Sustainable Power Supply Solutions for Off-Grid Base Stations
Abstract
:1. Introduction
2. Power Supply and Energy Storage Solutions for Off-Grid Base Stations
2.1. Overview
2.2. Diesel Generators
2.3. Renewable Energy Solutions
2.4. Hybrid Power Supply Systems
2.4.1. Why Hybridization?
2.4.2. Conventional Hybrid Power Supply Systems
PV-Wind Systems
PV-Diesel Systems
PV-Wind-Diesel Systems
PV-Fuel Cell Systems
2.5. Energy Storage
2.5.1. Overview
2.5.2. Electrochemical Energy Storage Solutions
Batteries
Hydrogen-Based Energy Storage Systems
Hybrid Energy Storage Systems
3. Key Aspects of Power Supply System Design for Off-Grid Base Stations
3.1. Overview
3.2. Pre-Feasibility Study
3.3. System Sizing and Optimization
3.4. Thermal Management of Base Stations
3.4.1. Overview
3.4.2. Cooling
Cooling Types | Advantages | Disadvantages |
---|---|---|
Exhaust fans | Low cost | Overheating |
Potential outdoor contaminants risk | ||
Vortex cooler | No moving parts | Low efficiency |
Highly reliable | Limited cooling capacity | |
Highly dependable on compressed air | ||
Peltier cooler | No moving parts | Low efficiency |
Highly reliable | Limited cooling capacity | |
Natural convection (passive cooled systems) | No moving parts | Large footprint |
High initial cost | ||
Phase change materials (passive cooled systems) | No moving parts | May not function properly if not correctly packed |
Small footprint | ||
DC-powered air conditioners | Higher cooling capacity than any other system | Moving parts, specific maintenance is required |
Able to cool shelter to human comfort level | Large footprint required for the solar panels |
3.4.3. Heating
3.5. Operation and Control Strategy
4. Conclusions
Key Areas | Technologies/Approaches | Advantages | Disadvantages | Literature Reviews |
---|---|---|---|---|
Power supply technologies | New generation small wind turbines |
|
| [27,29,30] |
| ||||
| ||||
Hybrid PV-fuel cell system |
|
| [33,49,185] | |
|
| |||
| ||||
Energy storage technologies | New generation Li-ion battery |
|
| [55,58,170,186] |
|
| |||
| ||||
| ||||
Hydrogen-based energy storage system (i.e., fuel cell-electrolyzer) |
|
| [86] | |
| ||||
| ||||
| ||||
Hybrid energy storage system (e.g., PV-hydrogen-battery system) |
|
| [39,41,86] | |
| ||||
| ||||
High efficient devices/equipment | Multi-input power converters |
|
| [38] |
| ||||
| ||||
Cognitive radio technology |
|
| [15,16,97] | |
| ||||
Energy management | Device-to-device (D2D) communication |
|
| [96,187] |
| ||||
| ||||
Sleep mode or deep-idle mode |
|
| [92,93,188,189] | |
| ||||
Thermal management | Free cooling using phase change materials (PCMs) and heat pipes |
|
| [155,190,191] |
| ||||
Heat recovery using thermo-syphon |
|
| [163,192,193,194,195] | |
| ||||
|
Author Contributions
Conflicts of Interest
References and Notes
- Meo, M.; Le Rouzic, E.; Cuevas, R.; Guerrero, C. Research challenges on energy-efficient networking design. Comput. Commun. 2014, 50, 187–195. [Google Scholar] [CrossRef]
- Webb, M. Smart 2020: Enabling the low carbon economy in the information age; The Climate Group: London, UK, 2008; pp. 1–87. [Google Scholar]
- Hasan, Z.; Boostanimehr, H.; Bhargava, V.K. Green cellular networks: A survey, some research issues and challenges. Commun. Surv. Tutor. IEEE 2011, 13, 524–540. [Google Scholar] [CrossRef]
- Lambert, S.; Van Heddeghem, W.; Vereecken, W.; Lannoo, B.; Colle, D.; Pickavet, M. Worldwide electricity consumption of communication networks. Opt. Express 2012, 20, B513–B524. [Google Scholar] [CrossRef] [PubMed]
- Kusakana, K.; Vermaak, H.J. Hybrid renewable power systems for mobile telephony base stations in developing countries. Renew. Energy 2013, 51, 419–425. [Google Scholar] [CrossRef]
- Cisco visual networking index forecast projects nearly 11-fold increase in global mobile data traffic from 2013 to 2018; Cisco Public: San Francisco, CA, US, 2014.
- Fehske, A.; Fettweis, G.; Malmodin, J.; Biczok, G. The global footprint of mobile communications: The ecological and economic perspective. Commun. Mag. IEEE 2011, 49, 55–62. [Google Scholar] [CrossRef]
- Valdecantos, C.; Gaspar, R. The rise of green mobile telecom towers. Available online: http://consultantvalueadded.com/2013/01/16/guest-post-the-rise-of-green-mobile-telecom-towers/ (accessed on 1 September 2015).
- Murthy, C.R.; Kavitha, D.C. A survey of green base stations in cellular networks. IRACST Int. J. Comput. Netw. Wirel. Commun. (IJCNWC). 2012, 2, 232–236. [Google Scholar]
- Lorincz, J.; Bule, I. Renewable energy sources for power supply of base station sites. Int. J. Bus. Data Commun. Netw. 2013, 9, 53–74. [Google Scholar] [CrossRef]
- Piro, G.; Miozzo, M.; Forte, G.; Baldo, N.; Grieco, L.A.; Boggia, G.; Dini, P. Hetnets powered by renewable energy sources: Sustainable next-generation cellular networks. Internet Comput. IEEE 2013, 17, 32–39. [Google Scholar] [CrossRef]
- Auer, G.; Giannini, V.; Desset, C.; Godor, I.; Skillermark, P.; Olsson, M.; Imran, M.A.; Sabella, D.; Gonzalez, M.J.; Blume, O. How much energy is needed to run a wireless network? Wirel. Commun. IEEE 2011, 18, 40–49. [Google Scholar] [CrossRef]
- Al Haj Hassan, H.; Nuaymi, L.; Pelov, A. Renewable Energy in Cellular Networks: A Survey. In Proceedings of the 2013 IEEE Online Conference on Green Communications (GreenCom), Piscataway, NJ, USA, 29–31 October 2013; pp. 1–7.
- Taverner, D. Community power: Using mobile to extend grid; Groupe Speciale Mobile Association (GSMA): London, UK, 2010; pp. 1–77. [Google Scholar]
- Zhang, H.; Jiang, C.; Mao, X.; Chen, H. Interference-limited resource optimization in cognitive femtocells with fairness and imperfect spectrum sensing. Veh. Technol. IEEE Trans. 2015, PP, 1–1. [Google Scholar] [CrossRef]
- Haijun, Z.; Chunxiao, J.; Beaulieu, N.C.; Xiaoli, C.; Xianbin, W.; Quek, T.Q.S. Resource allocation for cognitive small cell networks: A cooperative bargaining game theoretic approach. IEEE Trans. Wirel. Commun. 2015, 14, 3481–3493. [Google Scholar]
- Alsharif, M.; Nordin, R.; Ismail, M. Energy optimisation of hybrid off-grid system for remote telecommunication base station deployment in malaysia. J. Wirel. Commun. Netw. 2015, 2015, 1–15. [Google Scholar] [CrossRef]
- Rijssenbeek, J.; Wiegman, H.; Hall, D.; Chuah, C.; Balasubramanian, G.; Brady, C.; IEEE. Sodium-metal halide batteries in diesel-battery hybrid telecom applications. In Proceedings of the 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC), Amsterdam, the Netherlands, 9–13 October 2011.
- Nordin, H.; Lindemark, B. System reliability, dimensioning and environmental impact of diesel engine generator sets used in telecom applications. In Proceedings of the 21st International Telecommunication Energy Conference, 1999. (INTELEC '99), Copenhagen, Kingdom of Denmark, 6–9 June 1999; p. 7.
- Conteh, A.B.M. Overcoming the vast challenge of deploying a mobile network in the democratic republic of congo (drc). In Proceedings of VODACOM Singapore Annual Meeting, Singapore, 17 September 2006.
- Goel, S.; Ali, S.M. Cost analysis of solar/wind/diesel hybrid energy systems for telecom tower by using homer. Int. J. Renew. Energy Res. (IJRER) 2014, 4, 305–311. [Google Scholar]
- Moghavvemi, M.; Ismail, M.S.; Murali, B.; Yang, S.S.; Attaran, A.; Moghavvemi, S. Development and optimization of a pv/diesel hybrid supply system for remote controlled commercial large scale fm transmitters. Energy Convers. Manag. 2013, 75, 542–551. [Google Scholar] [CrossRef]
- Karakoulidis, K.; Mavridis, K.; Bandekas, D.V.; Adoniadis, P.; Potolias, C.; Vordos, N. Techno-economic analysis of a stand-alone hybrid photovoltaic-diesel-battery-fuel cell power system. Renew. Energy 2011, 36, 2238–2244. [Google Scholar] [CrossRef]
- Kaldellis, J.; Ninou, I. Energy balance analysis of combined photovoltaic–diesel powered telecommunication stations. Int. J. Electr. Power Energy Syst. 2011, 33, 1739–1749. [Google Scholar] [CrossRef]
- Arul, P.G.; Ramachandaramurthy, V.K.; Rajkumar, R.K. Control strategies for a hybrid renewable energy system: A review. Renew. Sustain. Energy Rev. 2015, 42, 597–608. [Google Scholar] [CrossRef]
- GSMA. Green power for mobile bi annual report 2014; Groupe Speciale Mobile Association (GSMA): London, UK, 2014. [Google Scholar]
- Vilander, M. Blowing your way wind-powered base stations. Available online: http://www.connect-world.com/~cwiml/index.php/press-releases/item/27293-itu-tackles-financial-inclusion-for-2-billion-people (accessed on 1 September 2015).
- Paudel, S.; Shrestha, J.; Neto, F.J.; Ferreira, J.A.; Adhikari, M. Optimization of hybrid pv/wind power system for remote telecom station. In Proceedings of the 2011 International Conference on Power and Energy Systems (ICPS), Chennai, Italy, 22–24 December 2011; pp. 1–6.
- Singh, R.K.; Ahmed, M.R. Blade design and performance testing of a small wind turbine rotor for low wind speed applications. Renew. Energy 2013, 50, 812–819. [Google Scholar] [CrossRef]
- Vilander, M. Wind turbine energy for telecom: A sustainable solution for the future. In Proceedings of GM EMEA/SVP Global Telecom, Cape Town, South Africa, 8 November 2011; Available online: http://www.gsma.com/mobilefordevelopment/wp-content/uploads/2012/06/Zephyr1.pdf (accessed on 1 September 2015).
- Faruk, N.; Ayeni, A.; Muhammad, M.; Abdulkarim, A.; Moses, O. Hybrid power systems for cell sites in mobile cellular networks. J. Select. Areas Renew. Sustain. Energy 2012, 8–12. [Google Scholar]
- Bian, S.; Wang, X.; Congiatu, M. An off-grid base station powered by sun, wind, and water, Telecommunications Energy Conference 'Smart Power and Efficiency' (INTELEC), Proceedings of 2013 35th International, Hamburg, Germany, 2013; VDE: Hamburg, Germany; pp. 1–5.
- Rekioua, D.; Bensmail, S.; Bettar, N. Development of hybrid photovoltaic-fuel cell system for stand-alone application. Int. J. Hydrog. Energy 2014, 39, 1604–1611. [Google Scholar] [CrossRef]
- Yang, H.X.; Lu, L.; Burnett, J. Weather data and probability analysis of hybrid photovoltaic–wind power generation systems in hong kong. Renew. Energy 2003, 28, 1813–1824. [Google Scholar] [CrossRef]
- Mohammed, Y.S.; Mustafa, M.W.; Bashir, N. Hybrid renewable energy systems for off-grid electric power: Review of substantial issues. Renew. Sustain. Energy Rev. 2014, 35, 527–539. [Google Scholar] [CrossRef]
- Hashimoto, S.; Yachi, T.; Tani, T. A new stand-alone hybrid power system with wind generator and photovoltaic modules for a radio base station. In Proceedings of Telecommunications Energy Conference, 2004. INTELEC 2004. 26th Annual International, 19–23 September 2004; IEEE; pp. 254–259.
- Yu, W.; Qian, X. Design of 3kw wind and solar hybrid independent power supply system for 3g base station. In Proceedings of Knowledge Acquisition and Modeling, 2009. KAM'09. Second International Symposium on Wuhan, Hubei, China, 2009; IEEE; pp. 289–292.
- Ribeiro, E.; Marques Cardoso, A.J.; Boccaletti, C. Fault diagnosis in a multi-input power interface for a photovoltaic wind supply system for telecommunications. In Proceedings of 35th International Telecommunications Energy Conference 'Smart Power and Efficiency' (INTELEC), Hamburg, Germany, 13–17 Oct. 2013; 2013; pp. 1–6. [Google Scholar]
- Bezmalinović, D.; Barbir, F.; Tolj, I. Techno-economic analysis of pem fuel cells role in photovoltaic-based systems for the remote base stations. Int. J. Hydrog. Energy 2013, 38, 417–425. [Google Scholar] [CrossRef] [Green Version]
- Husain, S.M.; Sharma, D.K. Techno-economic analysis of solar pv/diesel hybrid energy system for electrification of television substation - “a case study of nepal television substation at ilam”. In Proceedings of IOE Graduate Conference, Tribhuvan University, Nepal, 2014; pp. 420–428.
- Guinot, B.; Champel, B.; Montignac, F.; Lemaire, E.; Vannucci, D.; Sailler, S.; Bultel, Y. Techno-economic study of a pv-hydrogen-battery hybrid system for off-grid power supply: Impact of performances' ageing on optimal system sizing and competitiveness. Int. J. Hydrog. Energy 2015, 40, 623–632. [Google Scholar] [CrossRef]
- Askari, I.B.; Ameri, M. Optimal sizing of photovoltaic-battery power systems in a remote region in kerman, iran. Proc. Inst. Mech. Eng. 2009, 223, 563–570. [Google Scholar] [CrossRef]
- Dufo-López, R.; Bernal-Agustín, J.L. Design and control strategies of pv-diesel systems using genetic algorithms. Sol. Energy 2005, 79, 33–46. [Google Scholar] [CrossRef]
- Dufo-López, R.; Bernal-Agustín, J.L.; Yusta-Loyo, J.M.; Domínguez-Navarro, J.A.; Ramírez-Rosado, I.J.; Lujano, J.; Aso, I. Multi-objective optimization minimizing cost and life cycle emissions of stand-alone pv–wind–diesel systems with batteries storage. Appl. Energy 2011, 88, 4033–4041. [Google Scholar] [CrossRef]
- Bitterlin, I.F. Modelling a reliable wind/pv/storage power system for remote radio base station sites without utility power. J. Power Sources 2006, 162, 906–912. [Google Scholar] [CrossRef]
- Goel, S.; Ali, S.M. Hybrid energy systems for off-grid remote telecom tower in odisha, india. Int. J. Ambient Energy 2013, 1–7. [Google Scholar] [CrossRef]
- Sharma, A.; Singh, A.; Khemariya, M. Homer optimization based solar pv; wind energy and diesel generator based hybrid system. Int. J. Soft Comput. Eng. (IJSCE) 2013, 3, 199–204. [Google Scholar]
- Olatomiwa, L.; Mekhilef, S.; Huda, A. Optimal sizing of hybrid energy system for a remote telecom tower: A case study in nigeria. In Proceedings of the 2014 IEEE Conference on Energy Conversion (CENCON), Johor Bahru, Malaysia, 13–14 October 2014; pp. 243–247.
- Jiang, Z. Power management of hybrid photovoltaic-fuel cell power systems. In Proceedings of the 2006 Power Engineering Society General Meeting, Montreal, QC, Canada, 18–22 June 2006; pp. 1–5.
- Shabani, B.; Andrews, J. Standalone solar-hydrogen systems powering fire contingency networks. Int. J. Hydrog Energy 2015, 40, 5509–5517. [Google Scholar] [CrossRef]
- Shabani, B.; Andrews, J. Hydrogen and fuel cells. In Energy sustainability through green energy; Sharma, A., Kar, S.K., Eds.; Springer India: New Delhi, India, 2015; pp. 453–491. [Google Scholar]
- Lehman, P.; Chamberlin, C.; Zoellick, J.; Engel, R.; Rommel, D. Fuel cell/photovoltaic integrated power system for a remote telecommunications repeater. In Proceedings of the 14th World Hydrogen Energy Conference, Montreal, QC, Canada, 9–14 June 2002.
- Belmili, H.; Haddadi, M.; Bacha, S.; Almi, M.F.; Bendib, B. Sizing stand-alone photovoltaic–wind hybrid system: Techno-economic analysis and optimization. Renew. Sustain. Energy Rev. 2014, 30, 821–832. [Google Scholar] [CrossRef]
- Koutitas, G.; Demestichas, P. A review of energy efficiency in telecommunication networks. Telfor J. 2010, 2, 2–7. [Google Scholar]
- Yekini Suberu, M.; Wazir Mustafa, M.; Bashir, N. Energy storage systems for renewable energy power sector integration and mitigation of intermittency. Renew. Sustain. Energy Rev. 2014, 35, 499–514. [Google Scholar] [CrossRef]
- Zhang, X.; Kong, X.; Li, G.; Li, J. Thermodynamic assessment of active cooling/heating methods for lithium-ion batteries of electric vehicles in extreme conditions. Energy 2014, 64, 1092–1101. [Google Scholar] [CrossRef]
- Tin, T.; Sovacool, B.K.; Blake, D.; Magill, P.; El Naggar, S.; Lidstrom, S.; Ishizawa, K.; Berte, J. Energy efficiency and renewable energy under extreme conditions: Case studies from antarctica. Renew. Energy 2010, 35, 1715–1723. [Google Scholar] [CrossRef]
- Ji, Y.; Zhang, Y.; Wang, C.-Y. Li-ion cell operation at low temperatures. J. Electrochem. Soc. 2013, 160, A636–A649. [Google Scholar] [CrossRef]
- Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C. Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 2012, 208, 210–224. [Google Scholar] [CrossRef]
- Eaves, S.S.; Mlyniec, S.; IEEE. Lithium-ion batteries in telecom hybrid power systems. In Proceedings of the 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC), Amsterdam, Netherlands, 9–13 October 2011.
- Divya, K.C.; Østergaard, J. Battery energy storage technology for power systems–an overview. Elec. Power Syst. Research 2009, 79, 511–520. [Google Scholar] [CrossRef]
- Rouillard, J.; St-Pierre, C.; Geoffroy, D.; Carignan, C. Testing of lithium polymer batteries in outside power cabinet for telecommunication system. In Proceedings of the 21st International Telecommunication Energy Conference (INTELEC '99), Copenhagen, Kingdom of Denmark, 6–9 June 1999; p. 522.
- Rao, Z.; Wang, S. A review of power battery thermal energy management. Renew. Sustain. Energy Rev. 2011, 15, 4554–4571. [Google Scholar] [CrossRef]
- Ng, P.K.; Xie, L. Lithium ion battery for telecommunications applications. 2004. [Google Scholar]
- Eaves, S.; Shaffer, D. Lithium-ion batteries for telecom applications. In Proceedings of the 29th International Telecommunications Energy Conference, 2007 (INTELEC 2007), Rome, Italy, 30 September–4 October 2007; pp. 708–712.
- Shahirinia, A.H.; Tafreshi, S.M.M.; Gastaj, A.H.; Moghaddomjoo, A.R. Optimal sizing of hybrid power system using genetic algorithm. In Proceedings of 2005 International Conference on Future Power Systems, Amsterdam, the Netherlands, 18 November 2005; p. 6.
- Merei, G.; Berger, C.; Sauer, D.U. Optimization of an off-grid hybrid pv–wind–diesel system with different battery technologies using genetic algorithm. Sol. Energy 2013, 97, 460–473. [Google Scholar] [CrossRef]
- Bak, T.; Nowotny, J.; Rekas, M.; Sorrell, C.C. Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int. J. Hydrog. Energy 2002, 27, 991–1022. [Google Scholar] [CrossRef]
- Ghosh, P.C.; Emonts, B.; Stolten, D. Comparison of hydrogen storage with diesel-generator system in a pv–wec hybrid system. Sol. Energy y 2003, 75, 187–198. [Google Scholar] [CrossRef]
- Agbossou, K.; Kolhe, M.; Hamelin, J.; Bose, T.K. Performance of a stand-alone renewable energy system based on energy storage as hydrogen. Energy Convers. IEEE Trans. 2004, 19, 633–640. [Google Scholar] [CrossRef]
- Kaviani, A.K.; Baghaee, H.; Riahy, G. Design and optimal sizing of a photovoltaic/wind generator system using particle swarm optimization. In Proceedings of the 22nd Power System Conference (PSC), Tehran, Iran, 19–21 November 2007; pp. 19–21.
- Brunet, Y. Energy storage; John Wiley & Sons: Somerset, NJ, USA, 2013. [Google Scholar]
- Vosen, S.R.; Keller, J.O. Hybrid energy storage systems for stand-alone electric power systems: Optimization of system performance and cost through control strategies. Int. J. Hydrog. Energy 1999, 24, 1139–1156. [Google Scholar] [CrossRef]
- Garrigós, A.; Lizán, J.L.; Blanes, J.M.; Gutiérrez, R. Combined maximum power point tracking and output current control for a photovoltaic-electrolyser dc/dc converter. Int. J. Hydrog. Energy 2014, 39, 20907–20919. [Google Scholar] [CrossRef]
- Gómez, G.; Martínez, G.; Gálvez, J.L.; Gila, R.; Cuevas, R.; Maellas, J.; Bueno, E. Optimization of the photovoltaic-hydrogen supply system of a stand-alone remote-telecom application. Int. J. Hydrog. Energy 2009, 34, 5304–5310. [Google Scholar] [CrossRef]
- Hollmuller, P.; Joubert, J.-M.; Lachal, B.; Yvon, K. Evaluation of a 5 kw p photovoltaic hydrogen production and storage installation for a residential home in switzerland. Int. J. Hydrog. Energy 2000, 25, 97–109. [Google Scholar] [CrossRef]
- Khan, M.J.; Iqbal, M.T. Pre-feasibility study of stand-alone hybrid energy systems for applications in newfoundland. Renew. Energy 2005, 30, 835–854. [Google Scholar] [CrossRef]
- Kashefi Kaviani, A.; Riahy, G.H.; Kouhsari, S.M. Optimal design of a reliable hydrogen-based stand-alone wind/pv generating system, considering component outages. Renew. Energy 2009, 34, 2380–2390. [Google Scholar] [CrossRef]
- Barbir, F. Pem electrolysis for production of hydrogen from renewable energy sources. Sol. Energy 2005, 78, 661–669. [Google Scholar] [CrossRef]
- Cano, A.; Jurado, F.; Sanchez, H.; Castaneda, M.; Fernandez, L.M. Sizing and energy management of a stand-alone pv/hydrogen/battery-based hybrid system. In Proceedings of the 2012 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Sorrento, Italy, 20–22 June 2012; pp. 969–973.
- Andrews, J.; Shabani, B. The role of hydrogen in a global sustainable energy strategy. Wiley Interdiscip. Rev. Energy Environ. 2014, 3, 474–489. [Google Scholar] [CrossRef]
- Agbossou, K.; Chahine, R.; Hamelin, J.; Laurencelle, F.; Anouar, A.; St-Arnaud, J.-M.; Bose, T. Renewable energy systems based on hydrogen for remote applications. J. Power Sources 2001, 96, 168–172. [Google Scholar] [CrossRef]
- Dokkar, B.; Negrou, B.; Settou, N.; Imine, O.; Chennouf, N.; Benmhidi, A. Optimization of pem fuel cells for pv-hydrogen power system. Energy Procedia 2013, 36, 798–807. [Google Scholar] [CrossRef]
- Sundmacher, K. Fuel cell engineering; Elsevier Science: Burlington, 2012. [Google Scholar]
- Romer, R. Fuel cell systems provide clean backup power in telecom applications worldwide. In Proceedings of the 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC), Amsterdam, The Netherlands, 9–13 October 2011.
- Petrollese, M.; Cau, G.; Cocco, D.; Lucariello, M. Optimal generation scheduling for a hybrid stand-alone power system using renewable energy sources and hydrogen storage. In Proceedings of the 27th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Turku, Finland, 15–19 June 2014.
- Castañeda, M.; Cano, A.; Jurado, F.; Sánchez, H.; Fernández, L.M. Sizing optimization, dynamic modeling and energy management strategies of a stand-alone pv/hydrogen/battery-based hybrid system. Int. J. Hydrog. Energy 2013, 38, 3830–3845. [Google Scholar] [CrossRef]
- Brinkhaus, M.; Jarosch, D.; Kapischke, J. All year power supply with off-grid photovoltaic system and clean seasonal power storage. Sol. Energy 2011, 85, 2488–2496. [Google Scholar] [CrossRef]
- Li, C.-H.; Zhu, X.-J.; Cao, G.-Y.; Sui, S.; Hu, M.-R. Dynamic modeling and sizing optimization of stand-alone photovoltaic power systems using hybrid energy storage technology. Renew. Energy 2009, 34, 815–826. [Google Scholar] [CrossRef]
- Shabani, B.; Andrews, J. An experimental investigation of a pem fuel cell to supply both heat and power in a solar-hydrogen raps system. Int. J. Hydrog. Energy 2011, 36, 5442–5452. [Google Scholar] [CrossRef]
- Mancuso, V.; Alouf, S. Reducing costs and pollution in cellular networks. Commun. Mag. IEEE 2011, 49, 63–71. [Google Scholar] [CrossRef]
- Marsan, M.A.; Bucalo, G.; Di Caro, A.; Meo, M.; Zhang, Y. Towards zero grid electricity networking: Powering bss with renewable energy sources. In Proceedings of the 2013 IEEE International Conference on Communications Workshops (ICC), Budapest, Hungary, 9–13 June 2013; pp. 596–601.
- Budzisz, L.; Ganji, F.; Rizzo, G.; Marsan, M.A.; Meo, M.; Zhang, Y.; Koutitas, G.; Tassiulas, L.; Lambert, S.; Lannoo, B. Dynamic resource provisioning for energy efficiency in wireless access networks: A survey and an outlook. Commun. Surv. Tutor. IEEE 2014, 16, 2259–2285. [Google Scholar] [CrossRef]
- Suarez, L.; Nuaymi, L.; Bonnin, J.-M. An overview and classification of research approaches in green wireless networks. J. Wirel. Commun. Netw. 2012, 2012, 1–18. [Google Scholar] [CrossRef]
- Arnold, O.; Richter, F.; Fettweis, G.; Blume, O. Power consumption modeling of different base station types in heterogeneous cellular networks. In Proceedings of the 2010 Future Network and Mobile Summit, Florence, Italy, 16–18 June 2010; pp. 1–8.
- Shen, Y.; Jiang, C.; Quek, T.Q.; Zhang, H.; Ren, Y. Device-to-device cluster assisted downlink video sharing—A base station energy saving approach. In Proceedings of the 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Atlanta, GA, USA, 3–5 December 2014; pp. 108–112.
- Jiang, C.; Zhang, H.; Ren, Y.; Chen, H.-H. Energy-efficient non-cooperative cognitive radio networks: Micro, meso, and macro views. Commun. Mag. IEEE 2014, 52, 14–20. [Google Scholar] [CrossRef]
- Holtkamp, H.; Auer, G.; Bazzi, S.; Haas, H. Minimizing base station power consumption. Sel. Areas Commun. IEEE J. 2014, 32, 297–306. [Google Scholar] [CrossRef]
- Lorincz, J.; Garma, T.; Petrovic, G. Measurements and modelling of base station power consumption under real traffic loads. Sensors 2012, 12, 4281–4310. [Google Scholar] [CrossRef] [PubMed]
- Kyuho, S.; Hongseok, K.; Yung, Y.; Bhaskar, K. Toward energy-efficient operation of base stations in cellular wireless networks. In Green communications; Jingsong, W., Sundeep, R., Honggang, Z., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 435–474. [Google Scholar]
- Koutroulis, E.; Kolokotsa, D.; Potirakis, A.; Kalaitzakis, K. Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms. Sol. Energy 2006, 80, 1072–1088. [Google Scholar] [CrossRef]
- Auer, G.; Giannini, V.; Gódor, I.; Skillermark, P.; Olsson, M.; Imran, M.A.; Sabella, D.; Gonzalez, M.J.; Desset, C.; Blume, O. Cellular energy efficiency evaluation framework. In Proceedings of Vehicular Technology Conference (VTC Spring), 2011 IEEE 73rd, Yokohama, Japan, 15–18 May 2011; IEEE: pp 1–6.
- Tan, Y.; Meegahapola, L.; Muttaqi, K.M. A review of technical challenges in planning and operation of remote area power supply systems. Renew. Sustain. Energy Rev. 2014, 38, 876–889. [Google Scholar] [CrossRef]
- Graham, V.A.; Hollands, K.G.T. A method to generate synthetic hourly solar radiation globally. Sol. Energy 1990, 44, 333–341. [Google Scholar] [CrossRef]
- Masoum, M.A.; Mousavi Badejani, S.; Kalantar, M. Optimal placement of hybrid pv-wind systems using genetic algorithm. In Proceedings of the 2010 Innovative Smart Grid Technologies (ISGT), Gaithersburg, MD, USA, 19–21 January 2010; pp. 1–5.
- Yazdanpanah Jahromi, M.A.; Farahat, S.; Barakati, S.M. Optimal size and cost analysis of stand-alone hybrid wind/photovoltaic power-generation systems. Civ. Eng. Environ. Syst. 2013, 31, 283–303. [Google Scholar] [CrossRef]
- Bajpai, P.; Dash, V. Hybrid renewable energy systems for power generation in stand-alone applications: A review. Renew. Sustain. Energy Rev. 2012, 16, 2926–2939. [Google Scholar] [CrossRef]
- Rajkumar, R.K.; Ramachandaramurthy, V.K.; Yong, B.L.; Chia, D.B. Techno-economical optimization of hybrid pv/wind/battery system using neuro-fuzzy. Energy 2011, 36, 5148–5153. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, W.; Lu, L.; Fang, Z. Optimal sizing method for stand-alone hybrid solar–wind system with lpsp technology by using genetic algorithm. Sol. Energy 2008, 82, 354–367. [Google Scholar] [CrossRef]
- Mellit, A. Ann-based ga for generating the sizing curve of stand-alone photovoltaic systems. Adv. Eng. Softw. 2010, 41, 687–693. [Google Scholar] [CrossRef]
- Ashhab, M.S.S. Optimization and modeling of a photovoltaic solar integrated system by neural networks. Energy Convers. Manag. 2008, 49, 3349–3355. [Google Scholar] [CrossRef]
- Mellit, A. Sizing of stand-alone photovoltaic power supply system based on genetic algorithm and neuro-fuzzy: Application for isolated areas. Int. J. Sustain. Energy 2008, 27, 49–60. [Google Scholar] [CrossRef]
- Xu, D.; Kang, L.; Chang, L.; Cao, B. Optimal sizing of standalone hybrid wind/pv power systems using genetic algorithms. In Proceedings of the 2005 Canadian Conference on Electrical and Computer Engineering, Saskatoon, SK, Canada, 1–4 May 2005; pp. 1722–1725.
- Mellit, A.; Benghanem, M.; Hadj Arab, A.; Guessoum, A.; Moulai, K. Neural network adaptive wavelets for sizing of stand-alone photovoltaic systems. In Proceedings of the 2nd International IEEE Conference Intelligent Systems, Varna, Bulgaria, 22–24 June 2004; Volume 1, pp. 365–370.
- Luna-Rubio, R.; Trejo-Perea, M.; Vargas-Vázquez, D.; Ríos-Moreno, G.J. Optimal sizing of renewable hybrids energy systems: A review of methodologies. Sol. Energy 2012, 86, 1077–1088. [Google Scholar] [CrossRef]
- Dufo-López, R.; Bernal-Agustín, J.L. Multi-objective design of pv–wind–diesel–hydrogen–battery systems. Renew. Energy 2008, 33, 2559–2572. [Google Scholar] [CrossRef]
- Mellit, A.; Benghanem, M.; Hadj Arab, A.; Guessoum, A. Modelling of sizing the photovoltaic system parameters using artificial neural network. In Proceedings of the 2003 IEEE International Conference on Control Applications (CCA 2003), Istanbul, Turkey, 23–25 June 2003; pp. 353–357.
- Diaf, S.; Notton, G.; Belhamel, M.; Haddadi, M.; Louche, A. Design and techno-economical optimization for hybrid pv/wind system under various meteorological conditions. Appl. Energy 2008, 85, 968–987. [Google Scholar] [CrossRef]
- Yang, H.; Lu, L.; Zhou, W. A novel optimization sizing model for hybrid solar-wind power generation system. Sol. Energy 2007, 81, 76–84. [Google Scholar] [CrossRef]
- Bhave, A.G. Hybrid solar–wind domestic power generating system—a case study. Renew. Energy 1999, 17, 355–358. [Google Scholar] [CrossRef]
- Celik, A.N. A simplified model for estimating the monthly performance of autonomous wind energy systems with battery storage. Renew. Energy 2003, 28, 561–572. [Google Scholar] [CrossRef]
- Celik, A.N. The system performance of autonomous photovoltaic–wind hybrid energy systems using synthetically generated weather data. Renew. Energy 2002, 27, 107–121. [Google Scholar] [CrossRef]
- Celik, A. Optimisation and techno-economic analysis of autonomous photovoltaic–wind hybrid energy systems in comparison to single photovoltaic and wind systems. Energy Convers. Manag. 2002, 43, 2453–2468. [Google Scholar] [CrossRef]
- Tina, G.; Gagliano, S.; Raiti, S. Hybrid solar/wind power system probabilistic modelling for long-term performance assessment. Sol. Energy 2006, 80, 578–588. [Google Scholar] [CrossRef]
- Dufo-López, R.; Bernal-Agustín, J.L.; Mendoza, F. Design and economical analysis of hybrid pv–wind systems connected to the grid for the intermittent production of hydrogen. Energy Policy 2009, 37, 3082–3095. [Google Scholar] [CrossRef]
- Yang, H.; Wei, Z.; Chengzhi, L. Optimal design and techno-economic analysis of a hybrid solar–wind power generation system. Appl. Energy 2009, 86, 163–169. [Google Scholar] [CrossRef]
- Okundamiya, M.S.; Emagbetere, J.O.; Ogujor, E.A. Design and control strategy for a hybrid green energy system for mobile telecommunication sites. J. Power Sources 2014, 257, 335–343. [Google Scholar] [CrossRef]
- Erdinc, O.; Uzunoglu, M. Optimum design of hybrid renewable energy systems: Overview of different approaches. Renew. Sustain. Energy Rev. 2012, 16, 1412–1425. [Google Scholar] [CrossRef]
- Dufo-López, R.; Bernal-Agustín, J.L.; Contreras, J. Optimization of control strategies for stand-alone renewable energy systems with hydrogen storage. Renew. Energy 2007, 32, 1102–1126. [Google Scholar] [CrossRef]
- Boonbumroong, U.; Pratinthong, N.; Thepa, S.; Jivacate, C.; Pridasawas, W. Particle swarm optimization for ac-coupling stand alone hybrid power systems. Sol. Energy 2011, 85, 560–569. [Google Scholar] [CrossRef]
- Wenmin, M.; Haijun, Z.; Wei, Z.; Zhaoming, L.; Xiangming, W. Mos-driven energy efficient power allocation for wireless video communications. In Proceedings of the 2012 IEEE Globecom Workshops (GC Wkshps), Anaheim, CA, USA, 3–7 December 2012; pp. 52–56.
- Ekren, O.; Ekren, B.Y. Size optimization of a pv/wind hybrid energy conversion system with battery storage using simulated annealing. Appl. Energy 2010, 87, 592–598. [Google Scholar] [CrossRef]
- Anderson, H.R.; McGeehan, J.P. Optimizing microcell base station locations using simulated annealing techniques. In Proceedings of the 1994 IEEE 44th Vehicular Technology Conference, Stockholm, Sweden, 8–10 June 1994; pp. 858–862.
- Fadaee, M.; Radzi, M.A.M. Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review. Renew. Sustain. Energy Rev. 2012, 16, 3364–3369. [Google Scholar] [CrossRef]
- Niknam, T.; Taheri, S.I.; Aghaei, J.; Tabatabaei, S.; Nayeripour, M. A modified honey bee mating optimization algorithm for multiobjective placement of renewable energy resources. Appl. Energy 2011, 88, 4817–4830. [Google Scholar] [CrossRef]
- Mellit, A.; Kalogirou, S.A.; Drif, M. Application of neural networks and genetic algorithms for sizing of photovoltaic systems. Renew. Energy 2010, 35, 2881–2893. [Google Scholar] [CrossRef]
- Beccali, M.; Cellura, M.; Lo Brano, V.; Marvuglia, A. Forecasting daily urban electric load profiles using artificial neural networks. Energy Convers. Manag. 2004, 45, 2879–2900. [Google Scholar] [CrossRef]
- Jimenez-Fernandez, S.; Salcedo-Sanz, S.; Gallo-Marazuela, D.; Gomez-Prada, G.; Maellas, J.; Portilla-Figueras, A. Sizing and maintenance visits optimization of a hybrid photovoltaic-hydrogen stand-alone facility using evolutionary algorithms. Renew. Energy 2014, 66, 402–413. [Google Scholar] [CrossRef]
- Zhou, W.; Lou, C.; Li, Z.; Lu, L.; Yang, H. Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems. Appl. Energy 2010, 87, 380–389. [Google Scholar] [CrossRef]
- Erdinc, O.; Uzunoglu, M. Recent trends in pem fuel cell-powered hybrid systems: Investigation of application areas, design architectures and energy management approaches. Renew. Sustain. Energy Rev. 2010, 14, 2874–2884. [Google Scholar] [CrossRef]
- Dorigo, M.; Stützle, T. Ant colony optimization: Overview and recent advances. In Handbook of metaheuristics; Gendreau, M., Potvin, J.-Y., Eds.; Springer US: New York, NY, USA, 2010; Vol. 146, pp. 227–263. [Google Scholar]
- Yan, Q.; Toghiani, H.; Lee, Y.-W.; Liang, K.; Causey, H. Effect of sub-freezing temperatures on a pem fuel cell performance, startup and fuel cell components. J. Power Sources 2006, 160, 1242–1250. [Google Scholar] [CrossRef]
- Tajiri, K.; Tabuchi, Y.; Kagami, F.; Takahashi, S.; Yoshizawa, K.; Wang, C.-Y. Effects of operating and design parameters on pefc cold start. J. Power Sources 2007, 165, 279–286. [Google Scholar] [CrossRef]
- Zhang, G.; Kandlikar, S.G. A critical review of cooling techniques in proton exchange membrane fuel cell stacks. Int. J. Hydrog. Energy 2012, 37, 2412–2429. [Google Scholar] [CrossRef]
- Kandlikar, S.G.; Lu, Z. Thermal management issues in a pemfc stack – a brief review of current status. Appl. Therm. Eng. 2009, 29, 1276–1280. [Google Scholar] [CrossRef]
- Kandlikar, S.G.; Lu, Z. Fundamental research needs in combined water and thermal management within a proton exchange membrane fuel cell stack under normal and cold-start conditions. J. Fuel Cell Sci. Technol. 2009, 6, 1–13. [Google Scholar] [CrossRef]
- Yin, H.; Guo, H.-f.; Lu, T. Study on ventilation cooling system for telecommunication base station. Energy Conserv. 2011, 1, 212–218. [Google Scholar]
- Wei, C.; Liu, Z.-J.; Li, Z.-Y.; Qu, Z.-G.; Tao, W.-Q. Numerical study on some improvements in the passive cooling system of a radio base station. Numer. Heat Transf. Part A: Appl. 2012, 62, 319–335. [Google Scholar] [CrossRef]
- Garcia, M.P.; Cosley, M.R. Ambient air cooling of electronics in an outdoor environment. In Proceedings of the 26th Annual International Telecommunications Energy Conference, 2004 (INTELEC 2004), Chicago, IL, USA, 19–23 September 2004; pp. 437–441.
- Nakao, M.; Hayama, H.; Uekusa, T. An efficient cooling system for telecommunication equipment rooms. In Proceedings of the 10th International Telecommunications Energy Conference, 1988 (INTELEC '88), 30 October–2 November 1988; pp. 344–349.
- Therrien, D.; Riddoch, H. Telecom shelter cooling and control system. Google Patent US8770493 B2, 8 July 2014. [Google Scholar]
- Choi, J.; Jeon, J.; Kim, Y. Cooling performance of a hybrid refrigeration system designed for telecommunication equipment rooms. Appl. Therm. Eng. 2007, 27, 2026–2032. [Google Scholar] [CrossRef]
- Maeda, Y.; Seshimo, Y.; Okazaki, T.; Coe, B. Study of a cooling system for the telecommunication base site. Ashrae Tran. 2005, 111, 746–755. [Google Scholar]
- Tu, R.; Liu, X.-H.; Li, Z.; Jiang, Y. Energy performance analysis on telecommunication base station. Energy and Build. 2011, 43, 315–325. [Google Scholar] [CrossRef]
- Darwiche, A.-K.; Shaik, S. Air conditioning remote telecom enclosures. ASHRAE J. 2008, 50, 42–48. [Google Scholar]
- Karasseferian, V.V.; Desjardins, R. Recovering the heat dissipated by the digital switching equipment. In Proceedings of the 1982 International Telecommunications Energy Conference (INTELEC 1982), Washington, DC, USA, 3–6 October 1982; pp. 374–378.
- Flores, M.A.; Han, J.J.K. Base station heat management system. Google Patent US5934079 A, 10 August 1999. [Google Scholar]
- Pell, D.J.; Sahraoui, M.; Zapach, T.G. Electronics enclosure for power electronics with passive thermal management. Google Patent US6084772 A, 4 July 2000. [Google Scholar]
- Gropper, J. 25 years of experience with closed cycle vapor turbogenerators as primary power source in remote telecommunications projects in russia and cis countries. In Proceedings of the 3rd International Telecommunications Energy Special Conference (TELESCON 2000), Dresden, Germany, 7–10 May 2000; pp. 203–207.
- Dukhan, N.; Cress, M.; Cosley, M. Cooling and heating system for an equipment enclosure using a vortex tube. Google Patent US6401463 B1, 11 June 2002. [Google Scholar]
- Gianolio, G.; Rosso, I.; Mercante, L.; Pedrazzo, F.; Simonato, G.; Ceriani, F. Greenshelter for telecom applications a new generation of shelters for telecom applications integrating fuel cell electric backup and a new cooling approach. In Proceedings of the IEEE 30th International Telecommunications Energy Conference (INTELEC 2008), 14–18 September 2008; pp. 1–7.
- Cosley, M.; Garcia, M.; Teter, J. Thermal energy storage transfer system. Google Patent US7505269 B1, 17 March 2009. [Google Scholar]
- Samba, A.; Louahlia-Gualous, H.; Le Masson, S.; Nörterhäuser, D. Two-phase thermosyphon loop for cooling outdoor telecommunication equipments. Appl. Therm. Eng. 2013, 50, 1351–1360. [Google Scholar] [CrossRef]
- Settou, N.; Benmhidi, A. Passive cooling of telecom shelter using solar chimney with earth-air heat exchanger. Recent Adv. Energy Environ. Biol. Ecol. 2010, 134–138. [Google Scholar]
- Zhang, Y.; Chen, Y.; Wu, J.; Meng, Q. Study on energy efficient envelope design for telecommunication base station in guangzhou. Energy Build. 2008, 40, 1895–1900. [Google Scholar] [CrossRef]
- Nakao, M.; Ohshima, K.; Jitsukawa, H. Thermal control wall for telecommunication equipment rooms. In Proceedings of the INTELEC, International Telecommunications Energy Conference, San Diego, CA, USA, 30 October–2 November 1988; pp. 280–284.
- Dan, N.; Matti, K. Application of cfd technique in thermal design of a telecommunication base station. In Proceedings of the 9th International Flotherm User Conference, Orlando, FL, USA, 18–19 October 2000.
- Schmidt, R.R.; Shaukatullah, H. Computer and telecommunications equipment room cooling: A review of literature. In Proceedings of the Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM 2002), San Diego, CA, USA, 30 May–1 June 2002; pp. 751–766.
- Hosseinzadeh, E.; Rokni, M.; Rabbani, A.; Mortensen, H.H. Thermal and water management of low temperature proton exchange membrane fuel cell in fork-lift truck power system. Appl. Energy 2013, 104, 434–444. [Google Scholar] [CrossRef]
- Ji, Y.; Wang, C.Y. Heating strategies for li-ion batteries operated from subzero temperatures. Electrochimica Acta 2013, 107, 664–674. [Google Scholar] [CrossRef]
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Robertson, A.D.; West, A.R.; Ritchie, A.G. Review of crystalline lithium-ion conductors suitable for high temperature battery applications. Solid State Ion. 1997, 104, 1–11. [Google Scholar] [CrossRef]
- Zhang, J.; Ge, H.; Li, Z.; Ding, Z. Internal heating of lithium-ion batteries using alternating current based on the heat generation model in frequency domain. J. Power Sources 2015, 273, 1030–1037. [Google Scholar] [CrossRef]
- Islam, M.; Shabani, B.; Rosengarten, G.; Andrews, J. The potential of using nanofluids in pem fuel cell cooling systems: A review. Renew. Sustain. Energy Rev. 2015, 48, 523–539. [Google Scholar] [CrossRef]
- Liu, R.; Chen, J.; Xun, J.; Jiao, K.; Du, Q. Numerical investigation of thermal behaviors in lithium-ion battery stack discharge. Appl. Energy 2014, 132, 288–297. [Google Scholar] [CrossRef]
- Ge, S.; Wang, C.-Y. Characteristics of subzero startup and water/ice formation on the catalyst layer in a polymer electrolyte fuel cell. Electrochimica Acta 2007, 52, 4825–4835. [Google Scholar] [CrossRef]
- Gwak, G.; Ko, J.; Ju, H. Numerical investigation of cold-start behavior of polymer-electrolyte fuel-cells from subzero to normal operating temperatures–effects of cell boundary and operating conditions. Int. J. Hydrog. Energy 2014, 39, 21927–21937. [Google Scholar] [CrossRef]
- Kagami, F.; Ogawa, T.; Hishinuma, Y.; Chikahisa, T. Simulating the performance of a pefc at a temperature below freezing. Available online: https://getinfo.de/de/suchen/id/BLCP%3ACN052966722/ (accessed on 1 September 2015).
- Pesaran, A.; Keyser, M.; Kim, G.-H.; Santhanagopalan, S.; Smith, K. Tools for designing thermal management of batteries in electric drive vehicles; U.S. Department of Energy: Golden, CO, US, 2013.
- Shabani, B.; Andrews, J.; Badwal, S. Fuel cell heat recovery, electrical load management, and the economics of solar-hydrogen systems. Int. J. Power Energy Syst. 2010, 30, 256. [Google Scholar] [CrossRef]
- Bruni, G.; Cordiner, S.; Mulone, V.; Giordani, A.; Savino, M.; Tomarchio, G.; Malkow, T.; Tsotridis, G.; Bodker, S.; Jensen, J.; et al. Fuel cell based power systems to supply power to telecom stations. Int. J. Hydrog. Energy 2014, 39, 21767–21777. [Google Scholar] [CrossRef]
- Lagorse, J.; Simões, M.G.; Miraoui, A. A multiagent fuzzy-logic-based energy management of hybrid systems. Ind. Appl. IEEE Trans. 2009, 45, 2123–2129. [Google Scholar] [CrossRef]
- Okundamiya, M.S.; Emagbetere, J.O.; Ogujor, E.A. Assessment of renewable energy technology and a case of sustainable energy in mobile telecommunication sector. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Caisheng, W.; Nehrir, M.H. Power management of a stand-alone wind/photovoltaic/fuel cell energy system. Energy Convers. IEEE Trans. 2008, 23, 957–967. [Google Scholar] [CrossRef]
- Zhan, Y.; Wang, H.; Zhu, J. Modelling and control of hybrid ups system with backup pem fuel cell/battery. Int. J. Electr. Power Energy Syst. 2012, 43, 1322–1331. [Google Scholar] [CrossRef]
- Speirs, J.; Contestabile, M.; Houari, Y.; Gross, R. The future of lithium availability for electric vehicle batteries. Renew. Sustain. Energy Rev. 2014, 35, 183–193. [Google Scholar] [CrossRef]
- Song, L.; Niyato, D.; Han, Z.; Hossain, E. Wireless device-to-device communications and networks; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Jingjin, W.; Yujing, Z.; Zukerman, M.; Yung, E.K.N. Energy-efficient base-stations sleep-mode techniques in green cellular networks: A survey. Commun. Surv. Tutor. IEEE 2015, 17, 803–826. [Google Scholar]
- Rengarajan, B.; Rizzo, G.; Ajmone Marsan, M. Energy-optimal base station density in cellular access networks with sleep modes. Comput. Netw. 2015, 78, 152–163. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Q.; Medina, M.A.; Liao, S. Performance of a free-air cooling system for telecommunications base stations using phase change materials (pcms): In-situ tests. Appl. Energy 2015, 147, 325–334. [Google Scholar] [CrossRef]
- Zhang, H.; Shao, S.; Xu, H.; Zou, H.; Tian, C. Free cooling of data centers: A review. Renew. Sustain. Energy Rev. 2014, 35, 171–182. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, B.; Wu, W.; Shi, W.; Li, X. Heat recovery from internet data centers for space heating based on an integrated air conditioner with thermosyphon. Renew. Energy 2015, 80, 396–406. [Google Scholar] [CrossRef]
- Zhou, F.; Chen, J.; Ma, G.; Liu, Z. Energy-saving analysis of telecommunication base station with thermosyphon heat exchanger. Energy Build. 2013, 66, 537–544. [Google Scholar] [CrossRef]
- Han, L.; Shi, W.; Wang, B.; Zhang, P.; Li, X. Development of an integrated air conditioner with thermosyphon and the application in mobile phone base station. Int. J. Refrig. 2013, 36, 58–69. [Google Scholar] [CrossRef]
- Khodabandeh, R. Thermal performance of a closed advanced two-phase thermosyphon loop for cooling of radio base stations at different operating conditions. Appl. Therm. Eng. 2004, 24, 2643–2655. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aris, A.M.; Shabani, B. Sustainable Power Supply Solutions for Off-Grid Base Stations. Energies 2015, 8, 10904-10941. https://doi.org/10.3390/en81010904
Aris AM, Shabani B. Sustainable Power Supply Solutions for Off-Grid Base Stations. Energies. 2015; 8(10):10904-10941. https://doi.org/10.3390/en81010904
Chicago/Turabian StyleAris, Asma Mohamad, and Bahman Shabani. 2015. "Sustainable Power Supply Solutions for Off-Grid Base Stations" Energies 8, no. 10: 10904-10941. https://doi.org/10.3390/en81010904
APA StyleAris, A. M., & Shabani, B. (2015). Sustainable Power Supply Solutions for Off-Grid Base Stations. Energies, 8(10), 10904-10941. https://doi.org/10.3390/en81010904