lu, L. Properties of nano-crystalline LiMn2O4 thin films deposited by pulsed laser deposition. Electrochim. Acta 2006, 52, 1161–1168. [Google Scholar] [CrossRef]
- Jeong, W.T.; Joo, J.H.; Lee, K.S. Improvement of electrode performances of spinel LiMn2O4 prepared by mechanical alloying and subsequent firing. J. Power Sour. 2003, 119, 690–694. [Google Scholar] [CrossRef]
- Liu, Y.J.; Li, X.H.; Guo, H.J.; Wang, Z.X.; Hu, Q.Y.; Peng, W.J.; Yang, Y. Electrochemical performance and capacity fading reason of LiMn2O4/graphite batteries stored at room temperature. J. Power Sour. 2009, 189, 721–725. [Google Scholar] [CrossRef]
- Park, S.B.; Shin, H.C.; Lee, W.-G.; Cho, W.I.; Jang, H. Improvement of capacity fading resistance of LiMn2O4 by amphoteric oxides. J. Power Sour. 2008, 180, 597–601. [Google Scholar] [CrossRef]
- Kakuda, T.; Uematsu, K.; Toda, K.; Sato, M. Electrochemical performance of Al-doped LiMn2O4 prepared by different methods in solid-state reaction. J. Power Sour. 2007, 167, 499–503. [Google Scholar] [CrossRef]
- Lu, S.G.; Cai, Z.P.; Jin, W.H.; Li, M.X.; Huang, S.T. Preparation of modified LiMn2O4 by solid-state reaction. Rare Metals 2006, 25, 71–76. [Google Scholar] [CrossRef]
- Li, X.F.; Xu, Y.L. Spinel LiMn2O4 active material with high capacity retention. Appl. Surf. Sci. 2007, 253, 8592–8596. [Google Scholar] [CrossRef]
- Yuan, A.B.; Tian, L.; Xu, W.M.; Wang, Y.Q. Al-doped spinel LiAl0.1Mn1.9O4 with improved high-rate cyclability in aqueous electrolyte. J. Power Sour. 2010, 195, 5032–5038. [Google Scholar] [CrossRef]
- Kosova, N.V.; Devyatkina, E.T.; Kaichev, V.V.; Slobodyuk, A.B. From ‘core-shell’ to composite mixed cathode materials for rechargeable lithium batteries by mechanochemical process. Solid State Ionics 2011, 192, 284–288. [Google Scholar] [CrossRef]
- Shen, C.H.; Liu, R.S.; Gundakaram, R.; Chen, J.M.; Huang, S.M.; Chen, J.S.; Wang, C.M. Effect of Co doping in LiMn2O4. J. Power Sour. 2001, 102, 21–28. [Google Scholar] [CrossRef]
- Capsoni, D.; Bini, M.; Chiodelli, G.; Mustarelli, P.; Massarotti, V.; Azzoni, C.B.; Mozzati, M.C.; Linati, L. Inhibition of Jahn-Teller cooperative distortion in LiMn2O4 spinel by Ga3+ doping. J. Phys. Chem. 2002, 106, 7432–7438. [Google Scholar] [CrossRef]
- Malyovanyi, S.M.; Andriiko, A.A.; Monko, A.P. Synthesis and electrochemical behavior of Fe-doped overstoichiometric LiMn2O4 based spinels. J. Solid State Electrochem. 2003, 8, 7–10. [Google Scholar] [CrossRef]
- Liu, H.; Wu, Y.P.; Rahm, E.; Holze, R.; Wu, H.Q. Cathode materials for lithium ion batteries prepared by sol-gel methods. J. Solid State Electrochem. 2004, 8, 450–466. [Google Scholar] [CrossRef]
- Amdouni, N.; Zaghib, K.; Gendron, F.; Mauger, A.; Julien, C.M. Structure and insertion properties of disordered and ordered LiNi0.5Mn1.5O4 spinels prepared by wet chemistry. Ionics 2006, 12, 117–126. [Google Scholar] [CrossRef]
- Balaji, S.; Manichandran, T.; Mutharasu, D. A comprehensive study on influence of Nd3+ substitution on properties of LiMn2O4. Bull. Mater. Sci. 2012, 35, 471–480. [Google Scholar] [CrossRef]
- Chan, H.W.; Duh, J.G.; Sheen, S.R. LiMn2O4 cathode doped with excess lithium and synthesized by Co-precipitation for Li-ion batteries. J. Power Sour. 2003, 115, 110–118. [Google Scholar] [CrossRef]
- Subramania, A.; Angayarkanni, N.; Vasudevan, T. Polyaspartic-acid-pyrolysis route for the synthesis of nanocrystalline LiCo0.15Mn1.85O4 powder for Li-ion batteries. Ionics 2007, 13, 61–65. [Google Scholar] [CrossRef]
- Xia, Y.J.; Hideshima, Y.; Kumada, N.; Nagano, M.; Yoshio, M. Studies on Li-Mn-O spinel system (obtained from melt-impregnation method) as a cathode for 4 V lithium batteries—Part V. Enhancement of the elevated temperature performance of Li/LiMn2O4 cells. J. Power Sour. 1998, 74, 24–28. [Google Scholar] [CrossRef]
- Tu, J.; Zhao, X.B.; Cao, G.S.; Zhuang, D.G.; Zhu, T.J.; Tu, J.P. Enhanced cycling stability of LiMn2O4 by surface modification with melting impregnation method. Electrochim. Acta 2006, 51, 6456–6462. [Google Scholar] [CrossRef]
- Liu, W.; Kowal, K.; Farrington, G.C. Electrochemical characteristics of spinel phase LiMn2O4-based cathode materials prepared by the Pechini process-Influence of firing temperature and dopants. J. Electrochem. Soc. 1996, 143, 3590–3596. [Google Scholar] [CrossRef]
- Son, J.T.; Kim, H.G.; Park, Y.J. New preparation method and electrochemical property of LiMn2O4 electrode. Electrochim. Acta 2004, 50, 453–459. [Google Scholar] [CrossRef]
- Kim, K.W.; Lee, S.W.; Han, K.S.; Chung, H.J.; Woo, S.I. Characterization of Al-doped spinel LiMn2O4 thin film cathode electrodes prepared by liquid source misted chemical deposition (LSMCD) technique. Electrochim. Acta 2003, 48, 4223–4231. [Google Scholar] [CrossRef]
- Liu, H.W.; Mai, S.; Hu, Y.M.; Liu, H.L.; Zhang, K.L. The effect of the various oxidation state to the electrochemical performance of the LiMn2O4. J. Appl. Chem. 2007, 24, 1065–1070. [Google Scholar]
- Sun, Y.-K.; Oh, S.W.; Yoon, C.S.; Bang, H.J.; Prakash, J. Effect of sulfur and nickel doping on morphology and electrochemical performance of LiNi0.5Mn1.5O4−xSx spinel material in 3-V region. J. Power Sour. 2006, 161, 19–26. [Google Scholar] [CrossRef]
- Shin, D.W.; Bridges, C.A.; Huq, A.; Paranthaman, M.P.; Manthiram, A. Role of Cation Ordering and Surface Segregation in High-Voltage Spinel LiMn1.5Ni0.5−xMxO4 (M = Cr, Fe, and Ga) Cathodes for Lithium-Ion Batteries. Chem. Mater. 2012, 24, 3720–3731. [Google Scholar] [CrossRef]
- Wang, X.Q.; Tanaike, O.; Kodama, M.; Hatori, H. High rate capability of the Mg-doped Li-Mn-O spinel prepared via coprecipitated precursor. J. Power Sour. 2007, 168, 282–287. [Google Scholar] [CrossRef]
- Xu, C.Q.; Tian, Y.W.; Zhai, Y.C.; Liu, L.Y. Influence of Y3+ doping on structure and electrochemical property of the LiMn2O4. Mater. Chem. Phys. 2006, 98, 532–538. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, C.; Ruffo, R.; Peng, H.; Kim, D.K.; Cui, Y. Single nanorod devices for battery diagnostics: A case study on LiMn2O4. Nano Lett. 2009, 9, 4109–4114. [Google Scholar] [CrossRef] [PubMed]
- Amatucci, G.; Du Pasquier, A.; Blyr, A.; Zheng, T.; Tarascon, J.M. The elevated temperature performance of the LiMn2O4/C system: Failure and solutions. Electrochim. Acta 1999, 45, 255–271. [Google Scholar] [CrossRef]
- Wu, C.; Wu, F.; Chen, L.Q.; Huang, X.J. Fabrications and electrochemical properties of fluorine-modified spinel LiMn2O4 for lithium ion batteries. Solid State Ionics 2002, 152, 327–334. [Google Scholar] [CrossRef]
- Zheng, Z.H.; Tang, Z.L.; Zhang, Z.T.; Shen, W.C.; Lin, Y.H. Surface modification of Li1.03Mn1.97O4 spinels for improved capacity retention. Solid State Ionics 2002, 148, 317–321. [Google Scholar] [CrossRef]
- Kobayashi, M.; Inoguchi, T.; Iida, T.; Tanioka, T.; Kumase, H.; Fukai, Y. Development of direct fluorination technology for application to materials for lithium battery. J. Fluor. Chem. 2003, 120, 105–110. [Google Scholar] [CrossRef]
- Shu, D.; Kumar, G.; Kim, K.B.; Ryu, K.S.; Chang, S.H. Surface modification of LiMn2O4 thin films at elevated temperature. Solid State Ionics 2003, 160, 227–233. [Google Scholar] [CrossRef]
- Yonezawa, S.; Yamasaki, M.; Takashima, M. Surface fluorination of the cathode active materials for lithium secondary battery. J. Fluor. Chem. 2004, 125, 1657–1661. [Google Scholar] [CrossRef]
- Xiao, J.; Zhu, H.L.; Chen, Z.Y.; Peng, Z.D.; Hu, G.R. Preparation and property of spinel LiMn2O4 material by co-doping anti-electricity ions. Trans. Nonferrous Metals Soc. China 2006, 16, 467–472. [Google Scholar] [CrossRef]
- Eftekhari, A. Mixed-metals codeposition as a novel method for the preparation of LiMn2O4 electrodes with reduced capacity fades. J. Electrochem. Soc. 2003, 150, A966–A969. [Google Scholar] [CrossRef]
- LI, C.; Fan, Y.L.; Bi, L.; Li, S.Z.; Xu, J.Q.; Yang, S.T. Electrochemical Properties of Y-S Co-doped LiMn2O4. China Manganese Ind. 2006, 24, 26–29. [Google Scholar]
- Jung, K.H.; Kim, H.G.; Park, Y.J. Effects of protecting layer [Li, La] TiO3 on electrochemical properties of LiMn2O4 for lithium batteries. J. Alloy Compd. 2011, 509, 4426–4432. [Google Scholar] [CrossRef]
- Guo, S.H.; He, X.M.; Zeng, Q.X.; Jiang, C.Y.; Wan, C.R. Preparation and electrochemical properties of spherical LiMn2O4 surface doped with cobalt. New Chem. Mater. 2007, 35, 34–36. [Google Scholar]
- He, X.M.; Li, J.J.; Cai, Y.; Wang, Y.W.; Ying, J.R.; Jiang, C.Y.; Wan, C.R. Preparation of co-doped spherical spinel LiMn2O4 cathode materials for Li-ion batteries. J. Power Sour. 2005, 150, 216–222. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Liu, Q.; Wang, S.; Tan, H.; Yang, Z.; Zeng, J. Preparation and Doping Mode of Doped LiMn2O4 for Li-Ion Batteries. Energies 2013, 6, 1718-1730. https://doi.org/10.3390/en6031718
Liu Q, Wang S, Tan H, Yang Z, Zeng J. Preparation and Doping Mode of Doped LiMn2O4 for Li-Ion Batteries. Energies. 2013; 6(3):1718-1730. https://doi.org/10.3390/en6031718
Chicago/Turabian StyleLiu, Qiuling, Shengping Wang, Haibo Tan, Zhigao Yang, and Jian Zeng. 2013. "Preparation and Doping Mode of Doped LiMn2O4 for Li-Ion Batteries" Energies 6, no. 3: 1718-1730. https://doi.org/10.3390/en6031718
APA StyleLiu, Q., Wang, S., Tan, H., Yang, Z., & Zeng, J. (2013). Preparation and Doping Mode of Doped LiMn2O4 for Li-Ion Batteries. Energies, 6(3), 1718-1730. https://doi.org/10.3390/en6031718