Kinetic Modeling of Ethanol Batch Fermentation by Escherichia Coli FBWHR Using Hot-Water Sugar Maple Wood Extract Hydrolyzate as Substrate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Kinetics of Batch Ethanol Fermentation of Various Concentrations of Concentrated Hot-Water Sugar Maple Wood Extract Hydrolyzate by E. Coli FBWHR
2.2. Comparison of Different Concentrations of Concentrated Hot-Water Wood Extract Hydrolyzate in Batch Fermentation of E. Coli FBWHR
2.3. Kinetic Model of Different Concentrations of Concentrated Hot-Water Wood Extract Hydrolyzate in Batch Fermentation of E. Coli FBWHR
2.3.1. Cell Growth
Kinetic parameters | 20% (v/v) | 30% (v/v) | 40% (v/v) | 50% (v/v) | 60% (v/v) |
---|---|---|---|---|---|
μmax (h−1) | 0.229 ± 0.030 | ||||
Xmax (g/L) | 0.607 | 0.737 | 1.254 | 1.684 | 1.739 |
R2 | 0.988 | 0.991 | 0.987 | 0.997 | 0.995 |
2.3.2. Substrate Utilization and Production Synthesis
Model parameters | 20% (v/v) | 30% (v/v) | 40% (v/v) | 50% (v/v) | 60% (v/v) |
---|---|---|---|---|---|
YFX/Glu (g/g) | 0.074 | 0.072 | 0.063 | 0.058 | 0.050 |
γP,Glu (g/(g·h)) | 0.081 | 0.088 | 0.184 | 0.090 | 0.115 |
KS,Glu (g/L) | 1 × 10−12 | ||||
YFP/Glu (g/g) | 0.137 | 0.100 | 0.165 | 0.111 | 0.231 |
a | 0.210 ± 0.000 | ||||
YFX/GA (g/g) | 0.074 | 0.072 | 0.063 | 0.058 | 0.050 |
µGA (g/(g·h)) | 0.345 | 0.68 | 0.521 | 0.603 | 0.989 |
KS,GA (g/L) | 1 × 10−12 | ||||
YFP/GA (g/g) | 0.51 | 0.51 | 0.51 | 0.51 | 0.415 |
b | 1.05 ± 0.003 | ||||
YFX/Man (g/g) | 0.074 | 0.072 | 0.063 | 0.058 | 0.050 |
µM (g/(g·h)) | 0.110 | 0.436 | 0.427 | 0.298 | 0.454 |
KS,RM (g/L) | 1 × 10−12 | ||||
YFP/RM (g/g) | 0.160 | 0.293 | 0.265 | 0.227 | 0.175 |
c | 1.60 ± 0.002 | ||||
YFX/Xyl (g/g) | 0.074 | 0.071 | 0.063 | 0.058 | 0.050 |
γP,Xyl (g/(g·h)) | 0.514 | 0.504 | 0.550 | 0.405 | 0.349 |
KS,Xyl (g/L) | 5.38 × 10−2 ± 1 × 10−5 | ||||
YFP/Xyl (g/g) | 0.375 | 0.486 | 0.387 | 0.265 | 0.269 |
d | 0.100 ± 0.001 |
3. Experimental Section
3.1. Sugar Maple Wood Extract Hydrolyzate and E. Coli FBWHR Strain
3.2. Analytical Methods
3.3. Development of Batch Fermentation Kinetic Model
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Amidon, T.E.; Wood, C.D.; Shupe, A.M.; Wang, Y.; Graves, M.; Liu, S.J. Biorefinery: Conversion of woody biomass to chemicals, energy and materials. J. Biobased Mater. Bioenergy 2008, 2, 100–120. [Google Scholar] [CrossRef]
- Lokhorst, A.; Wildenborg, I. Introduction to CO2 geological storage: Classification of storage options. Oil Gas Sci. Technol. 2005, 60, 513–515. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, S.J. Butadiene production from ethanol. J. Bioprocess Eng. Biorefinery 2012, 1, 33–43. [Google Scholar] [CrossRef]
- RFA: Renewable Fuels Association. Statistics, 2013. Available online: http://www.ethanolrfa.org/pages/statistics (accessed on 3 September 2013).
- Qureshi, N.; Dien, B.S.; Liu, S.; Saha, B.C.; Hector, R.; Cotta, M.A.; Hughes, S. Genetically engineered Escherichia coli FBR5: Part I. Comparison of high cell density bioreactors for enhanced ethanol production from xylose. Biotechnol. Prog. 2012, 28, 1167–1178. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, S. Conversion of distillers grain to chemicals, liquid fuel and materials. J. Bioprocess Eng. Biorefinery 2013, 2, 85–93. [Google Scholar] [CrossRef]
- Liu, S.J.; Lu, H.F.; Hu, R.F.; Shupe, A.; Lin, L.; Liang, B. A sustainable woody biomass biorefinery. J. Biotech. Adv. 2012, 30, 785–810. [Google Scholar] [CrossRef]
- Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, S.J. Pretreatment technologies for biological and chemical conversion of woody biomass. TAPPI J. 2012, 11, 9–16. [Google Scholar]
- Gírio, F.M.; Fonseca, C.; Carvalheiro, F.; Duarte, L.C.; Marques, S.; Bogel-Łukasik, R. Hemicelluloses for fuel ethanol: A review. Bioresour. Technol. 2010, 101, 4775–4800. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, B.G.; Savelski, M.J.; Hecht, G.B. Ethanol Resistant and Furfural Resistant Strains of E. coli FBR5 for Production of Ethanol from Cellulosic Biomass. WO2008/048513, 24 April 2008. [Google Scholar]
- Dien, B.S.; Nichols, N.N.; O’Bryan, P.J.; Bothast, R.J. Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Appl. Biochem. Biotechnol. 2000, 84, 181–196. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, N.; Dien, B.S.; Nichols, N.N.; Saha, B.C.; Cotta, M.A. Genetically engineered Escherichia coli for ethanol production from xylose: Substrate and product inhibition and kinetic parameters. Food Bioprod. Process 2006, 84, 114–122. [Google Scholar] [CrossRef]
- Ingram, L.O.; Conway, T.; Clark, D.P.; Sewell, G.W.; Preston, J.F. Genetic engineering of ethanol production in Escherichia coli. Appl. Environ. Microbiol. 1987, 53, 2420–2425. [Google Scholar] [PubMed]
- Alterthum, F.; Ingram, L.O. Efficient ethanol production from glucose, lactose, and xylose by recombinant Escherichia coli. Appl. Environ. Microbiol. 1989, 55, 1943–1948. [Google Scholar] [PubMed]
- Martin, G.J.; Knepper, A.; Zhou, B.; Pamment, N.B. Performance and stability of ethanologenic Escherichia coli strain FBR5 during continuous culture on xylose and glucose. J. Ind. Microbiol. Biotechnol. 2006, 33, 834–844. [Google Scholar] [CrossRef] [PubMed]
- Saha, B.C.; Iten, L.B.; Cotta, M.A.; Wu, Y.V. Dilute acid pretreatment, enzymatic saccharification, and fermentation of wheat straw to ethanol. Proc. Biochem. 2005, 40, 3693–3700. [Google Scholar] [CrossRef]
- Saha, B.C.; Iten, L.B.; Cotta, M.A.; Wu, Y.V. Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol. Biotechnol. Prog. 2005, 21, 816–822. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.J.; Lin, L.; Sun, Z.J.; Hu, R.F.; Liu, S.J. Bioethanol fermentation by robust recombinant E. coli FBHW using hot-water wood extract hydrolyzate as substrate. Biotech. Adv. 2010, 28, 602–608. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Chatsko, M.A.R.; Liu, S. Ethanol fermentation by Escherichia Coli FBWHR using hot-water sugar maple wood extract hydrolyzate as substrate: A batch fermentation and kinetic study. J. Bioprocess Eng. Biorefinery 2013, 2, 20–26. [Google Scholar] [CrossRef]
- Sinclair, C.G.; Kristiansen, B. Fermentation Kinetics and Modeling; Taylor & Francis: New York, NY, USA, 1987. [Google Scholar]
- Marín, M.R. Alcoholic fermentation modeling: Current state and perspectives. Am. J. Enol. Vitic. 1999, 50, 166–178. [Google Scholar]
- Lei, F.; Rotbøll, M.; Jørgensen, S.B. A biochemically structured model for Saccharomyces cerrevisiae. J. Biotechnol. 2001, 88, 205–221. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-Z.; Weng, L.-P.; Zhang, Q.-L.; Xu, H.; Ji, L.-N. A mathematical model for glucinic acid fermentation by Aspergillus niger. Biochem. Eng. J. 2002, 14, 137–141. [Google Scholar] [CrossRef]
- Benkortbi, O.; Hanini, S.; Bentahar, F. Batch kinetics and modelling of Pleuromutilin production by Pleurotus mutilis. Biochem. Eng. J. 2007, 36, 14–18. [Google Scholar] [CrossRef]
- Song, H.; Jang, S.H.; Park, J.M.; Lee, S.Y. Modeling of batch fermentation kinetics for succinic acid production by Mannheimia succiniciproducens. Biochem. Eng. J. 2008, 40, 107–115. [Google Scholar] [CrossRef]
- Luong, J.; Mulchandani, A.; LeDuy, A. Kinetics of biopolymer synthesis: A revisit. Enzym. Microb. Technol. 1988, 10, 326–332. [Google Scholar] [CrossRef]
- Garcia-Ochoa, F.; Garcia-Leon, M.; Romero, A. Kinetics modeling of xanthan production from sucrose. J. Chem. Biochem. Eng. 1990, 35, 15–20. [Google Scholar]
- Saha, B.C.; Cotta, M.A. Continuous ethanol production from wheat straw hydrolysate by recombinant ethanologenic Escherichia coli strain FBR5. Appl. Microbiol. Biotechnol. 2011, 90, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Swinnen, I.A.M.; Bernaerts, K.; Dens, E.J.J.; Geeraerd, A.H.; van Impe, J.F. Predictive modelling of the microbial lag phase: A review. Int. J. Food Microbiol. 2004, 94, 137–159. [Google Scholar] [CrossRef] [PubMed]
- Mercier, P.; Yerushalmi, L.; Rouleau, D.; Dochain, D. Kinetics of lactic acid fermentation on glucose and corn by Lactobacillus amylophilus. J. Chem. Technol. Biotechnol. 1992, 55, 111–121. [Google Scholar] [CrossRef]
- Choonia, H.S.; Lele, S.S. Kinetic modeling and implementation of superior process strategies for β-galactosidase production during submerged fermentation in a stirred tank bioreactor. Biochem. Eng. J. 2013, 77, 49–57. [Google Scholar] [CrossRef]
- Parente, E.; Hill, C. A comparison of factors affecting the production of two bacteriocins from lactic acid bacteria. J. Appl. Bacteriol. 1992, 73, 290–298. [Google Scholar] [CrossRef]
- Liu, S. Bioprocess Engineering: Kinetics, Biosystems, Sustainability, and Reactor Design; Elsevier: Oxford, UK, 2013. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liu, S. Kinetic Modeling of Ethanol Batch Fermentation by Escherichia Coli FBWHR Using Hot-Water Sugar Maple Wood Extract Hydrolyzate as Substrate. Energies 2014, 7, 8411-8426. https://doi.org/10.3390/en7128411
Wang Y, Liu S. Kinetic Modeling of Ethanol Batch Fermentation by Escherichia Coli FBWHR Using Hot-Water Sugar Maple Wood Extract Hydrolyzate as Substrate. Energies. 2014; 7(12):8411-8426. https://doi.org/10.3390/en7128411
Chicago/Turabian StyleWang, Yang, and Shijie Liu. 2014. "Kinetic Modeling of Ethanol Batch Fermentation by Escherichia Coli FBWHR Using Hot-Water Sugar Maple Wood Extract Hydrolyzate as Substrate" Energies 7, no. 12: 8411-8426. https://doi.org/10.3390/en7128411
APA StyleWang, Y., & Liu, S. (2014). Kinetic Modeling of Ethanol Batch Fermentation by Escherichia Coli FBWHR Using Hot-Water Sugar Maple Wood Extract Hydrolyzate as Substrate. Energies, 7(12), 8411-8426. https://doi.org/10.3390/en7128411