Multi-Objective Optimization of a Solar Chimney Power Plant with Inclined Collector Roof Using Genetic Algorithm
Abstract
:1. Introduction
2. Mathematical Modeling
2.1. Convection from Ground to Collector Air
2.2. Convection from Roof to the Collector Air
2.3. Chimney Efficiency
2.4. Total System Expenditure (Escpp)
2.5. The Power Output (Pscpp)
2.6. Genetic Algorithm
3. Results and Discussion
3.1. Kerman SCPP Optimization
3.2. Manzanares SCPP Optimization
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
A | area (m2) |
cp | specific heat capacity (J/kg K) |
d | diameter (m) |
dh | hydraulic diameter of collector (m) |
E | Expenditure (U) |
f | Darcy friction factor |
G | solar irradiation (W/m2) |
g | gravitational acceleration (m/s2) |
H | height (m) |
h | convective heat transfer coefficient (W/m2 K) |
k | thermal conductivity (W/m K) |
pt | percentage |
P | power (W) |
Ptc | theoretical power of air (W) |
Pcl | power loss due to exit kinetic energy (W) |
Pr | Prandtl number |
q″ | heat flux (W/m2) |
R | radius (m) |
Re | Reynolds number |
r | radial coordinate (m) |
T | temperature (K) |
t | time (s) |
ν | velocity (m/s) |
z | vertical coordinate (m) |
Greek Symbols
α | absorptivity, thermal diffusivity (m2/s) |
η | efficiency |
ρ | density (kg/m3) |
τ | transmissivity |
Subscripts
a | ambient air |
c | chimney |
coll | collector |
g | ground |
gen | generator |
gf | ground to fluid flow |
gr | ground to collector roof |
r | collector roof |
ra | collector roof to ambient air |
rf | collector roof to fluid flow |
rs | collector roof to sky |
SCPP | solar chimney power plant |
t | turbine |
References
- Schlaich, J.; Bergermann, R.; Schiel, W.; Weinrebe, G. Design of Commercial Solar Updraft Tower Systems—Utilization of Solar Induced Convective Flows for Power Generation. J. Sol. Energy Eng. 2005, 127, 117–124. [Google Scholar] [CrossRef]
- Haaf, W.; Friedrich, K.; Mayr, G.; Schlaich, J. Solar Chimneys Part I: Principle and Construction of the Pilot Plant in Manzanares. Int. J. Sol. Energy 1983, 2, 3–20. [Google Scholar] [CrossRef]
- Haaf, W. Solar Chimneys: Part II: Preliminary Test Results from the Manzanares Pilot Plant. Int. J. Sol. Energy 1984, 2, 141–161. [Google Scholar] [CrossRef]
- Schlaich, J. The Solar Chimney: Electricity from the Sun; Edition Axel Menges: Stuttgart, Germany, 1995. [Google Scholar]
- Pasumarthi, N.; Sherif, S.A. Experimental and theoretical performance of a demonstration solar chimney model—Part I: Mathematical model development. Int. J. Energy Res. 1998, 22, 277–288. [Google Scholar] [CrossRef]
- Padki, M.M.; Sherif, S.A. On a simple analytical model for solar chimneys. Int. J. Energy Res. 1999, 23, 345–349. [Google Scholar] [CrossRef]
- Gannon, A.J.; Backström, T.W.V. Solar Chimney Cycle Analysis with System Loss and Solar Collector Performance. J. Sol. Energy Eng. 2000, 122, 133–137. [Google Scholar] [CrossRef]
- Bernardes, M.A.S.; Voß, A.; Weinrebe, G. Thermal and technical analyses of solar chimneys. Sol. Energy 2003, 75, 511–524. [Google Scholar] [CrossRef]
- Tingzhen, M.; Wei, L.; Guoliang, X. Analytical and numerical investigation of the solar chimney power plant systems. Int. J. Energy Res. 2006, 30, 861–873. [Google Scholar] [CrossRef]
- Pretorius, J.P.; Kröger, D.G. Solar Chimney Power Plant Performance. J. Sol. Energy Eng. 2006, 128, 302–311. [Google Scholar] [CrossRef]
- Bernardes, M.A.S.; Backström, T.W.V.; Kröger, D.G. Analysis of some available heat transfer coefficients applicable to solar chimney power plant collectors. Sol. Energy 2009, 83, 264–275. [Google Scholar] [CrossRef]
- Nizetic, S.; Ninic, N.; Klarin, B. Analysis and feasibility of implementing solar chimney power plants in the Mediterranean region. Energy 2008, 33, 1680–1690. [Google Scholar] [CrossRef]
- Pretorius, J.P.; Kröger, D.G. Thermoeconomic Optimization of a Solar Chimney Power Plant. J. Sol. Energy Eng. 2008, 130, 021015. [Google Scholar] [CrossRef]
- Koonsrisuk, A.; Chitsomboon, T. Mathematical modeling of solar chimney power plants. Energy 2013, 51, 314–322. [Google Scholar] [CrossRef]
- Gholamalizadeh, E.; Mansouri, S.H. A comprehensive approach to design and improve a solar chimney power plant: A special case—Kerman project. Appl. Energy 2013, 102, 975–982. [Google Scholar] [CrossRef]
- Bernardes, M.A.S.; Valle, R.M.; Cortez, M.F.-B. Numerical analysis of natural laminar convection in a radial solar heater. Int. J. Therm. Sci. 1999, 38, 42–50. [Google Scholar] [CrossRef]
- Pastohr, H.; Kornadt, O.; Gürlebeck, K. Numerical and analytical calculations of the temperature and flow field in the upwind power plant. Int. J. Energy Res. 2004, 28, 495–510. [Google Scholar] [CrossRef]
- Koonsrisuk, A.; Chitsomboon, T. Dynamic similarity in solar chimney modeling. Sol. Energy 2007, 81, 1439–1446. [Google Scholar] [CrossRef]
- Chergui, T.; Larbi, S.; Bouhdjar, A. Thermo-hydrodynamic aspect analysis of flows in solar chimney power plants—A case study. Renew. Sustain. Energy Rev. 2010, 14, 1410–1418. [Google Scholar] [CrossRef]
- Xu, G.; Ming, T.; Pan, Y.; Meng, F.; Zhou, C. Numerical analysis on the performance of solar chimney power plant system. Energy Convers. Manag. 2011, 52, 876–883. [Google Scholar] [CrossRef]
- Koonsrisuk, A.; Chitsomboon, T. Effects of flow area changes on the potential of solar chimney power plants. Energy 2013, 51, 400–406. [Google Scholar] [CrossRef]
- Guo, P.-H.; Li, J.-Y.; Wang, Y. Annual performance analysis of the solar chimney power plant in Sinkiang, China. Energy Convers. Manag. 2014, 87, 392–399. [Google Scholar] [CrossRef]
- Okoye, C.O.; Atikol, U. A parametric study on the feasibility of solar chimney power plants in North Cyprus conditions. Energy Convers. Manag. 2014, 80, 178–187. [Google Scholar] [CrossRef]
- Li, W.; Wei, P.; Zhou, X. A cost-benefit analysis of power generation from commercial reinforced concrete solar chimney power plant. Energy Convers. Manag. 2014, 79, 104–113. [Google Scholar] [CrossRef]
- Patel, S.K.; Prasad, D.; Ahmed, M.R. Computational studies on the effect of geometric parameters on the performance of a solar chimney power plant. Energy Convers. Manag. 2014, 77, 424–431. [Google Scholar] [CrossRef]
- Gholamalizadeh, E.; Kim, M.-H. Three-dimensional CFD analysis for simulating the greenhouse effect in solar chimney power plants using a two-band radiation model. Renew. Energy 2014, 63, 498–506. [Google Scholar] [CrossRef]
- Guo, P.-H.; Li, J.-Y.; Wang, Y. Numerical simulations of solar chimney power plant with radiation model. Renew. Energy 2014, 62, 24–30. [Google Scholar] [CrossRef]
- Gholamalizadeh, E.; Kim, M.-H. Thermo-economic triple-objective optimization of a solar chimney power plant using genetic algorithms. Energy 2014, 70, 204–211. [Google Scholar] [CrossRef]
- Gholamalizadeh, E.; Kim, M.-H. CFD (computational fluid dynamics) analysis of a solar-chimney power plant with inclined collector roof. Energy 2016, 107, 661–667. [Google Scholar] [CrossRef]
- Panahi, M.S. A Computational Approach to Conceptual Design of Mechanical Systems. Ph.D. Thesis, University of Alberta, Edmonton, AB, Canada, January 1995. [Google Scholar]
- Chipperfield, A.; Fleming, P.; Pohlheim, H.; Fonseca, C. Genetic Algorithm Toolbox for Use with MATLAB. Available online: http://www.pohlheim.com/Papers/tr_gatbx12/ChipperfieldFlemingPohlheimFonseca_tr_GATbx_v12.pdf (accessed on 17 November 2016).
- Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley & Sons: Chichester, UK, 2001. [Google Scholar]
Design parameters | Kerman SCPP | Range |
---|---|---|
Collector radius (m) | 20 | 15–100 |
Collector inlet height (m) | 2 | 0.5–3 |
Collector outlet height (m) | 2 | 0.5–3 (H2 > H1) |
Chimney height (m) | 60 | 60–105 |
Chimney diameter (m) | 3 | 3–5 |
Design parameters | Optimal Solution for Zero-Slope Roof | Optimal Solution for Inclined Roof |
---|---|---|
Collector radius (m) | 75.5 | 79.32 |
Collector inlet height (m) | 2 | 1.5 |
Collector outlet height (m) | 2 | 2.95 |
Chimney height (m) | 104.6 | 103.26 |
Chimney diameter (m) | 4.90 | 4.94 |
Total efficiency | 7.51 × 10−4 | 7.86 × 10−4 |
Power output (kW) | 10.1 | 11.7 |
Expenditure (U) | 304.50 | 319.77 |
RPE (kW/U) | 0.0332 | 0.0366 |
Design parameters | Manzanares SCPP | Range |
---|---|---|
Collector radius (m) | 122 | 122–200 |
Collector inlet height (m) | 1.85 | 0.5–5 |
Collector outlet height (m) | 1.85 | 0.5–5 (H2 > H1) |
Chimney height (m) | 194.6 | 194.6–250 |
Chimney diameter (m) | 10 | 10–15 |
Design Parameters | Optimal Solution for Zero-Slope Roof | Optimal Solution for Inclined Roof |
---|---|---|
Collector radius (m) | 193.84 | 174.3 |
Collector inlet height (m) | 1.85 | 1.5 |
Collector outlet height (m) | 1.85 | 4.6 |
Chimney height (m) | 247.88 | 248.1 |
Chimney diameter (m) | 14.79 | 14.92 |
Total efficiency | 1.527 × 10−3 | 2.43 × 10−3 |
Power output (kW) | 137 | 175 |
Expenditure (U) | 2953 | 2786 |
RPE (kW/U) | 0.0464 | 0.0628 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gholamalizadeh, E.; Kim, M.-H. Multi-Objective Optimization of a Solar Chimney Power Plant with Inclined Collector Roof Using Genetic Algorithm. Energies 2016, 9, 971. https://doi.org/10.3390/en9110971
Gholamalizadeh E, Kim M-H. Multi-Objective Optimization of a Solar Chimney Power Plant with Inclined Collector Roof Using Genetic Algorithm. Energies. 2016; 9(11):971. https://doi.org/10.3390/en9110971
Chicago/Turabian StyleGholamalizadeh, Ehsan, and Man-Hoe Kim. 2016. "Multi-Objective Optimization of a Solar Chimney Power Plant with Inclined Collector Roof Using Genetic Algorithm" Energies 9, no. 11: 971. https://doi.org/10.3390/en9110971
APA StyleGholamalizadeh, E., & Kim, M. -H. (2016). Multi-Objective Optimization of a Solar Chimney Power Plant with Inclined Collector Roof Using Genetic Algorithm. Energies, 9(11), 971. https://doi.org/10.3390/en9110971