Hydrogen Storage in Pristine and d10-Block Metal-Anchored Activated Carbon Made from Local Wastes
Abstract
:1. Introduction
- i)
- Liquefaction of hydrogen, which requires cryogenic temperatures and efficient insulation. This wastes around 30% of the available energy from burning the hydrogen which makes this storage method a costly process [5].
- ii)
- Compression of hydrogen gas in high-pressure tanks raises safety concern issues mainly as results of hydrogen embrittlement effects. Additionally the low gravimetric storage should also be considered if we include the mass of the tank [6].
- iii)
- Physisorption in porous materials, which attracts scientific interests due to its simplicity. The large surface areas of porous materials, especially of nanostructures, allow the adsorption of large quantities of hydrogen.
2. Results and Discussion
2.1. Structural, Chemical and Thermal Characterizations
2.2. Textural Characterization
Sample | Skeletal Density g/cm3 | As (BET) m2/g | Vtot (P/P0 = 0.9) cm3/g | Vμ (DR) cm3/g |
---|---|---|---|---|
Activated carbon | 1.7 ± 0.1 | 931 ± 20 | 0.42 ± 0.1 | 0.36 ± 0.1 |
AC + Ni | 1.9 ± 0.1 | 910 ± 20 | 0.42 ± 0.1 | 0.35 ± 0.1 |
AC + Pt | 1.9 ± 0.1 | 889 ± 20 | 0.42 ± 0.1 | 0.34 ± 0.1 |
AC + Pd | 2.0 ± 0.1 | 455 ± 20 | 0.26 ± 0.1 | 0.17 ± 0.1 |
2.3. Hydrogen Storage Measurements
Sample | H2 Excess Capacity (wt%) | |
---|---|---|
77 K at 3 MPa | 298 K at 8 MPa | |
Activated carbon | 2.3 ± 0.1 | 0.24 ± 0.01 |
AC + Ni | 2.1 ± 0.1 | 0.17 ± 0.01 |
AC + Pt | 2.1 ± 0.1 | 0.26 ± 0.01 |
AC + Pd | 1.7 ± 0.1 | 0.25 ± 0.01 |
3. Experimental Section
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Rostrup-Nielsen, J.R.; Rostrup-Nielsen, T. Large-scale hydrogen production. Cattech 2002, 6, 150–159. [Google Scholar] [CrossRef]
- Krasae-In, S.; Stang, J.H.; Neksa, P. Simulation on a proposed large-scale liquid hydrogen plant using a multi-component refrigerant refrigeration system. Int. J. Hydrog. Energy 2010, 35, 4524–4533. [Google Scholar] [CrossRef]
- Barthélémy, H. Effects of pressure and purity on the hydrogen embrittlement of steels. Int. J. Hydrog. Energy 2011, 36, 2750–2758. [Google Scholar] [CrossRef]
- Kleperis, J.; Wójcik, G.; Czerwinski, A.; Skowronski, J.; Kopczyk, M.; Beltowska-Brzezinska, M. Electrochemical behavior of metal hydrides. J. Solid State Electrochem. 2001, 5, 229–249. [Google Scholar] [CrossRef]
- Ovshinsky, S.R.; Fetcenko, M.A.; Ross, J.A. Nickel metal hydride battery for electric vehicles. Science 1993, 260, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Ebbesen, T.W.; Lezec, H.J.; Hiura, H.; Bennett, J.W.; Ghaemi, H.F.; Thio, T. Electrical conductivity of individual carbon nanotubes. Nature 1996, 382, 54–56. [Google Scholar] [CrossRef]
- Wong, E.W.; Sheehan, P.E.; Lieber, C.M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 1997, 277, 1971–1975. [Google Scholar] [CrossRef]
- Collins, P.G.; Bradley, K.; Ishigami, M.; Zettl, A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 2000, 287, 1801–1804. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Yokojima, S.; Ng, M.F.; Chen, G.; He, G. Optical properties of single-walled 4 Å carbon nanotubes. J. Am. Chem. Soc. 2001, 123, 9830–9836. [Google Scholar] [CrossRef] [PubMed]
- Minot, E.D.; Yaish, Y.; Sazonova, V.; McEuen, P.L. Determination of electron orbital magnetic moments in carbon nanotubes. Nature 2004, 428, 536–539. [Google Scholar] [CrossRef] [PubMed]
- Motta, M.; Li, Y.L.; Kinloch, I.; Windle, A. Mechanical properties of continuously spun fibers of carbon nano tubes. Nano Lett. 2005, 5, 1529–1533. [Google Scholar] [CrossRef] [PubMed]
- Psofogiannakis, G.M.; Froudakis, G.E. Study of hydrogen spill over mechanism on Pt doped graphite. J. Phys. Chem. C 2009, 113, 14908–14915. [Google Scholar] [CrossRef]
- Park, S.J.; Lee, S.Y. Hydrogen storage behaviors of platinum-supported multi-walled carbon nanotubes. Int. J. Hydrog. Energy 2010, 35, 13048–13054. [Google Scholar] [CrossRef]
- Zubizarreta, L.; Menéndez, J.A.; Pis, J.J.; Arenillas, A. Improving hydrogen storage in Ni-doped carbon nanospheres. Int. J. Hydrog. Energy 2009, 34, 3070–3076. [Google Scholar] [CrossRef]
- Kim, J.H.; Han, K.S. Ni nanoparticles-hollow carbon spheres hybrids for their enhanced room temperature hydrogen storage performance. Trans. Korean Hydrog. New Energy Soc. 2013, 24, 550–557. [Google Scholar] [CrossRef]
- Lueking, A.D.; Yang, R.T. Hydrogen spillover to enhance hydrogen storage—Study of the effect of carbon physicochemical properties. Appl. Catal. A Gen. 2004, 265, 259–268. [Google Scholar] [CrossRef]
- Mu, S.C.; Tang, H.L.; Qian, S.H.; Mu, P.; Yuan, R.Z. Hydrogen storage in carbon nanotubes modified by microwave plasma etching and Pd decoration. Carbon 2006, 44, 762–767. [Google Scholar] [CrossRef]
- Li, Z.Q.; Lu, C.J.; Xia, Z.P.; Zhou, Y.; Luo, Z. X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 2007, 45, 1686–1695. [Google Scholar] [CrossRef]
- Okhlopkova, L.B.; Lisitsyn, A.S.; Likholobov, V.A.; Gurrath, M.; Boehm, H.P. Properties of Pt/C and Pd/C catalysts prepared by reduction with hydrogen of adsorbed metal chlorides: Influence of pore structure of the support. Appl. Catal. A Gen. 2000, 204, 229–240. [Google Scholar] [CrossRef]
- Arouaa, M.K.; Daud, W.M.A.W.; Yin, C.Y.; Adinata, D. Adsorption capacities of carbon dioxide, oxygen, nitrogen and methane on carbon molecular basket derived from polyethyleneimine impregnation on microporous palm shell activated carbon. Sep. Purif. Technol. 2008, 62, 609–613. [Google Scholar] [CrossRef]
- Arami-Niya, A.; Daud, W.M.A.W.; Mjalli, S.F.; Abnisa, F.; Shafeeyan, M.S. Production of microporous palm shell based activated carbon for methane adsorption: Modeling and optimization using response surface methodology. Chem. Eng. Res. Des. 2012, 90, 776–784. [Google Scholar] [CrossRef]
- Stadie, N.P.; Purewal, J.J.; Ahn, C.C.; Fultz, B. Measurements of hydrogen spillover in platinum doped super activated carbon. Langmuir 2010, 26, 15481–15485. [Google Scholar] [CrossRef] [PubMed]
- Contescu, C.I.; Benthem, K.V.; Sa, L.; Bonifacio, C.S.; Pennycook, S.J.; Jena, P.; Gallego, N.C. Single Pd atoms in activated carbon fibers and their contribution to hydrogen storage. Carbon 2011, 49, 4050–4058. [Google Scholar] [CrossRef]
- Ströbel, R.; Garche, J.; Moseley, P.T.; Jörissen, L.; Wolf, G. Hydrogen storage by carbon materials. J. Power Sources 2006, 159, 781–801. [Google Scholar] [CrossRef]
- Zubizarreta, L.; Gomez, E.I.; Arenillas, A.; Ania, C.O.; Parra, J.B.; Pis, J.J. Hydrogen storage in carbon materials. Adsorption 2008, 14, 557–566. [Google Scholar] [CrossRef]
- Yürüm, Y.; Taralp, A.; Veziroglu, N.T. Storage of hydrogen in nano structured carbon materials. Int. J. Hydrog. Energy 2009, 34, 3784–3798. [Google Scholar] [CrossRef] [Green Version]
- Dibandjo, P.; Zlotea, C.; Gadiou, R.; Ghimbeu, C.; Cuevas, F.; Latroche, M.; Leroy, E.; Vix-Guterl, C. Hydrogen storage in hybrid nanostructured carbon/palladium materials: Influence of particle size and surface chemistry. Int. J. Hydrog. Energy 2013, 38, 952–965. [Google Scholar] [CrossRef]
- Zhao, W.; Fierro, V.; Zlotea, C.; Chevalier-César, C.; Izquierdo, M.T.; Latroche, M.; Celzard, A. Carbons doped with Pd nanoparticles for hydrogen storage. Int. J. Hydrog. Energy 2012, 27, 5072–5080. [Google Scholar] [CrossRef]
- Midilli, A.; Ay, M.; Dincer, I.; Rosen, M.A. On hydrogen and hydrogen energy strategies: I: Current status and needs. Renew. Sustain. Energy Rev. 2005, 9, 255–271. [Google Scholar] [CrossRef]
- Thomas, M.K. Hydrogen adsorption and storage on porous materials. Catal. Today 2007, 120, 389–398. [Google Scholar] [CrossRef]
- Zlotea, C.; Cuevas, F.; Boncour, V.P.; Leroy, E.; Dibandjo, P.; Gadiou, R.; Guterl, C.V.; Latroche, M. Size-dependent hydrogen sorption in ultrasmall Pd clusters embedded in mesoporous carbon template. J. Am. Chem. Soc. 2010, 132, 7720–7729. [Google Scholar] [CrossRef] [PubMed]
- AlOthman, Z.A.; Habila, M.A.; Ali, R. Preparation of activated carbon using the copyrolysis of agricultural and municipal solid wastes at a low carbonization temperature. Int. Conf. Biol. Environ. Chem. 2011, 24, 67–72. [Google Scholar]
- Habila, M.; Yilmaz, E.; ALOthman, Z.A.; Soylak, M. Flame atomic absorption spectrometric determination of Cd, Pb, and Cu in food samples after pre-concentration using 4-(2-thiazolylazo) resorcinol-modified activated carbon. J. Ind. Eng. Chem. 2014, 20, 3989–3993. [Google Scholar] [CrossRef]
- Zha, Q.F.; Hu, X.H.; Guo, Y.S.; Wu, M.B.; Li, Z.F.; Zhang, Y.Z. Improved antioxidative ability of porous carbons by boron-doping. New Carbon Mater. 2008, 23, 356–360. [Google Scholar] [CrossRef]
- Li, Y.; Yang, R.T. Hydrogen storage on platinum nanoparticles doped on superactivated carbon. J. Phys. Chem. C 2007, 111, 11086–11094. [Google Scholar] [CrossRef]
- Matsumoto, T.; Komatsu, T.; Nakanoa, H.; Arai, K.; Nagashima, Y.; Yooa, E. Efficient usage of highly dispersed Pt on carbon nano tubes for electrode catalysts of polymer electrolyte fuel cells. Catal. Today 2004, 90, 277–281. [Google Scholar] [CrossRef]
- Şayan, E. Ultrasound assisted preparation of activated carbon from alkaline impregnated hazelnut shell: An optimization study on removal of copper ion from aqueous solution. Chem. Eng. J. 2006, 115, 213–218. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aboud, M.F.A.; ALOthman, Z.A.; Habila, M.A.; Zlotea, C.; Latroche, M.; Cuevas, F. Hydrogen Storage in Pristine and d10-Block Metal-Anchored Activated Carbon Made from Local Wastes. Energies 2015, 8, 3578-3590. https://doi.org/10.3390/en8053578
Aboud MFA, ALOthman ZA, Habila MA, Zlotea C, Latroche M, Cuevas F. Hydrogen Storage in Pristine and d10-Block Metal-Anchored Activated Carbon Made from Local Wastes. Energies. 2015; 8(5):3578-3590. https://doi.org/10.3390/en8053578
Chicago/Turabian StyleAboud, Mohamed F. Aly, Zeid A. ALOthman, Mohamed A. Habila, Claudia Zlotea, Michel Latroche, and Fermin Cuevas. 2015. "Hydrogen Storage in Pristine and d10-Block Metal-Anchored Activated Carbon Made from Local Wastes" Energies 8, no. 5: 3578-3590. https://doi.org/10.3390/en8053578
APA StyleAboud, M. F. A., ALOthman, Z. A., Habila, M. A., Zlotea, C., Latroche, M., & Cuevas, F. (2015). Hydrogen Storage in Pristine and d10-Block Metal-Anchored Activated Carbon Made from Local Wastes. Energies, 8(5), 3578-3590. https://doi.org/10.3390/en8053578