A Critical Review of Wireless Power Transfer via Strongly Coupled Magnetic Resonances
Abstract
:1. Introduction
2. Principle Elaboration
2.1. Coupled Mode Theory
2.2. Circuit Theory
2.3. Comparative Analysis between Coupled Mode Theory and Circuit Theory
2.4. Distinctions between Strongly Coupled Magnetic Resonances and Inductive Power Transfer
- (1)
- Diverse system architectures are utilized in SCMR, which can facilitate the impedance matching to optimize the system transfer characteristics. The parasitic capacitance of the coil is ordinarily utilized to produce a really high resonant frequency. By contrast, the system architecture with two coils is generally adopted in IPT, and the basic topologies include series-series, series-parallel, parallel-series and parallel-parallel. The secondary coil in IPT should be tuned at the operating frequency to enhance the power transfer. In order to eliminate the imaginary power in some topologies, the lumped capacitance of the primary coil should be deliberately designed to compensate both the primary self-inductance and the reflected impedance. Except for the series-series topology, the compensation capacitance of the primary coil in the other three topologies are all affected by either mutual inductance values or load impedances [85];
- (2)
- Because parasitic capacitances are usually adopted for tuning, the operating frequency of SCMR is roughly in the MHz range. Consequently, the quality factors are very high. When the transfer distance increases, these high quality factors can alleviate the sharp decline in the transfer efficiency which is caused by the reduced coupling coefficient, so the high transfer efficiency in meter scope can be realized. Compared with SCMR, the operating frequency of IPT is ordinarily in the KHz range, and ferromagnetic materials are usually used for improving the coupling, and, hence, power transfer. The quality factors of IPT are normally designed below 10 [85,88], because the transfer power will drop precipitously for larger quality factor values [60]. Without the compensation of high quality factors, the transfer efficiency of IPT naturally declines sharply with the increasing transfer distance, so the effective transfer distance is usually within 20 cm, but the transfer power can reach kilowatts level;
- (3)
- The frequency splitting phenomenon exists in both SCMR and IPT, but with different objectives. The former aims to maximize the transfer power, and the latter one aims to achieve a unity power factor [85]. According to the circuit model depicted in Figure 1a, the AC sweep analysis results by executing Spice simulations are showed in Figure 2. PVS, Ps and PL represent the output power of the AC voltage source, the dissipation power of the source internal resistance and the load resistance. A and B represent the frequency splitting points based on achieving the unity power factor, D and E represent the frequency splitting points based on maximizing the transfer power, C1 and C2 are at the resonant frequency point. Obviously, the frequency splitting phenomenon appears in Figure 2, and A and D (or B and E) overlap with each other. But it should be noted that the premise is the equivalence between RS and RL, once this assumption is not satisfied, the misalignment between A and D (or B and E) will happen.
3. Classification and Elaboration of Hot Research Spots
3.1. System Architectures
3.1.1. System Architectures with Three and Four Coils
3.1.2. System Architectures with Multi-Relay Coils
3.1.3. System Architecture with Multi-Transmitter and Multi-Receiver Coils
3.1.4. Metamaterial-Based System Architecture
3.2. Frequency Splitting Phenomenon and Impedance Matching
3.2.1. Frequency Splitting Phenomenon
3.2.2. Impedance Matching
3.3. Optimization Design
3.3.1. Optimization Design of Circuit Topology, Physical Structure and High Quality Factor
3.3.2. Optimization Design Flow
3.4. Applications
4. Future Trends
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Brown, W.C. The history of power transmission by radio waves. IEEE Trans. Microw. Theory Tech. 1984, 32, 1230–1242. [Google Scholar] [CrossRef]
- Brown, W. Experiments in the Transportation of Energy by Microwave Beam. In Proceedings of the IRE International Convention Record, New York, NY, USA, 21–25 March 1966; pp. 8–17.
- Glaser, P.E. Power from the sun: Its future. Science 1968, 162, 857–861. [Google Scholar]
- Brown, W.C. Status of the microwave power transmission components for the solar power satellite (SPS). IEEE Trans. Microw. Theory Tech. 1981, 29, 1319–1327. [Google Scholar] [CrossRef]
- Kurs, A.; Karalis, A.; Moffatt, R.; Joannopoulos, J.D.; Fisher, P.; Soljacic, M. Wireless power transfer via strongly coupled magnetic resonances. Science 2007, 317, 83–86. [Google Scholar] [CrossRef]
- Leyh, G.E.; Kennan, M.D. Efficient Wireless Transmission of Power Using Resonators with Coupled Electric Fields. In Proceedings of the 40th North American Power Symposium (NAPS ’08), Calgary, AB, Canada, 28–30 September 2008; pp. 1–4.
- Liu, C.; Hu, A.P.; Nair, N.K.C. Modelling and analysis of a capacitively coupled contactless power transfer system. IET Power Electron. 2011, 4, 808–815. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Y.; Chen, K. New progress of magnetically-coupled resonant wireless power transfer technology. Proc. CSEE 2013, 33, 2–13. [Google Scholar]
- Sedwick, R.J. Long range inductive power transfer with superconducting oscillators. Ann. Phys. 2010, 325, 287–299. [Google Scholar] [CrossRef]
- Yin, N.; Xu, G.; Yang, Q.; Zhao, J.; Yang, X.; Jin, J.; Fu, W.; Sun, M. Analysis of wireless energy transmission for implantable device based on coupled magnetic resonance. IEEE Trans. Magn. 2012, 48, 723–726. [Google Scholar] [CrossRef]
- Niu, W.Q.; Gu, W.; Chu, J.X.; Shen, A.D. Coupled-mode analysis of frequency splitting phenomena in cpt systems. Electron. Lett. 2012, 48, 723–724. [Google Scholar] [CrossRef]
- Karalis, A.; Joannopoulos, J.D.; Soljacic, M. Efficient wireless non-radiative mid-range energy transfer. Ann. Phys. 2008, 323, 34–48. [Google Scholar] [CrossRef]
- Hamam, R.E.; Karalis, A.; Joannopoulos, J.D.; Soljacic, M. Efficient weakly-radiative wireless energy transfer: An eit-like approach. Ann. Phys. 2009, 324, 1783–1795. [Google Scholar] [CrossRef] [Green Version]
- Kurs, A.; Moffatt, R.; Soljacic, M. Simultaneous mid-range power transfer to multiple devices. Appl. Phys. Lett. 2010, 96. [Google Scholar] [CrossRef]
- Fei, Z.; Hackworth, S.A.; Weinong, F.; Chengliu, L.; Zhihong, M.; Mingui, S. Relay effect of wireless power transfer using strongly coupled magnetic resonances. IEEE Trans. Magn. 2011, 47, 1478–1481. [Google Scholar] [CrossRef]
- Kim, J.W.; Son, H.-C.; Kim, K.-H.; Park, Y.-J. Efficiency analysis of magnetic resonance wireless power transfer with intermediate resonant coil. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 389–392. [Google Scholar] [CrossRef]
- Kim, J.-W.; Son, H.-C.; Kim, D.-H.; Kim, K.-H.; Park, Y.-J. Analysis of Wireless Energy Transfer to Multiple Devices using CMT. In Proceedings of the Asia-Pacific Microwave Conference Proceedings (APMC), Yokohama, Japan, 7–10 December 2010; pp. 2149–2152.
- Kiani, M.; Ghovanloo, M. The circuit theory behind coupled-mode magnetic resonance-based wireless power transmission. IEEE Trans. Circuits Syst. I: Regul. Pap. 2012, 59, 2065–2074. [Google Scholar] [CrossRef]
- Zhai, Y.; Sun, Y.; Dai, X. Modeling and analysis of magnetic resonance wireless power transmission systems. Proc. CSEE 2012, 32, 155–160. [Google Scholar]
- Chen, C.-J.; Chu, Tah-H.; Lin, C.-L.; Jou, Z.-C. A study of loosely coupled coils for wireless power transfer. IEEE Trans. Circuits Syst. II: Express Briefs 2010, 57, 536–540. [Google Scholar] [CrossRef]
- Lee, C.K.; Zhong, W.X.; Hui, S.Y.R. Effects of magnetic coupling of nonadjacent resonators on wireless power domino-resonator systems. IEEE Trans. Power Electron. 2012, 27, 1905–1916. [Google Scholar] [CrossRef]
- Zhong, W.X.; Chi Kwan, L.; Hui, S.Y. Wireless power domino-resonator systems with noncoaxial axes and circular structures. IEEE Trans. Power Electron. 2012, 27, 4750–4762. [Google Scholar] [CrossRef] [Green Version]
- Zhong, W.; Lee, C.K.; Hui, S.Y.R. General analysis on the use of tesla’s resonators in domino forms for wireless power transfer. IEEE Trans. Ind. Electron. 2013, 60, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Cannon, B.L.; Hoburg, J.F.; Stancil, D.D.; Goldstein, S.C. Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers. IEEE Trans. Power Electron. 2009, 24, 1819–1825. [Google Scholar] [CrossRef]
- Kiani, M.; Jow, U.M.; Ghovanloo, M. Design and optimization of a 3-coil inductive link for efficient wireless power transmission. IEEE Trans. Biomed. Circuits Syst. 2011, 5, 579–591. [Google Scholar] [CrossRef]
- Sample, A.P.; Meyer, D.A.; Smith, J.R. Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans. Ind. Electron. 2011, 58, 544–554. [Google Scholar] [CrossRef]
- Cheon, S.; Kim, Y.-H.; Seung-Youl, K.; Lee, M.L.; Lee, J.-M.; Taehyoung, Z. Circuit-model-based analysis of a wireless energy-transfer system via coupled magnetic resonances. IEEE Trans. Ind. Electron. 2011, 58, 2906–2914. [Google Scholar] [CrossRef]
- Dukju, A.; Songcheol, H. A study on magnetic field repeater in wireless power transfer. IEEE Trans. Ind. Electron. 2013, 60, 360–371. [Google Scholar]
- Oodachi, N.; Ogawa, K.; Kudo, H.; Shoki, H.; Obayashi, S.; Morooka, T. Efficiency Improvement of Wireless Power Transfer via Magnetic Resonance Using Transmission Coil Array. In Proceedings of the IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, WA, USA, 3–8 July 2011; pp. 1707–1710.
- RamRakhyani, A.K.; Mirabbasi, S.; Mu, C. Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants. IEEE Trans. Biomed. Circuits Syst. 2011, 5, 48–63. [Google Scholar] [CrossRef]
- Casanova, J.J.; Low, Z.N.; Lin, J. A loosely coupled planar wireless power system for multiple receivers. IEEE Trans. Ind. Electron. 2009, 56, 3060–3068. [Google Scholar] [CrossRef]
- Lee, K.; Cho, D.H. Diversity analysis of multiple transmitters in wireless power transfer system. IEEE Trans. Magn. 2013, 49, 2946–2952. [Google Scholar] [CrossRef]
- Dukju, A.; Songcheol, H. Effect of coupling between multiple transmitters or multiple receivers on wireless power transfer. IEEE Trans. Ind. Electron. 2013, 60, 2602–2613. [Google Scholar] [CrossRef]
- Sandrolini, L.; Reggiani, U.; Puccetti, G.; Neau, Y. Equivalent circuit characterization of resonant magnetic coupling for wireless transmission of electrical energy. Int. J. Circuit Theory Appl. 2013, 41, 753–771. [Google Scholar] [CrossRef]
- Xun, L.; Ng, W.M.; Lee, C.K.; Hui, S.Y.R. Optimal Operation of Contactless Transformers with Resonance in Secondary Circuits. In Proceedings of the Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition (APEC 2008), Austin, TX, USA, 24–28 Febuary 2008; pp. 645–650.
- Puccetti, G.; Reggiani, U.; Sandrolini, L. Experimental analysis of wireless power transmission with spiral resonators. Energies 2013, 6, 5887–5896. [Google Scholar] [CrossRef]
- Li, X.H.; Zhang, H.R.; Peng, F.; Li, Y.; Yang, T.Y.; Wang, B.; Fang, D.M. A wireless magnetic resonance energy transfer system for micro implantable medical sensors. Sensors 2012, 12, 10292–10308. [Google Scholar] [CrossRef]
- Stevens, C.J. Power transfer via metamaterials. Comput. Mater. Contin. 2013, 33, 1–18. [Google Scholar]
- Chen, Z.; Guo, B.; Yang, Y.; Cheng, C. Metamaterials-based enhanced energy harvesting: A review. Phys. B: Condens. Matter 2014, 438, 1–8. [Google Scholar] [CrossRef]
- Freire, M.J.; Marques, R.; Jelinek, L. Experimental demonstration of a µ = −1 metamaterial lens for magnetic resonance imaging. Appl. Phys. Lett. 2008, 93. [Google Scholar] [CrossRef]
- Stevens, C.J.; Chan, C.W.T.; Stamatis, K.; Edwards, D.J. Magnetic metamaterials as 1-d data transfer channels: An application for magneto-inductive waves. IEEE Trans. Microw. Theory Tech. 2010, 58, 1248–1256. [Google Scholar] [CrossRef]
- Bingnan, W.; Yerazunis, W.; Koon Hoo, T. Wireless power transfer: Metamaterials and array of coupled resonators. Proc. IEEE 2013, 101, 1359–1368. [Google Scholar] [CrossRef]
- Wang, B.; Nishino, T.; Teo, K.H. Wireless Power Transmission Efficiency Enhancement with Metamaterials. In Proceedings of the IEEE International Conference on Wireless Information Technology and Systems (ICWITS), Honolulu, HI, USA, 28 August 2010–3 September 2010; pp. 1–4.
- Pendry, J.B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 2000, 85, 3966–3969. [Google Scholar] [CrossRef]
- Wang, B.; Teo, K.H.; Nishino, T.; Yerazunis, W.; Barnwell, J.; Zhang, J. Experiments on wireless power transfer with metamaterials. Appl. Phys. Lett. 2011, 98, 254101:1–254101:3. [Google Scholar]
- Urzhumov, Y.; Smith, D.R. Metamaterial-enhanced coupling between magnetic dipoles for efficient wireless power transfer. Phys. Rev. B Condens. Matter 2011, 83, 205114. [Google Scholar] [CrossRef]
- Huang, D.; Urzhumov, Y.A.; Smith, D.R.; Hoo, T.K.; Zhang, J. Magnetic superlens-enhanced inductive coupling for wireless power transfer. J. Appl. Phys. 2012, 111, 064902. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Q.; Chen, H. Research on characteristics of frequency splitting in electromagnetic coupling resonant power transmission systems. Proc. CSEE 2012, 32, 167–173. [Google Scholar]
- Li, Y.; Yang, Q.; Yan, Z. Characteristic of frequency in wireless power transfer system via magnetic resonance coupling. Trans. China Electrotech. Soc. 2012, 16, 7–11. [Google Scholar]
- Fu, W.; Zhang, B.; Qiu, D.; Wang, W. Maximum eficiency analysis and design of self-resonance coupling coils for wireless power transmission system. Proc. CSEE 2009, 29, 21–26. [Google Scholar]
- Fu, W.; Zhang, B.; Qiu, D. Study on Frequency-Tracking Wireless Power Transfer System by Resonant Coupling. In Proceedings of the Power Electronics and Motion Control Conference (IPEMC ’09), Wuhan, China, 17–20 May 2009; pp. 2658–2663.
- Tan, L.; Huang, X.; Huang, H. Transfer efficiency optimal control of magnetic resonance coupled system of wireless power transfer based on frequency control. Sci. China 2011, 41, 913–919. [Google Scholar]
- Lee, W.-S.; Son, W.-I.; Oh, K.-S.; Yu, J.-W. Contactless energy transfer systems using antiparallel resonant loops. IEEE Trans. Ind. Electron. 2013, 60, 350–359. [Google Scholar] [CrossRef]
- Duong, T.P.; Lee, J.-W. Experimental results of high-efficiency resonant coupling wireless power transfer using a variable coupling method. IEEE Microw. Wirel. Compon. Lett. 2011, 21, 442–444. [Google Scholar] [CrossRef]
- Imura, T.; Hori, Y. Maximizing air gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit and neumann formula. IEEE Trans. Ind. Electron. 2011, 58, 4746–4752. [Google Scholar] [CrossRef]
- Beh, T.C.; Kato, M.; Imura, T.; Oh, S.; Hori, Y. Automated impedance matching system for robust wireless power transfer via magnetic resonance coupling. IEEE Trans. Ind. Electron. 2013, 60, 3689–3698. [Google Scholar] [CrossRef]
- Moriwaki, Y.; Imura, T.; Hori, Y. Basic Study on Reduction of Reflected Power Using DC/DC Converters in Wireless Power Transfer System via Magnetic Resonant coupling. In Proceedings of the IEEE 33rd International Telecommunications Energy Conference (INTELEC), Amsterdam, The Netherlands, 9–13 October 2011; pp. 1–5.
- Park, J.; Tak, Y.; Kim, Y.; Kim, Y.; Nam, S. Investigation of adaptive matching methods for near-field wireless power transfer. IEEE Trans. Antennas Propag. 2011, 59, 1769–1773. [Google Scholar] [CrossRef]
- Sample, A.P.; Waters, B.H.; Wisdom, S.T.; Smith, J.R. Enabling seamless wireless power delivery in dynamic environments. Proc. IEEE 2013, 101, 1343–1358. [Google Scholar] [CrossRef]
- Pantic, Z.; Lukic, S.M. Framework and topology for active tuning of parallel compensated receivers in power transfer systems. IEEE Trans. Power Electron. 2012, 27, 4503–4513. [Google Scholar] [CrossRef]
- Huang, X.; Ji, Q.; Tan, L. Study on series-parallel model of wireless power transfer via magnetic resonance coupling. Trans. China Electrotech. Soc. 2013, 28, 171–176. [Google Scholar]
- Chen, L.; Liu, S.; Zhou, Y.C.; Cui, T.J. An optimizable circuit structure for high-efficiency wireless power transfer. IEEE Trans. Ind. Electron. 2013, 60, 339–349. [Google Scholar] [CrossRef]
- Villa, J.L.; Sallan, J.; Sanz Osorio, J.F.; Llombart, A. High-misalignment tolerant compensation topology for icpt systems. IEEE Trans. Ind. Electron. 2012, 59, 945–951. [Google Scholar] [CrossRef]
- Lee, S.-H.; Lorenz, R.D. Development and validation of model for 95%-efficiency 220-w wireless power transfer over a 30-cm air gap. IEEE Trans. Ind. Appl. 2011, 47, 2495–2504. [Google Scholar] [CrossRef]
- Kim, D.W.; Chung, Y.D.; Kang, H.K.; Yoon, Y.S.; Ko, T.K. Characteristics of contactless power transfer for hts coil based on electromagnetic resonance coupling. IEEE Trans. Appl. Supercond. 2012, 22. [Google Scholar] [CrossRef]
- Budhia, M.; Covic, G.A.; Boys, J.T. Design and optimization of circular magnetic structures for lumped inductive power transfer systems. IEEE Trans. Power Electron. 2011, 26, 3096–3108. [Google Scholar] [CrossRef]
- Mizuno, T.; Yachi, S.; Kamiya, A.; Yamamoto, D. Improvement in efficiency of wireless power transfer of magnetic resonant coupling using magnetoplated wire. IEEE Trans. Magn. 2011, 47, 4445–4448. [Google Scholar] [CrossRef]
- Chen, K.; Zhao, Z. Analysis of the double-layer printed spiral coil for wireless power transfer. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 114–121. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Z.; Chen, K. Frequency decrease analysis of resonant wireless power transfer. IEEE Trans. Power Electron. 2014, 29, 1058–1063. [Google Scholar] [CrossRef]
- Jonah, O.; Georgakopoulos, S.V.; Tentzeris, M.M. Optimal design parameters for wireless power transfer by resonance magnetic. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 1390–1393. [Google Scholar] [CrossRef]
- Hasanzadeh, S.; Vaez-Zadeh, S. Efficiency analysis of contactless electrical power transmission systems. Energy Convers. Manag. 2013, 65, 487–496. [Google Scholar] [CrossRef]
- Sallan, J.; Villa, J.L.; Llombart, A.; Sanz, J.F. Optimal design of icpt systems applied to electric vehicle battery charge. IEEE Trans. Ind. Electron. 2009, 56, 2140–2149. [Google Scholar] [CrossRef]
- Villa, J.L.; Sallán, J.; Llombart, A.; Sanz, J.F. Design of a high frequency inductively coupled power transfer system for electric vehicle battery charge. Appl. Energy 2009, 86, 355–363. [Google Scholar] [CrossRef]
- Kiani, M.; Ghovanloo, M. A figure-of-merit for designing high-performance inductive power transmission links. IEEE Trans. Ind. Electron. 2013, 60, 5292–5305. [Google Scholar] [CrossRef]
- Zhu, C.; Yu, C.; Mao, Y. Analysis of the loss of magnetic resonant wireless power transfer. Trans. China Electrotech. Soc. 2012, 27, 13–17. [Google Scholar]
- Jonah, O.; Georgakopoulos, S.V. Wireless Powering of Biomedical Device via Magnetic Resonance. In Proceedings of the IEEE 13th Annual Wireless and Microwave Technology Conference (WAMICON), Cocoa Beach, FL, USA, 15–17 April 2012. [CrossRef]
- Jonah, O.; Georgakopoulos, S.V. Optimal Helices for Wireless Power Transfer via Magnetic Resonance. In Proceedings of the IEEE 13th Annual Wireless and Microwave Technology Conference (WAMICON), Cocoa Beach, FL, USA, 15–17 April 2012. [CrossRef]
- Chang, C.-W.; Hou, K.-C.; Shieh, L.-J.; Hung, S.-H.; Chiou, J.-C. Wireless powering electronics and spiral coils for implant microsystem toward nanomedicine diagnosis and therapy in free-behavior animal. Solid-State Electron. 2012, 77, 93–100. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, H.; Gao, Z.; Mao, Z.-H.; He, J.; Sun, M. A novel mat-based system for position-varying wireless power transfer to biomedical implants. IEEE Trans. Magn. 2013, 49, 4774–4779. [Google Scholar] [CrossRef]
- Kuipers, J.; Bruning, H.; Bakker, S.; Rijnaarts, H. Near field resonant inductive coupling to power electronic devices dispersed in water. Sens. Actuators A Phys. 2012, 178, 217–222. [Google Scholar] [CrossRef]
- Kim, J.; Son, H.-C.; Kim, D.-H.; Park, Y.-J. Optimal design of a wireless power transfer system with multiple self-resonators for an led tv. IEEE Trans. Consum. Electron. 2012, 58, 775–780. [Google Scholar] [CrossRef]
- Xie, L.; Shi, Y.; Hou, Y.T.; Sherali, H.D. Making sensor networks immortal: An energy-renewal approach with wireless power transfer. IEEE/ACM Trans. Netw. 2012, 20, 1748–1761. [Google Scholar] [CrossRef]
- Imura, T.; Okabe, H.; Hori, Y. Basic Experimental Study on Helical Antennas of Wireless Power Transfer for Electric Vehicles by Using Magnetic Resonant Couplings. In Proceedings of the Vehicle Power and Propulsion Conference (VPPC ’09), Dearborn, MI, USA, 7–10 September 2009; pp. 936–940.
- Haus, H.; Huang, W.P. Coupled-mode theory. Proc. IEEE 1991, 79, 1505–1518. [Google Scholar] [CrossRef]
- Wang, C.-S.; Covic, G.A.; Stielau, O.H. Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems. IEEE Trans. Ind. Electron. 2004, 51, 148–157. [Google Scholar] [CrossRef]
- Wang, C.-S.; Stielau, O.H.; Covic, G.A. Design considerations for a contactless electric vehicle battery charger. IEEE Trans. Ind. Electron. 2005, 52, 1308–1314. [Google Scholar] [CrossRef]
- Covic, G.A.; Boys, J.T. Modern trends in inductive power transfer for transportation applications. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 28–41. [Google Scholar] [CrossRef]
- Stielau, O.H.; Covic, G.A. Design of Loosely Coupled Inductive Power Transfer Systems. In Proceedings of the International Conference on Power System Technology (PowerCon 2000), Perth, Australia, 4–7 December 2000; Volume 81, pp. 85–90.
- Wang, Z.-H.; Li, Y.-P.; Sun, Y.; Tang, C.-S.; Lv, X. Load detection model of voltage-fed inductive power transfer system. IEEE Trans. Power Electron. 2013, 28, 5233–5243. [Google Scholar] [CrossRef]
- Raju, S.; Wu, R.; Chan, M.; Yue, C.P. Modeling of mutual coupling between planar inductors in wireless power applications. IEEE Trans. Power Electron. 2014, 29, 481–490. [Google Scholar] [CrossRef]
- Arumugam, D.D.; Ricketts, D.S. Passive magnetoquasistatic position measurement using coupled magnetic resonances. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 539–542. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.; Kong, S.; Kim, H.; Suh, I.-S.; Suh, N.P.; Cho, D.-H.; Kim, J.; Ahn, S. Coil design and shielding methods for a magnetic resonant wireless power transfer system. Proc. IEEE 2013, 101, 1332–1342. [Google Scholar] [CrossRef]
- Bolger, J.G.; Kirsten, F.A.; Ng, L.S. Inductive Power Coupling for an Electric Highway System. In Proceedings of the 28th IEEE Vehicular Technology Conference, Denver, CO, USA, 22–24 March 1978; pp. 137–144.
- Ko, Y.D.; Jang, Y.J. The optimal system design of the online electric vehicle utilizing wireless power transmission technology. IEEE Trans. Intell. Transp. Syst. 2013, 14, 1255–1265. [Google Scholar] [CrossRef]
- Shin, J.; Shin, S.; Kim, Y.; Ahn, S.; Lee, S.; Jung, G.; Jeon, S.-J.; Cho, D.-H. Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles. IEEE Trans. Ind. Electron. 2014, 61, 1179–1192. [Google Scholar] [CrossRef]
- Boys, J.T.; Covic, G.A. Auckland (NZ), Decoupling Circuits. U.S. Patent WO2004091068 A1, 21 October 2005. [Google Scholar]
- Boys, J.T.; Covic, G.A.; Xu, Y. Dc analysis technique for inductive power transfer pick-ups. IEEE Power Electron. Lett. 2003, 1, 51–53. [Google Scholar] [CrossRef]
- Kissin, M.L.G.; Huang, C.-Y.; Covic, G.A.; Boys, J.T. Detection of the tuned point of a fixed-frequency LCL resonant power supply. IEEE Trans. Power Electron. 2009, 24, 1140–1143. [Google Scholar]
- Keeling, N.A.; Covic, G.A.; Boys, J.T. A unity-power-factor IPT pickup for high-power applications. IEEE Trans. Ind. Electron. 2010, 57, 744–751. [Google Scholar] [CrossRef]
- Casanova, J.J.; Low, Z.N.; Lin, J. Design and optimization of a class-e amplifier for a loosely coupled planar wireless power system. IEEE Trans. Circuits Syst. II: Express Briefs 2009, 56, 830–834. [Google Scholar] [CrossRef]
- Low, Z.N.; Chinga, R.A.; Tseng, R.; Lin, J. Design and test of a high-power high-efficiency loosely coupled planar wireless power transfer system. IEEE Trans. Ind. Electron. 2009, 56, 1801–1812. [Google Scholar] [CrossRef]
- Christ, A.; Douglas, M.G.; Roman, J.M.; Cooper, E.B.; Sample, A.P.; Waters, B.H.; Smith, J.R.; Kuster, N. Evaluation of wireless resonant power transfer systems with human electromagnetic exposure limits. IEEE Trans. Electromagn. Compat. 2013, 55, 265–274. [Google Scholar]
- The Institute of Electrical and Electronics Engineers, Inc. IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz; IEEE Standard C95.1-2005 (Revision of IEEE Standard C95.1-1991); IEEE: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- International Commission on Non-Ionizing Radiation Protection. Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 ghz). Health Phys. 1998, 74, 494–522. [Google Scholar]
- Miyakoshi, J. Cellular and molecular responses to radio-frequency electromagnetic fields. Proc. IEEE 2013, 101, 1494–1502. [Google Scholar] [CrossRef]
- Nishimura, I.; Oshima, A.; Shibuya, K.; Mitani, T.; Negishi, T. Absence of reproductive and developmental toxicity in rats following exposure to a 20-khz or 60-khz magnetic field. Regul. Toxicol. Pharmacol. 2012, 64, 394–401. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wei, X.; Wang, Z.; Dai, H. A Critical Review of Wireless Power Transfer via Strongly Coupled Magnetic Resonances. Energies 2014, 7, 4316-4341. https://doi.org/10.3390/en7074316
Wei X, Wang Z, Dai H. A Critical Review of Wireless Power Transfer via Strongly Coupled Magnetic Resonances. Energies. 2014; 7(7):4316-4341. https://doi.org/10.3390/en7074316
Chicago/Turabian StyleWei, Xuezhe, Zhenshi Wang, and Haifeng Dai. 2014. "A Critical Review of Wireless Power Transfer via Strongly Coupled Magnetic Resonances" Energies 7, no. 7: 4316-4341. https://doi.org/10.3390/en7074316
APA StyleWei, X., Wang, Z., & Dai, H. (2014). A Critical Review of Wireless Power Transfer via Strongly Coupled Magnetic Resonances. Energies, 7(7), 4316-4341. https://doi.org/10.3390/en7074316