Mapping the Geothermal System Using AMT and MT in the Mapamyum (QP) Field, Lake Manasarovar, Southwestern Tibet
Abstract
:1. Introduction
2. Background and Geological Setting
3. Methods, Data Acquisition, and Processing
4. Results
5. Discussion
5.1. Geoelectric Structure of the Geothermal System
5.2. The Geothermal Reservoir
5.3. Heat Source of the Geothermal System
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- McGlade, C.; Ekins, P. The geographical distribution of fossil fuels unused when limiting global warming to 2 °C. Nature 2015, 517, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Barbier, E. Geothermal energy technology and current status: An overview. Renew. Sustain. Energy Rev. 2002, 6, 3–65. [Google Scholar] [CrossRef]
- Ganguly, S.; Kumar, M.M. Geothermal reservoirs—A brief review. J. Geol. Soc. India 2012, 79, 589–602. [Google Scholar] [CrossRef]
- Fridleifsson, I.B. Geothermal energy for the benefit of the people. Renew. Sustain. Energy Rev. 2001, 5, 299–312. [Google Scholar] [CrossRef]
- Bertani, R. Geothermal power generation in the world 2005–2010 update report. Geothermics 2012, 41, 1–29. [Google Scholar] [CrossRef]
- Binley, A.; Cassiani, G.; Deiana, R. Hydrogeophysics: Opportunities and challenges. Boll. Geofis. Teor. Appl. 2010, 51, 267–284. [Google Scholar]
- Spichak, V.; Manzella, A. Electromagnetic sounding of geothermal zones. J. Appl. Geophys. 2009, 68, 459–478. [Google Scholar] [CrossRef]
- Munoz, G. Exploring for geothermal resources with electromagnetic methods. Surv. Geophys. 2014, 35, 101–122. [Google Scholar] [CrossRef]
- Pina-Varas, P.; Ledo, J.; Queralt, P.; Marcuello, A.; Bellmunt, F.; Hidalgo, R.; Messeiller, M. 3-D Magnetotelluric exploration of Tenerife geothermal system (Canary Islands, Spain). Surv. Geophys. 2014, 35, 1045–1064. [Google Scholar] [CrossRef]
- Wu, G.J.; Hu, X.Y.; Huo, G.P.; Zhou, X.C. Geophysical exploration for geothermal resources: An application of MT and CSAMT in Jiangxia, Wuhan, China. J. Earth Sci. 2012, 23, 757–767. [Google Scholar] [CrossRef]
- Yin, A. Cenozoic tectonic evolution of the Himalayan orogen as onstrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci. Rev. 2006, 76, 1–131. [Google Scholar] [CrossRef]
- Kapp, P.; Murphy, M.A.; Yin, A.; Harrison, T.M.; Ding, L.; Guo, J.H. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics 2003, 22. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Zheng, Y.C.; Zeng, L.S. Eocene-Oligocene granitoids in southern Tibet: Constraints on crustal anatexis and tectonic evolution of the Himalayan orogeny. Earth Planet. Sci. Lett. 2012, 349–350, 38–52. [Google Scholar] [CrossRef]
- Zhou, M.F.; Robinson, P.T.; Malpas, J.; Edwards, S.J.; Qi, L. REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, Southern Tibet. J. Petrol. 2005, 46, 615–639. [Google Scholar] [CrossRef]
- Hu, X.M.; Garzanti, E.; Moore, T.; Raffi, I. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59 ± 1 Ma). Geology 2015, 43, 859–862. [Google Scholar] [CrossRef]
- DorJi. Geothermal resources and utilization in Tibet and the Himalayas; Presented at the Workshop for Decision Makers on Direct Heating Use of Geothermal Rrsources in Asia, UNU-GTP-SC-06-04, Tianjin, China, 11–18 May 2008.
- Wang, P.; Chen, X.H.; Shen, L.C.; Wu, K.Y.; Huang, M.Z.; Xiao, Q. Geochemical features of the geothermal fluids from the Mapamyum non-volcanic geothermal system (Western Tibet, China). J. Volcanol. Geotherm. Res. 2016, 320, 29–39. [Google Scholar] [CrossRef]
- Vozoff, K. The magnetotelluric method. In Electromagnetic Methods in Applied Geophysics; Investigations in Geophysics, 3, v. 2 Applications Part B; Nabighian, M.N., Ed.; Society of Exploration Geophysicists: Tulsa Oklahoma, OK, USA, 1991; pp. 641–711. [Google Scholar]
- Tikhonov, A.N. On determining electrical characteristics of the deep layers of the Earth’s crust. Doklady Akademii Nauk SSSR 1950, 73, 295–297. [Google Scholar]
- Cagniard, L. Basic theory of the magnetotelluric method of geophysical prospecting. Geophysics 1953, 18, 605–635. [Google Scholar] [CrossRef]
- Peacock, J.R.; Thiel, S.; Heinson, G.S.; Reid, P. Time-lapse magnetotelluric monitoring of an enhanced geothermal system. Geophysics 2013, 78, B121–B130. [Google Scholar] [CrossRef]
- U.S. Geological Survey. The Audio-Magnetotelluric Method (AMT). Available online: http://pubs.usgs.gov/of/2003/of03-056/html/AMTMdesc.htm (accessed on 20 July 2016).
- He, L.F.; Feng, M.H.; He, Z.X.; Wang, X.B. Application of EM methods for the investigation of Qiyueshan Tunnel, China. J. Environ. Eng. Geophys. 2006, 11, 151–156. [Google Scholar] [CrossRef]
- Torres-Verdin, C.; Bostick, F.X. Principles of spatial surface electric field filtering in magnetotellurics: Electromagnetic array profiling (EMAP). Geophysics 1992, 57, 603–622. [Google Scholar] [CrossRef]
- Bostick, F.X. A Simple Almost Exact Method of MT Analysis: Presented at the Workshop on Electrical Methods in Geothermal Exploration; Contract 14-08-001-6-359; U.S. Geological Survey: Snowbird, UT, USA, 1977.
- Rodi, W.; Mackie, R.L. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics 2001, 66, 174–187. [Google Scholar] [CrossRef]
- Bai, D.; Unsworth, M.J.; Meju, M.A.; Ma, X.; Teng, J.; Kong, X.; Zhao, C. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nat. Geosci. 2010, 3, 358–362. [Google Scholar] [CrossRef]
- Oskooi, B.; Laust, B.P.; Smirnov, M. Electromagnetic induction in the Earth: The deep geothermal structure of the Mid-Atlantic Ridge deduced from MT data in SW Iceland. Phys. Earth Planet. Inter. 2005, 150, 183–195. [Google Scholar] [CrossRef]
- Xiao, Q.; Wang, P.; Shen, L.C.; Xue, M. Soil CO2 degassing process and flux from the Mapamyum non-volcanic geothermal region. Geol. China 2015, 42, 2019–2028. (In Chinese) [Google Scholar]
- Yu, G.; Gunnarsson, Á.; He, Z.X.; Tulinius, H. Characterizing a geothermal reservoir using a broadband 2-D MT survey in Theistareykir, Iceland. In Proceedings of the World Geothermal Congress, Bali, Indonesia, 25–29 April 2010.
- Fitterman, D.V.; Stanley, W.D.; Bisdorf, R.J. Electrical structure of Newberry Volcano, Oregon. J. Geophys. Res. 1988, 93, 10119–10134. [Google Scholar] [CrossRef]
- Bibby, H.M.; Risk, G.F.; Caldwell, T.G.; Heise, W. Investigations of deep resistivity structures at the Wairakei geothermal field. Geothermics 2009, 38, 98–107. [Google Scholar] [CrossRef]
- Kahwa, E. Geophysical exploration of high temperature geothermal areas using resistivity methods. Case study: Theistareykir Area, NE Iceland. In Proceedings of the World Geothermal Congress, Melbourne, Australia, 19–25 April 2015.
- Wilt, M.; Alumbaugh, D. Electromagnetic methods for development and production: State of the art. Lead. Edge 1998, 17, 487. [Google Scholar] [CrossRef]
- Ji, D.; Zhao, P. Characteristics and genesis of the Yangbajing geothermal field, Tibet. In Proceedings of the World Geothermal Congress, Kyushu-Tohoku, Japan, 28 May–10 June 2000.
- Liao, Z.J. Setting of the geothermal activities of Xizang (Tibet) and a discussion of the associated heat source problem. Acta Sci. Nat. Univ. Pekin. 1982, 18, 70–78. (In Chinese) [Google Scholar]
- Tong, W.; Zhang, Z.F.; Liao, Z.J.; Zhu, M.X.; Zhang, M.T. Hydrothermal activities occurring on the Xizang (Tibetan) Plateau and preliminary discussion about the thermal regime within its upper crust. Chin. J. Geophys. Chin. Ed. 1982, 25, 34–40. [Google Scholar]
- Guo, Q.H. Hydrogeochemistry of high-temperature geothermal systems in China: A review. Appl. Geochem. 2012, 27, 1887–1898. [Google Scholar] [CrossRef]
- Makovsky, Y.; Klemperer, S.L.; Ratschbacher, L.; Brown, L.D.; Li, M.; Zhao, W.; Meng, F. INDEPTH wide-angle reflection observation of P-wave-to-S-wave conversion from crustal bright spots in Tibet. Science 1996, 274, 1690–1691. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.J.; Zhao, X.; Shi, D.N.; Liu, K.; Jiang, W.; Wu, Z.H.; Xiaong, J.Y.; Zheng, Y.K. Progress in the study of deep profiles (INDEPTH) in the Himalayas and Qinghai-Tibet Plateau. Geol. Bull. China 2002, 21, 691–700. (In Chinese) [Google Scholar]
- Wang, Q.; Hawkesworth, C.J.; Wyman, D.; Chung, S.L.; Wu, F.Y.; Li, X.H.; Dan, W. Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow. Nat. Commun. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Q.; Hou, Z.Q.; Nie, F.J.; Meng, X.J. Characteristic and Distribution of the Partial Mel ting Layers in the Upper Crust: Evidence from Active Hydrothermal Fluid in the South Tibet. Acta Geol. Sin. 2005, 79, 68–77. [Google Scholar]
- Klemperer, S.L.; Kennedy, B.M.; Sastry, S.R.; Makovsky, Y.; Harinarayana, T.; Leech, M.L. Mantle fluids in the Karakorum fault: Helium isotope evidence. Earth Planet. Sci. Lett. 2013, 366, 59–70. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, L.; Chen, L.; Dorji; Xi, X.; Zhao, X.; Chen, R.; Yao, H. Mapping the Geothermal System Using AMT and MT in the Mapamyum (QP) Field, Lake Manasarovar, Southwestern Tibet. Energies 2016, 9, 855. https://doi.org/10.3390/en9100855
He L, Chen L, Dorji, Xi X, Zhao X, Chen R, Yao H. Mapping the Geothermal System Using AMT and MT in the Mapamyum (QP) Field, Lake Manasarovar, Southwestern Tibet. Energies. 2016; 9(10):855. https://doi.org/10.3390/en9100855
Chicago/Turabian StyleHe, Lanfang, Ling Chen, Dorji, Xiaolu Xi, Xuefeng Zhao, Rujun Chen, and Hongchun Yao. 2016. "Mapping the Geothermal System Using AMT and MT in the Mapamyum (QP) Field, Lake Manasarovar, Southwestern Tibet" Energies 9, no. 10: 855. https://doi.org/10.3390/en9100855
APA StyleHe, L., Chen, L., Dorji, Xi, X., Zhao, X., Chen, R., & Yao, H. (2016). Mapping the Geothermal System Using AMT and MT in the Mapamyum (QP) Field, Lake Manasarovar, Southwestern Tibet. Energies, 9(10), 855. https://doi.org/10.3390/en9100855