Gamma-ray Spectrometry in Geothermal Exploration: State of the Art Techniques
Abstract
:1. Introduction
2. Revision of Physical Concepts
2.1. Gamma-ray Formation and Detection
2.2. Heat Production from Radioelements
3. Instrumentation
4. Calculation
4.1. Data Corrections
4.2. Heat Production
5. Case Study from Scotland
6. Discussion
6.1. The Geothermal Targets of Gamma-ray Surveying?
6.2. General Guidelines for Gamma-ray Surveying in Geothermal Exploration
Task | Example |
---|---|
Specify Aims | Is this survey as a first estimate of radiogenic heat production or to gain more details of its distribution within a single pluton? |
Extent of survey area | Aerial surveys may be favourable if the survey area is particularly extensive. |
Sizes of individual sample areas | For portable surveys the surveyor can be placed on the ground gaining an effective circular sample area with a diameter of one metre. Holding the surveyor one metre above ground gains a sample area with a diameter of 10 metres [59]. |
Key lithologies to be targeted | Are all the rock types that may have radiogenic heat production included in the survey plan? |
Availability of rock exposure | In the Scottish case study, higher altitude plutons generally had much more exposed area than lower plutons, which tended to be mantled with peat bog. |
Easy access routes to exposure | Tracks due to other land use can be used to get to exposure, use of these can be incorporated into the survey design e.g., sample spoke lines coming from a driveable track. |
Land access | Gamma-ray spectrometry surveys may cover an area which has different land uses or owners; in Scotland it is not advisable to conduct a portable survey near deer hunting areas in the shooting season. |
Repeated readings and length of readings | Should all readings be repeated or only a small sub-sample to check reliability of results? Depending on dose rate longer or shorter count times may be appropriate. |
Features to survey near (e.g., faults) | Some features may have an influence on the radiogenic heat production, e.g., hydrothermal alteration around faults. Depending on the aims of the survey these could specifically be targeted or avoided so these results do not interfere with gaining an overall representative value of a pluton’s radiogenic heat production. |
Target areas for background readings | Identify bodies of freshwater, if available, to get background readings. |
Density of readings/resolution of survey | If there is a limited time, to gain an overall value for radiogenic heat production of a pluton, readings should be sparser. If there is need to understand the varied distribution of radiogenic heat production across a pluton then a tighter survey grid may be more appropriate. |
Task | Example |
---|---|
Determine distance between flight lines | Higher concentrations of flight lines may cover the survey area more comprehensively but will decrease the area that can be covered in a limited time. |
Ground Speed | As for line spacing, survey speed is a compromise between data quality and available time. |
Altitude of survey | Reduced ground clearance results in more spectral information—you get less atmospheric scatter and higher count rates. Generally, higher surveys can be flown faster (less worries for the pilot re: ground obstacles such as power lines), there is usually less radon at height (though not always) and the data are less susceptible to topographic effects and small variations in altitude. |
Refuel points | If refuel points near to the survey area can be arranged with local landowners, then more time can be spent conducting the survey rather than journeying back and forth to base. |
Ground calibration sites | When conducting an airborne survey then local calibration areas allow checking of the instrument sensitivity to ensure it is not drifting during the survey [32,44,45]. |
Detector background | This comprises internal activity in the detector and aircraft, cosmic radiation and radon. Flying over clean bodies of water allows this background to be recorded but there is still scope for radon background to vary with location. “Upward” facing detectors help with this by measuring radiation from the air above the aircraft due to radon. |
Topography | Helicopters may be better choice in rough terrain than aircraft as they can more effectively follow the topographical changes. |
7. Conclusions
Author Contributions
Conflicts of Interest
References
- Shevenell, L.A.; Garside, L.J.; Hess, R.H.; Chaney, R.L.; Tingley, S.L.; Snow, J.H.; Meeuwig, R.O. Nevada Geothermal Resources; Nevada Bureau of Mines and Geology: Reno, NV, USA, 2003. [Google Scholar]
- Mogi, T.; Okada, S. Gamma-ray spectra survey in geothermal area. J. Geotherm. Res. Soc. Jpn. 1990, 12, 295–309. [Google Scholar]
- Downing, R.A.; Gray, D. Geothermal Energy: The Potential in the United Kingdom; Her Majesty’s Stationery Office: London, UK, 1986. [Google Scholar]
- Kappelmeyer, O.; Gérard, A.; Schloemer, W.; Ferrandes, R.; Rummel, F.; Benderitter, Y. European HDR project at soultz-sous-forêts: General presentation. Geotherm. Sci. Technol. 1991, 2, 263–289. [Google Scholar]
- Häring, M.O.; Schanz, U.; Ladner, F.; Dyer, B.C. Characterisation of the basel 1 enhanced geothermal system. Geothermics 2008, 37, 469–495. [Google Scholar] [CrossRef]
- Wyborn, D. Update of development of the geothermal field in the granite at Innamincka, South Australia. In Proceedings of the World Geothermal Congress, Bali, Indonesia, 25–30 April 2010; pp. 25–29.
- Midttomme, K.; Roaldset, E.; Aagaard, P. Thermal conductivity of selected claystones and mudstones from england. Clay Miner. 1998, 33, 131–145. [Google Scholar] [CrossRef]
- Chopra, P.; Wyborn, D. Australia’s first hot dry rock geothermal energy extraction project is up and running in granite beneath the cooper basin, ne south australia. In Proceedings of the Ishihara Symposium: Granites and Associated Metallogenesis, Sydney, Australia, 22–24 July 2003; pp. 43–45.
- Baisch, S.; Weidler, R.; Vörös, R.; Wyborn, D.; de Graaf, L. Induced seismicity during the stimulation of a geothermal HFR reservoir in the Cooper Basin, Australia. Bull. Seismol. Soc. Am. 2006, 96, 2242–2256. [Google Scholar] [CrossRef]
- Manning, D.; Younger, P.; Smith, F.; Jones, J.; Dufton, D.; Diskin, S. A deep geothermal exploration well at Eastgate, Weardale, UK: A novel exploration concept for low-enthalpy resources. J. Geol. Soc. 2007, 164, 371–382. [Google Scholar] [CrossRef]
- Cohen, A.; O’Nions, R.; O’Hara, M. Chronology and mechanism of depletion in lewisian granulites. Contrib. Mineral. Petrol. 1991, 106, 142–153. [Google Scholar] [CrossRef]
- Kumar, P.S.; Reddy, G. Radioelements and heat production of an exposed Archaean crustal cross-section, Dharwar craton, south India. Earth Planet. Sci. Lett. 2004, 224, 309–324. [Google Scholar] [CrossRef]
- Heier, K.; Adams, J. Concentration of radioactive elements in deep crustal material. Geochim. Cosmochim. Acta 1965, 29, 53–61. [Google Scholar] [CrossRef]
- Sanyal, S.; Che, M.; Dunlap, R.E.; Twichell, M.K. Qualitative response patterns on geophysical well logs from the Geysers, California. Trans. Geotherm. Resour. Counc. 1982, 6, 313–316. [Google Scholar]
- Quinn, T.; Suzukilll, N.-I.M.; Takagim, S. Mineralogy evaluation in a geothermal well using statistical probabilistic log evaluation techniques. Geotherm. Resour. Counc. Trans. 1989, 13, 277–287. [Google Scholar]
- Younger, P.; Manning, D. Hyper-permeable granite: Lessons from test-pumping in the Eastgate Geothermal Borehole, Weardale, UK. Q. J. Eng. Geol. Hydrogeol. 2010, 43, 5–10. [Google Scholar] [CrossRef]
- Nelson, S.T.; Mayo, A.L.; Gilfillan, S.; Dutson, S.J.; Harris, R.A.; Shipton, Z.K.; Tingey, D.G. Enhanced fracture permeability and accompanying fluid flow in the footwall of a normal fault: The Hurricane fault at Pah Tempe hot springs, Washington County, Utah. Geol. Soc. Am. Bull. 2009, 121, 236–246. [Google Scholar]
- Killeen, P. Gamma ray spectrometric methods in uranium exploration—Application and interpretation. Geophys. Geochem. Search Met. Ores 1979, 31, 163–230. [Google Scholar]
- Grasty, R. Gamma ray spectrometric methods in uranium exploration—Theory and operational procedures. Geophys. Geochem. Search Met. Ores 1979, 31, 147–155. [Google Scholar]
- Myers, K.; Bristow, C. Detailed sedimentology and gamma-ray log characteristics of a namurian deltaic succession II: Gamma-ray logging. Geol. Soc. Lond. Spec. Publ. 1989, 41, 81–88. [Google Scholar] [CrossRef]
- Bristow, C.; Williamson, B. Spectral gamma ray logs: Core to log calibration, facies analysis and correlation problems in the Southern North Sea. Geol. Soc. Lond. Spec. Publ. 1998, 136, 1–7. [Google Scholar] [CrossRef]
- Davies, S.; McLean, D. Spectral gamma-ray and palynological characterization of Kinderscoutian marine bands in the Namurian of the Pennine Basin. Proc. Yorks. Geol. Polytech. Soc. 1996, 51, 103–114. [Google Scholar] [CrossRef]
- Rybach, L.; Schwarz, G.F. Ground gamma radiation maps: Processing of airborne, laboratory, and in situ spectrometry data. First Break 1995, 13, 97–104. [Google Scholar]
- Sanderson, D.; East, B.; Scott, E. Aerial radiometric survey of parts of North Wales in July 1989; Scottish Universities Research and Reactor Centre: Glasgow, UK, 1989. [Google Scholar]
- Mero, J.L. Uses of the gamma-ray spectrometer in mineral exploration. Geophysics 1960, 25, 1054–1076. [Google Scholar] [CrossRef]
- Ray, L.; Roy, S.; Srinivasan, R. High Radiogenic Heat Production in the Kerala Khondalite Block, Southern Granulite Province, India. Int. J. Earth Sci. 2008, 97, 257–267. [Google Scholar] [CrossRef]
- Weaver, B.L.; Tarney, J. Lewisian gneiss geochemistry and archaean crustal development models. Earth Planet. Sci. Lett. 1981, 55, 171–180. [Google Scholar] [CrossRef]
- Dickson, B.; Scott, K. Interpretation of aerial gamma-ray surveys-adding the geochemical factors. AGSO J. Aust. Geol. Geophys. 1997, 17, 187–200. [Google Scholar]
- Stefansson, V.; Gudlaugsson, S.T.; Gudmundsson, A. Silica Content and Gamma Ray Logs in Volcanic Rocks. In Proceedings of the World Geothermal Congress, Kyushu–Tohoku, Japan, 28 May–10 June 2000; pp. 2893–2897.
- Lovborg, L. The calibration of portable and airborne gamma-ray spectrometers—Theory, problems, and facilities. Rise Natl. Lab. 1984, 2456, 3–207. [Google Scholar]
- Schwarz, G.; Klingelé, E.; Rybach, L. How to handle rugged topography in airborne gamma-ray spectrometry surveys. First Break 1992, 10, 11–17. [Google Scholar]
- Sanderson, D.; Cresswell, A.; Lang, J.; Scott, E.; Lauritzen, B.; Karlsson, S.; Strobl, C.; Karlberg, O.; Winkelmann, I.; Thomas, M. An International Comparison of Airborne and Ground Based Gamma Ray Spectrometry. Results of the Eccomags 2002 Exercise Held 24th May to 4th June 2002, Dumfries and Galloway, Scotland; University of Glasgow: Glasgow, UK, 2004. [Google Scholar]
- Sanderson, D.; Cresswell, A.; Scott, E.; Lang, J. Demonstrating the European capability for airborne gamma spectrometry: Results from the ECCOMAGS exercise. Radiat. Prot. Dosim. 2004, 109, 119–125. [Google Scholar] [CrossRef]
- Hertz, H. Ueber einen einfluss des ultravioletten lichtes auf die electrische entladung. Ann. Phys. 1887, 267, 983–1000. (In German) [Google Scholar] [CrossRef]
- Einstein, A. Über einen die erzeugung und verwandlung des lichtes betreffenden heuristischen gesichtspunkt. Ann. Phys. 1905, 322, 132–148. (In German) [Google Scholar] [CrossRef]
- Ewan, G.; Tavendale, A. High-resolution studies of gamma-ray spectra using lithium-drift germanium gamma-ray spectrometers. Can. J. Phys. 1964, 42, 2286–2331. [Google Scholar] [CrossRef]
- Myers, K. The origin of the lower jurassic cleveland ironstone formation of North-East England: Evidence from Portable gamma-ray spectrometry. Geol. Soc. Lond. Spec. Publ. 1989, 46, 221–228. [Google Scholar] [CrossRef]
- Parkinson, D. Gamma-ray spectrometry as a tool for stratigraphical interpretation: Examples from the western European Lower Jurassic. Geol. Soc. Lond. Spec. Publ. 1996, 103, 231–255. [Google Scholar] [CrossRef]
- Einstein, A. Ist die trägheit eines körpers von seinem energieinhalt abhängig? Ann. Phys. 1905, 323, 639–641. (In German) [Google Scholar] [CrossRef]
- Rybach, L. Radioactive heat production: A physical property determined by the chemistry of rocks. In The Physics and Chemistry of Minerals and Rocks; Stems, R.G.J., Ed.; Wiley-Interscience: New York, USA, 1976; pp. 309–318. [Google Scholar]
- Birch, F. Heat from radioactivity. In Nuclear Geology; Wiley: New York, NY, USA, 1954; pp. 148–174. [Google Scholar]
- Erdi-Krausz, G.; Matolin, M.; Minty, B.; Nicolet, J.; Reford, W.; Schetselaar, E. Guidelines for Redioelement Mapping Using Gamma Ray Spectrometry Data; International Atomic Energy Agency: Vienna, Austria, 2003. [Google Scholar]
- Rybach, L.; Bucher, B.; Schwarz, G. Airborne surveys of swiss nuclear facility sites. J. Environ. Radioact. 2001, 53, 291–300. [Google Scholar] [CrossRef]
- Tyler, A.; Sanderson, D.C.; Scott, E.M.; Allyson, J. Accounting for spatial variability and fields of view in environmental gamma ray spectrometry. J. Environ. Radioact. 1996, 33, 213–235. [Google Scholar] [CrossRef]
- Sanderson, D.; Allyson, J.; Tyler, A. Rapid quantification and mapping of radiometric data for anthropogenic and technologically enhanced natural nuclides, application of uranium exploration data and techniques in environmental studies. In Proceedings of a Technical Committee Meeting, Vienna, Austria, 9–12 November 1993; pp. 197–216.
- Davies, S.; Elliott, T. Spectral gamma ray characterization of high resolution sequence stratigraphy: Examples from Upper Carboniferous fluvio-deltaic systems, County Clare, Ireland. Geol. Soc. Lond. Spec. Publ. 1996, 104, 25–35. [Google Scholar] [CrossRef]
- Kogan, R.; Nazarov, I.; Fridman, S.D. Gamma Spectrometry of Natural Environments and Formations; Israel Program for Scientific Translations: Jerusalem, Palestine, 1971. [Google Scholar]
- Evans, R.; Mory, A.; Tait, A. An outcrop gamma ray study of the Tumblagooda Sandstone, Western Australia. J. Pet. Sci. Eng. 2007, 57, 37–59. [Google Scholar] [CrossRef]
- Løvborg, L.; Bøtter-Jensen, L.; Kirkegaard, P.; Christiansen, E. Monitoring of natural soil radioactivity with portable gamma-ray spectrometers. Nucl. Instrum. Methods 1979, 167, 341–348. [Google Scholar] [CrossRef]
- Cresswell, A.; Sanderson, D.; Harrold, M.; Kirley, B.; Mitchell, C.; Weir, A. Demonstration of lightweight gamma spectrometry systems in urban environments. J. Environm. Radioact. 2013, 124, 22–28. [Google Scholar] [CrossRef]
- International Commission on Radiation Uits and Measurements. Gamma-Ray Spectrometry in the Environment; International Commission on Radiation Uits and Measurements: Oxford, UK, 1994. [Google Scholar]
- Sanderson, D.; Placido, F.; Tate, J. Scottish vitrified forts: Tl results from six study sites. Int. J. Radiat. Appl. Instrum. Part D. Nucl. Tracks Radiat. Meas. 1988, 14, 307–316. [Google Scholar] [CrossRef]
- GF-Instruments. Gamma Surveyor II User Manual; GF-Instruments: Brno, Czech Republic, 2013. [Google Scholar]
- Grasty, R.; Carson, J.; Charbonneau, B.; Holman, P. Natural Background Radiation in Canada; Geological Survey of Canada: Ottawa, ON, Canada, 1984; volume 360. [Google Scholar]
- Tyler, A. Broadening the scope and environmental applications of in situ gamm ray spectrometry. Recent Applications and Development Sin Mobile and Airborne Gamma Spectrometry. In Proceedings of the Radmags Symposium, University of Stirling, 15–18 June 2000; Sanderson, D.C., McLeod, J., Eds.; University of Glasgow: Glasgow, UK, 2000. [Google Scholar]
- Ahl, A.; Bieber, G. Correction of the attenuation effect of vegetation on airborne gamma-ray spectrometry data using laser altimeter data. Near Surf. Geophys. 2010, 8, 271–278. [Google Scholar]
- Sanderson, D.; Cresswell, A.; Hardeman, F.; Debauche, A. An airborne gamma-ray spectrometry survey of nuclear sites in Belgium. J. Environ. Radioact. 2004, 72, 213–224. [Google Scholar] [CrossRef]
- Killeen, P.; Carmichael, C. Gamma-ray spectrometer calibration for field analysis of thorium, uranium and potassium. Can. J. Earth Sci. 1970, 7, 1093–1098. [Google Scholar] [CrossRef]
- Beck, H.L.; Decampo, J.; Gogolak, C. In Situ Ge (Li) and Nai (Tl) Gamma-Ray Spectrometry; Health and Safety Lab.: New York, NY, USA, 1972. [Google Scholar]
- Allyson, J. Environmental Gamma-Ray Spectrometry: Simulation of Absolute Calibration of in-situ and Airborne Spectrometers for Natural and Anthropogenic Sources; University of Glasgow: Glasgow, UK, 1994. [Google Scholar]
- Lee, M.; Wheildon, J.; Webb, P.; Brown, G.; Rollin, K.; Crook, C.; Smith, I.; King, G.; Thomas-Betts, A. Hot dry rocks prospects in caledonian granites: Evaluation of results from the bgs-ic-ou research programme (1981–1984). In Investigation of the Goethermal Potential of the UK; British Geological Survey: Keyworth, UK, 1984. [Google Scholar]
- Sherman, H.M.; Gierke, J.S.; Anderson, C.P. Controls on spatial variability of uranium in sandstone aquifers. Ground Water Monit. Remediat. 2007, 27, 106–118. [Google Scholar] [CrossRef]
- Hampson, G.J.; Davies, W.; Davies, S.J.; Howell, J.A.; Adamson, K.R. Use of spectral gamma-ray data to refine subsurface fluvial stratigraphy: Late Cretaceous strata in the Book Cliffs, Utah, USA. J. Geol. Soc. 2005, 162, 603–621. [Google Scholar] [CrossRef]
- Roy, R.F.; Blackwell, D.D.; Birch, F. Heat generation of plutonic rocks and continental heat flow provinces. Earth Planet. Sci. Lett. 1968, 5, 1–12. [Google Scholar] [CrossRef]
- Miles, A.J.; Graham, C.M.; Hawkesworth, C.J.; Gillespie, M.R.; Hinton, R.W. Evidence for distinct stages of magma history recorded by the compositions of accessory apatite and zircon. Contrib. Mineral. Petrol. 2013, 166, 1–19. [Google Scholar]
- DePaolo, D.J. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet. Sci. Lett. 1981, 53, 189–202. [Google Scholar] [CrossRef]
- Stephens, W.E.; Whitley, J.E.; Thirlwall, M.F.; Halliday, A.N. The criffell zoned pluton: Correlated behaviour of rare earth element abundances with isotopic systems. Contrib. Mineral. Petrol. 1985, 89, 226–238. [Google Scholar] [CrossRef]
- Gardner, J.E.; Carey, S.; Sigurdsson, H.; Rutherford, M.J. Influence of magma composition on the eruptive activity of Mount St. Helens, Washington. Geology 1995, 23, 523–526. [Google Scholar] [CrossRef]
- Kemp, A.; Hawkesworth, C.; Foster, G.; Paterson, B.; Woodhead, J.; Hergt, J.; Gray, C.; Whitehouse, M. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science 2007, 315, 980–983. [Google Scholar] [CrossRef]
- Freck, D.; Wakefield, J. Gamma-ray spectrum obtained with a lithium-drifted p-i-n junction in germanium. Nature 1962, 1983, 669. [Google Scholar] [CrossRef]
- Ehinola, O.; Joshua, E.; Opeloye, S.; Ademola, J. Radiogenic heat production in the cretaceous sediments of yola arm of Nigeria benue trough: Implications for thermal history and hydrocarbon generation. J. Appl. Sci. 2005, 5, 696–701. [Google Scholar] [CrossRef]
- Berbezier, J.; Blangy, B.; Guiton, J.; Lallemant, C. Methods of car-borne and air-borne prospecting: The technique of radiation prospecting by energy discrimination. In Proceedings of the 2nd UN International Conference Peaceful Use of Atomic Energy, Genova, Switzerland, 1–13 September 1958.
- Beck, H.L.; Condon, W.J.; Lowder, W.M. Spectrometric Techniques for Measuring Environmental Gamma Radiation; Health and Safety Lab., New York Operations Office (AEC): New York, NY, USA, 1964. [Google Scholar]
- Beck, H.; Lowder, W.; McLaughlin, J. In situ External Environmental Gamma-Ray Measurements Utilizing Ge (Li) and Nai (Tl) Spectrometry and Pressurized Ionization Chambers; Atomic Energy Commission: New York, NY, USA, 1971. [Google Scholar]
- Lowder, W.; Condon, W.; Beck, H.L. Field Spectrometric Investigations of Environmental Radiation in the USA; Atomic Energy Commission: New York, NY, USA, 1968. [Google Scholar]
- Sanderson, D.; Allyson, J.; Tyler, A.; Scott, E. Environmental applications of airborne gamma spectrometry. In Proceedings of the IAEA Technical Committee Meeting on the Use of Uranium Exploration Data and Techniques in Environmental Studies, Vienna, Austria, 9–12 November 1993; pp. 9–12.
- Sanderson, D.; McLeod, J.; Ferguson, J. A european bibliography on airborne gamma-ray spectrometry. J. Environ. Radioact. 2001, 53, 411–422. [Google Scholar] [CrossRef]
- Richardson, K.; Killeen, P. Regional Radiogenic Heat Production Mapping by Airborne Gamma-ray Spectrometry; Geological Survey of Canada: Ottawa, ON, Canada, 1980; pp. 227–232. [Google Scholar]
- Thompson, P.; Judge, A.; Charbonneau, B.; Carson, J.; Thomas, M. Thermal Regimes and Diamond Stability in the Archean Slave Province, Northwestern Canadian Shield, District of Mackenzie, Northwest Territories; Geological Survey of Canada: Ottawa, ON, Canada, 1996; pp. 135–146. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
McCay, A.T.; Harley, T.L.; Younger, P.L.; Sanderson, D.C.W.; Cresswell, A.J. Gamma-ray Spectrometry in Geothermal Exploration: State of the Art Techniques. Energies 2014, 7, 4757-4780. https://doi.org/10.3390/en7084757
McCay AT, Harley TL, Younger PL, Sanderson DCW, Cresswell AJ. Gamma-ray Spectrometry in Geothermal Exploration: State of the Art Techniques. Energies. 2014; 7(8):4757-4780. https://doi.org/10.3390/en7084757
Chicago/Turabian StyleMcCay, Alistair T., Thomas L. Harley, Paul L. Younger, David C. W. Sanderson, and Alan J. Cresswell. 2014. "Gamma-ray Spectrometry in Geothermal Exploration: State of the Art Techniques" Energies 7, no. 8: 4757-4780. https://doi.org/10.3390/en7084757
APA StyleMcCay, A. T., Harley, T. L., Younger, P. L., Sanderson, D. C. W., & Cresswell, A. J. (2014). Gamma-ray Spectrometry in Geothermal Exploration: State of the Art Techniques. Energies, 7(8), 4757-4780. https://doi.org/10.3390/en7084757