Optimal Scheduling and Real-Time State-of-Charge Management of Energy Storage System for Frequency Regulation
Abstract
:1. Introduction
2. Frequency Regulation Market
3. Optimal Scheduling Algorithm
3.1. Maximum-Capacity Bidding Plan
3.2. Optimal Scheduling Algorithm
4. Real-Time State-of-Charge Management Algorithm
5. Simulation Results
5.1. Case 1
5.2. Case 2
5.3. Case 3
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wu, D.; Tang, F.; Dragicevic, T.; Juan, C.; Vasquez, J.; Guerrero, J. A control architecture to coordinate renewable energy sources and energy storage systems in islanded microgrids. IEEE Trans. Smart Grid 2015, 6, 1156–1166. [Google Scholar] [CrossRef]
- Karami, H.; Sanjari, M.; Hosseinian, S.; Gharehpetian, G. An optimal dispatch algorithm for managing residential distributed energy resources. IEEE Trans. Smart Grid 2014, 5, 2360–2367. [Google Scholar] [CrossRef]
- Erdinc, O.; Paterakis, N.; Mendes, T.; Bakirtzis, A.; Catalão, J. Smart household operation considering bi-directional EV and ESS utilization by real-time pricing-based DR. IEEE Trans. Smart Grid 2015, 6, 1281–1291. [Google Scholar] [CrossRef]
- Jiang, B.; Fei, Y. Smart Home in Smart Microgrid: A cost-effective energy ecosystem with intelligent hierarchical agents. IEEE Trans. Smart Grid 2015, 6, 3–13. [Google Scholar] [CrossRef]
- Tran, D.; Khambadkone, A. Energy management for lifetime extension of energy storage system in micro-grid applications. IEEE Trans. Smart Grid 2013, 4, 1289–1296. [Google Scholar] [CrossRef]
- Daneshi, H.; Srivastava, A. Security-constrained unit commitment with wind generation and compressed air energy storage. IET Gener. Transm. Distrib. 2012, 6, 167–175. [Google Scholar] [CrossRef]
- Su, H.; Gamal, A. Modeling and analysis of the role of energy storage for renewable integration: Power balancing. IEEE Trans. Power Syst. 2013, 4, 4109–4117. [Google Scholar] [CrossRef]
- Rahbar, K.; Xu, J.; Zhang, R. Real-time energy storage management for renewable integration in microgrid: An off-line optimization approach. IEEE Trans. Smart Grid 2015, 6, 124–134. [Google Scholar] [CrossRef]
- Wang, P.; Gao, Z.; Tjernberg, L. Operational adequacy studies of power systems with wind farms and energy storages. IEEE Trans. Power Syst. 2013, 27, 2377–2384. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y. Optimal Energy management of wind-battery hybrid power system with two-scale dynamic programming. IEEE Trans. Sustain. Energy 2013, 4, 765–773. [Google Scholar] [CrossRef]
- Wu, D.; Tang, F.; Dragicevic, T.; Vasquez, J.; Guerrero, J. Autonomous active power control for islanded AC microgrids with photovoltaic generation and energy storage system. IEEE Trans. Energy Convers. 2014, 29, 882–892. [Google Scholar] [CrossRef]
- Damiano, A.; Gatto, G.; Marongiu, I.; Porru, M.; Serpi, A. Real-time control strategy of energy storage systems for renewable energy sources exploitation. IEEE Trans. Sustain. Energy 2014, 5, 567–576. [Google Scholar] [CrossRef]
- Shiltz, D.; Cvetkovi’c, M.; Annaswamy, A. An integrated dynamic market mechanism for real-time markets and frequency regulation. IEEE Trans. Sustain. Energy 2016, 7, 875–885. [Google Scholar] [CrossRef]
- Choi, J.; Heo, S.; Kim, M. Hybrid operation strategy of wind energy storage system for power grid frequency regulation. IET Gener. Transm. Distrib. 2016, 10, 736–749. [Google Scholar] [CrossRef]
- Dang, J.; Seuss, J.; Suneja, L.; Harley, R. SOC feedback control for wind and ESS hybrid power system frequency regulation. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 79–86. [Google Scholar] [CrossRef]
- Papalexopoulos, A.; Andrianesis, P. Performance-based pricing of frequency regulation in electricity markets. IEEE Trans. Power Syst. 2014, 29, 441–449. [Google Scholar] [CrossRef]
- He, G.; Chen, Q.; Kang, C.; Pinson, P.; Xia, Q. Optimal bidding strategy of battery storage in power markets considering performance-based regulation and battery cycle life. IEEE Trans. Smart Grid 2015, 7, 2359–2367. [Google Scholar] [CrossRef]
- Singh, H.; Papalexopoulos, A. Competitive procurement of ancillary services by an independent system operator. IEEE Trans. Power Syst. 1999, 14, 498–504. [Google Scholar] [CrossRef]
- Papalexopoulos, A.; Singh, H. On the various design options for ancillary services markets. In Proceedings of the 34th Hawaii International Conference on System Sciences (HICSS-34), Maui, HI, USA, 3–5 January 2001.
- PJM Manual 11: Energy & Ancillary Services Market Operations. Available online: http://www.pjm.com/~/media/documents/manuals/m11.ashx (accessed on 9 April 2015).
- Preliminary Billing Data. Available online: http://www.pjm.com/pub/account/pjm-regulation-data/201309.csv (accessed on 5 September 2013).
- Market & Operation, Market-Based Regulation. Available online: http://www.pjm.com/~/media/markets-ops/ancillary/mkt-based-regulation/regulation-data.ashx (accessed on 13 August 2014).
- Hourly Real-Time & Day-Ahead LMP. Available online: http://www.pjm.com/pub/account/lmpmonthly/201309-rt.csv (accessed on 2 January 2014).
- Li, S.; Zhang, D.; Roget, A.; O’Neill, Z. Integrating home energy simulation and dynamic electricity price for demand response study. IEEE Trans. Smart Grid 2014, 5, 779–788. [Google Scholar] [CrossRef]
- Faria, P.; Soares, J.; Vale, Z.; Morais, H.; Sousa, T. Modified particle swarm optimization applied to integrated demand response and DG resources scheduling. IEEE Trans. Smart Grid 2013, 4, 606–616. [Google Scholar] [CrossRef]
- Nikmehr, N.; Ravadanegh, S. Optimal power dispatch of multi-microgrids at future smart distribution grids. IEEE Trans. Smart Grid 2015, 6, 1648–1657. [Google Scholar] [CrossRef]
- Basu, A.; Bhattacharya, A.; Chowdhury, S.; Chowdhury, S. Planned scheduling for economic power sharing in a CHP-based micro-grid. IEEE Trans. Power Syst. 2012, 27, 30–38. [Google Scholar] [CrossRef]
Method | Regulation Profit | Energy Profit | Total Profit |
---|---|---|---|
Maximum capacity bidding plan | $2773.4 | $0 | $2773.4 |
Optimal scheduling algorithm | $2483.1 | $9.4 | $2492.5 |
Case | Regulation Profit | Energy Profit | Total Profit | SOC |
---|---|---|---|---|
Case 1 | $911.8 | $0 | $911.8 | 10% |
Case 2 | $1116.2 | $−10.4 | $1105.8 | 10% |
Case 3 (0.05 p.u) | $2630.3 | $−147.4 | $2482.9 | 39.9% |
Case 3 (0.1 p.u) | $2555.5 | $−159.7 | $2395.8 | 48.9% |
Case 3 (0.15 p.u) | $2506.2 | $−157.2 | $2349 | 37.4% |
Optimal Scheduling & Real-Time SOC Managment | Base Point | Profit | SOC |
---|---|---|---|
2013.06.10 | 0.05 | $1254.2 → $211.7 | 10% |
0.1 | $1254.2 → $948.4 | 25.61% | |
0.15 | $1254.2 → $953.6 | 40.60% | |
2013.12.2 | 0.05 | $2232.4 → $1857.1 | 51.42% |
0.1 | $2232.4 → $1815.1 | 37.89% | |
0.15 | $2232.4 → $1778.1 | 42.32% | |
2014.03.10 | 0.05 | $4024.3 → $3536.8 | 52.12% |
0.1 | $4024.3 → $3301.4 | 65.56% | |
0.15 | $4024.3 → $3475.8 | 41.21% |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.-S.; Choi, J.-Y.; An, G.-H.; Choi, Y.-J.; Kim, M.-H.; Won, D.-J. Optimal Scheduling and Real-Time State-of-Charge Management of Energy Storage System for Frequency Regulation. Energies 2016, 9, 1010. https://doi.org/10.3390/en9121010
Yang J-S, Choi J-Y, An G-H, Choi Y-J, Kim M-H, Won D-J. Optimal Scheduling and Real-Time State-of-Charge Management of Energy Storage System for Frequency Regulation. Energies. 2016; 9(12):1010. https://doi.org/10.3390/en9121010
Chicago/Turabian StyleYang, Jin-Sun, Jin-Young Choi, Geon-Ho An, Young-Jun Choi, Myoung-Hoe Kim, and Dong-Jun Won. 2016. "Optimal Scheduling and Real-Time State-of-Charge Management of Energy Storage System for Frequency Regulation" Energies 9, no. 12: 1010. https://doi.org/10.3390/en9121010
APA StyleYang, J. -S., Choi, J. -Y., An, G. -H., Choi, Y. -J., Kim, M. -H., & Won, D. -J. (2016). Optimal Scheduling and Real-Time State-of-Charge Management of Energy Storage System for Frequency Regulation. Energies, 9(12), 1010. https://doi.org/10.3390/en9121010