Experimental Analysis of Cool Traditional Solar Shading Systems for Residential Buildings
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Lab Experimental Characterization
2.2. In Field Continuous Monitoring Campaign
Period | Event | Shutter Configuration | HVAC Conditions | Weather Conditions |
---|---|---|---|---|
10 February 2014 | Installation of independent sensors | Traditional baseline scenario (BS) with dark shutters | HVAC switched ON * | Cold winter |
18 February–10 April 2014 | Continuous monitoring | BS scenario | HVAC ON * | Cold–mild winter |
10–12 April 2014 | Application of the cool coating over one shutter | Test-room 1 with dark traditional shutter and Test-room 2 with cool colored shutter (CC scenario) | HVAC ON * | Mild winter |
12 April–12 June 2014 | Continuous monitoring | CC scenario | HVAC ON * | Spring–early mild summer |
12 June 2014 | HVAC switching OFF | CC scenario | HVAC OFF | Spring–early mild summer |
12 June–27 August 2014 | Continuous monitoring | CC scenario | HVAC OFF | Summer |
27 August 2014 | HVAC switching ON | CC scenario | HVAC ON* | Summer |
27 August–30 September 2014 | Continuous monitoring | CC scenario | HVAC ON | Summer |
Test-room | Envelope System | Stationary Thermal Properties | Insulation Characteristics |
---|---|---|---|
Test-room 1 | Opaque wall | Thermal transmittance: 0.28 W/m2·K Internal heat capacity: 128.8 kJ/m2·K | Brickwork, outer leaf: 0.12 m Plasterboard: 0.01 m EPS insulation: 0.09 m Brickwork, inner leaf: 0.25 m Gypsum plastering: 0.02 m |
Roof | Thermal transmittance: 0.24 W/m2·K Internal heat capacity: 50.7 kJ/m2·K | Clay tile: 0.015 m Mineral wool insulation: 0.015 m Air gap: 0.05 m Mineral wool insulation: 0.08 m Aerated concrete slab: 0.20 m Gypsum plastering: 0.015 m | |
Test-room 2 | Opaque wall | Thermal ransmittance: 0.28 W/m2·K Internal heat capacity: 128.8 kJ/m2·K | Bitumen sheet: 0.01 m Mineral wool insulation: 0.10 m Aerated concrete slab: 0.20 m Gypsum plastering: 0.015 m |
Roof | Thermal transmittance: 0.24 W/m2·K Internal heat capacity: 50.7 kJ/m2·K | Plaster dense: 0.02 m EPS insulation: 0.09 m Brickwork, inner leaf: 0.30 m Gypsum plastering: 0.02 m | |
Both the test-rooms | Ground floor | Transmittance: 0.30 W/m2·K Internal heat capacity: 200 kJ/m2·K | Linoleum: 0.004 m Glass fiber slab: 0.10 m Cast concrete: 0.30 m |
Both the test-rooms | Glazing systems | Solar heat gain coefficient g (%): 42 Thermal transmittance U (W/m2·K): 1.3 |
2.2.1. Analysis of the Baseline Scenario (BS)
2.2.2. Analysis of the Cool Scenario (CS)
3. Discussion of the Results
3.1. Analysis of the Optical Properties
3.2. Analysis of the Baseline Scenario
3.3. Thermal Behavior of the Shading System
3.4. Thermal Behavior of the Indoors
3.5. Energy Analysis
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Salata, F.; de Lieto Vollaro, A.; de Lieto Vollaro, R. A case study of technical and economic comparison among energy production systems in a complex of historic buildings in Rome. Energy Procedia 2014, 45, 482–491. [Google Scholar] [CrossRef]
- Dall’O’, G.; Belli, V.; Brolis, M.; Mozzi, I.; Fasano, M. Nearly zero-energy buildings of the Lombardy region (Italy), a case study of high-energy performance buildings. Energies 2013, 6, 3506–3527. [Google Scholar] [CrossRef] [Green Version]
- D’Ambrosio Alfano, F.R.; Olesen, B.W.; Palella, B.I.; Riccio, G. Thermal comfort: Design and assessment for energy saving. Energy Build. 2014, 81, 326–336. [Google Scholar]
- Thiel, C.L.; Campion, N.; Landis, A.E.; Jones, A.K.; Schaefer, L.A.; Bilec, M.M. A materials life cycle assessment of a net-zero energy building. Energies 2013, 6, 1125–1141. [Google Scholar] [CrossRef]
- Peng, L.L.; Jim, C.Y. Green-roof effects on neighborhood microclimate and human thermal sensation. Energies 2013, 6, 598–618. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Sathaye, J.; Akbari, H.; Garg, V.; Tetali, S. Quantifying the direct benefits of cool roofs in an urban setting: Reduced cooling energy use and lowered greenhouse gas emissions. Build. Environ. 2012, 48, 1–6. [Google Scholar] [CrossRef]
- Gobakis, K.; Kolokotsa, D.; Maravelaki-Kalaitzaki, N.; Perdikatsis, V.; Santamouris, M. Development and analysis of advanced inorganic coatings for buildings and urban structures. Energy Build. 2015, 89, 196–205. [Google Scholar] [CrossRef]
- Levinson, R.; Pan, H.; Ban-Weiss, G.; Rosado, P.; Paolini, R.; Akbari, H. Potential benefits of solar reflective car shells: Cooler cabins, fuel savings and emission reductions. Appl. Energy 2011, 88, 4343–4357. [Google Scholar] [CrossRef]
- Lapisa, R.; Bozonnet, E.; Abadie, M.O.; Salagnac, P. Cool roof and ventilation efficiency as passive cooling strategies for commercial low-rise buildings—Ground thermal inertia impact. Adv. Build. Energy Res. 2013, 7, 192–208. [Google Scholar] [CrossRef]
- Kolokotroni, M.; Gowreesunker, B.L.; Giridharan, R. Cool roof technology in London: An experimental and modelling study. Energy Build. 2013, 67, 658–667. [Google Scholar] [CrossRef]
- Santamouris, M. Regulating the damaged thermostat of the cities—Status, impacts and mitigation challenges. Energy Build. 2015, 91, 43–56. [Google Scholar] [CrossRef]
- Akbari, H.; Matthews, H.D. Global cooling updates: Reflective roofs and pavements. Energy Build. 2012, 55, 2–6. [Google Scholar] [CrossRef]
- Mastrapostoli, E.; Karlessi, T.; Pantazaras, A.; Kolokotsa, D.; Gobakis, K.; Santamouris, M. On the cooling potential of cool roofs in cold climates: Use of cool fluorocarbon coatings to enhance the optical properties and the energy performance of industrial buildings. Energy Build. 2014, 69, 417–425. [Google Scholar] [CrossRef]
- Synnefa, A.; Santamouris, M. Advances on technical, policy and market aspects of cool roof technology in Europe: The Cool Roofs project. Energy Build. 2012, 55, 35–41. [Google Scholar] [CrossRef]
- Synnefa, A.; Saliari, M.; Santamouris, M. Experimental and numerical assessment of the impact of increased roof reflectance on a school building in Athens. Energy Build. 2012, 55, 7–15. [Google Scholar] [CrossRef]
- Levinson, R.; Akbari, H.; Konopacki, S.; Bretz, S. Inclusion of cool roofs in nonresidential Title 24 prescriptive requirements. Energy Policy 2005, 33, 151–170. [Google Scholar] [CrossRef]
- Levinson, R.; Akbari, H. Potential benefits of cool roofs on commercial buildings: Conserving energy, saving money, and reducing emission of greenhouse gases and air pollutants. Energy Effic. 2010, 3, 53–109. [Google Scholar] [CrossRef]
- Ambrosini, D.; Galli, G.; Mancini, B.; Nardi, I.; Sfarra, S. Evaluating mitigation effects of urban heat islands in a historical small center with the ENVI-Met® climate model. Sustainability 2014, 6, 7013–7029. [Google Scholar] [CrossRef]
- Pisello, A.L.; Santamouris, M.; Cotana, F. Active cool roof effect: Impact of cool roofs on cooling system efficiency. Adv. Build. Energy Res. 2013, 7, 209–221. [Google Scholar] [CrossRef]
- Rosso, F.; Pisello, A.L.; Cotana, F.; Ferrero, M. Integrated thermal-energy analysis of innovative translucent white marble for building envelope application. Sustainability 2014, 6, 5439–5462. [Google Scholar] [CrossRef]
- Dias, D.; Machado, J.; Leal, V.; Mendes, A. Impact of using cool paints on energy demand and thermal comfort of a residential building. Appl. Therm. Eng. 2014, 65, 273–281. [Google Scholar] [CrossRef]
- Hilliaho, K.; Lahdensivu, J.; Vinha, J. Glazed space thermal simulation with IDA-ICE 4.61 software—Suitability analysis with case study. Energy Build. 2015, 89, 132–141. [Google Scholar] [CrossRef]
- Zinzi, M.; Carnielo, E.; Agnoli, S. Characterization and assessment of cool coloured solar protection devices for Mediterranean residential buildings application. Energy Build. 2012, 50, 111–119. [Google Scholar] [CrossRef]
- Lee, J.B.; Park, J.W.; Yoon, J.H.; Baek, N.C.; Kim, D.K.; Shin, U.C. An empirical study of performance characteristics of BIPV (Building Integrated Photovoltaic) system for the realization of zero energy building. Energy 2014, 66, 25–34. [Google Scholar] [CrossRef]
- Carletti, C.; Sciurpi, F.; Pierangioli, L. The energy upgrading of existing buildings: Window and shading device typologies for energy efficiency refurbishment. Sustainability 2014, 6, 5354–5377. [Google Scholar] [CrossRef]
- Stazi, F.; Marinelli, S.; di Perna, C.; Munafò, P. Comparison on solar shadings: Monitoring of the thermo-physical behaviour, assessment of the energy saving, thermal comfort, natural lighting and environmental impact. Solar Energy 2014, 105, 512–528. [Google Scholar] [CrossRef]
- Hashemi, A. Daylighting and solar shading performances of an innovative automated reflective louvre system. Energy Build. 2014, 82, 607–620. [Google Scholar] [CrossRef]
- American Society for Testing and Materials. Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres; ASTM E903–96; American Society for Testing and Materials: West Conshohocken, PA, USA, 1996. [Google Scholar]
- American Society for Testing and Materials. Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface; ASTM G173–03; American Society for Testing and Materials: West Conshohocken, PA, USA, 2012. [Google Scholar]
- American Society for Testing and Materials. Standard Test Method for Determination of Emittance of Materials Near Room Temperature Using Portable Emissometers; ASTM C1371–04a; American Society for Testing and Materials: West Conshohocken, PA, USA, 2010. [Google Scholar]
- Pisello, A.L.; Rossi, F.; Cotana, F. Summer and winter effect of innovative cool roof tiles on the dynamic thermal behavior of buildings. Energies 2014, 7, 2343–2361. [Google Scholar] [CrossRef]
- Tinytag. Available online: http://www.geminidataloggers.com/ (accessed on 9 February 2015).
- International Organization for Standardization (ISO). Thermal Performance of Building Components—Dynamicthermal Characteristics—Calculation Methods; ISO 13786:2007; ISO: Geneva, Switzerland, 2008. [Google Scholar]
© 2015 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pisello, A.L. Experimental Analysis of Cool Traditional Solar Shading Systems for Residential Buildings. Energies 2015, 8, 2197-2210. https://doi.org/10.3390/en8032197
Pisello AL. Experimental Analysis of Cool Traditional Solar Shading Systems for Residential Buildings. Energies. 2015; 8(3):2197-2210. https://doi.org/10.3390/en8032197
Chicago/Turabian StylePisello, Anna Laura. 2015. "Experimental Analysis of Cool Traditional Solar Shading Systems for Residential Buildings" Energies 8, no. 3: 2197-2210. https://doi.org/10.3390/en8032197
APA StylePisello, A. L. (2015). Experimental Analysis of Cool Traditional Solar Shading Systems for Residential Buildings. Energies, 8(3), 2197-2210. https://doi.org/10.3390/en8032197