Comparison of Two Processes Forming CaCO3 Precipitates by Electrolysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electrolysis Device
2.3. NaCl Solution Process: Process 1
2.4. CaCl2 Solution Process: Process 2
2.5. Characteristics of Precipitates
3. Results
3.1. Fourier Transform Infrared Analysis
3.2. X-ray Diffraction Analysis
3.3. Field Emission Scanning Electron Microscopy Image Analysis
3.4. Conversion Yield of Precipitate
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yu, K.M.K.; Curcic, I.; Gabriel, J.; Tsang, S.C.E. Recent advances in CO2 capture and utilization. ChemSusChem 2008, 1, 893–899. [Google Scholar] [CrossRef] [PubMed]
- West, T.O.; Pena, N. Determining thresholds for mandatory reporting of greenhouse gas emissions. Environ. Sci. Technol. 2003, 37, 1057–1060. [Google Scholar] [CrossRef] [PubMed]
- Baciocchi, R.; Corti, A.; Costa, G.; Lombardi, L.; Zingaretti, D. Storage of carbon dioxide captured in a pilot-scale biogas upgrading plant by accelerated carbonation of industrial residues. Energy Procedia 2011, 4, 4985–4992. [Google Scholar] [CrossRef]
- Holloway, S. Underground sequestration of carbon dioxide a viable greenhouse gas mitigation option. Energy 2005, 30, 2318–2333. [Google Scholar] [CrossRef]
- Siefert, N.S.; Litster, S. Exergy and economic analyses of advanced IGCC-CCS and IGFC-CCS power plants. Appl. Energy 2013, 107, 315–328. [Google Scholar] [CrossRef]
- Damen, K.; Faaij, A.; Turkenburg, W. Health, safety and environmental risks of underground CO2 storage–overview of mechanisms and current knowledge. Clim. Chang. 2006, 74, 289–318. [Google Scholar] [CrossRef]
- Lackner, K.S.; Butt, D.P.; Wendt, C.H. Progress on binding CO2 in mineral substrates. Energy Convers. Manag. 1997, 38, S259–S264. [Google Scholar] [CrossRef]
- Fagerlund, J.; Nduagu, E.; Zevenhoven, R. Recent developments in the carbonation of serpentinite derived Mg(OH)2 using a pressurized fluidized bed. Energy Procedia 2011, 4, 4993–5000. [Google Scholar] [CrossRef]
- Fagerlund, J.; Nduagu, E.; Romao, I.; Zevenhoven, R. CO2 fixation using magnesium silicate minerals part 1: Process description and performance. Energy 2012, 41, 184–191. [Google Scholar] [CrossRef]
- Oelkers, E.H.; Gislason, S.R.; Matter, J. Mineral carbonation of CO2. Elements 2008, 4, 333–337. [Google Scholar] [CrossRef]
- Goff, F.; Lackner, K. Carbon dioxide sequestering using ultramafic rocks. Environ. Geosci. 1998, 5, 89–101. [Google Scholar] [CrossRef]
- Nduagu, E. Mineral Carbonation: Preparation of Magnesium Hydroxide [Mg(OH)2] from Serpentinite Rock. Master’s (Eng) Thesis, Åbo Akademi University, Åbo, Finland, 2008. [Google Scholar]
- Khoo, H.; Bu, J.; Wong, R.; Kuan, S.; Sharratt, P. Carbon capture and utilization: Preliminary life cycle CO2, energy, and cost results of potential mineral carbonation. Energy Procedia 2011, 4, 2494–2501. [Google Scholar] [CrossRef]
- Stasiulaitiene, I.; Fagerlund, J.; Nduagu, E.; Denafas, G.; Zevenhoven, R. Carbonation of serpentinite rock from Lithuania and Finland. Energy Procedia 2011, 4, 2963–2970. [Google Scholar] [CrossRef]
- Park, H.S.; Lee, J.S.; Han, J.; Park, S.; Park, J.; Min, B.R. CO2 fixation by membrane separated NaCl electrolysis. Energies 2015, 8, 8704–8715. [Google Scholar] [CrossRef] [Green Version]
- Tlili, M.; Amor, M.B.; Gabrielli, C.; Joiret, S.; Maurin, G.; Rousseau, P. Characterization of caco3 hydrates by micro-raman spectroscopy. J. Raman Spectrosc. 2002, 33, 10–16. [Google Scholar] [CrossRef]
- Wu, G.; Wang, Y.; Zhu, S.; Wang, J. Preparation of ultrafine calcium carbonate particles with micropore dispersion method. Powder Technol. 2007, 172, 82–88. [Google Scholar] [CrossRef]
- McMurdie, H.F.; Morris, M.C.; Evans, E.H.; Paretzkin, B.; Wong-Ng, W.; Ettlinger, L.; Hubbard, C.R. Standard X-ray diffraction powder patterns from the jcpds research associateship. Powder Diffr. 1986, 1, 64–77. [Google Scholar] [CrossRef]
- Ma, Y.; Gao, Y.; Feng, Q. Effects of pH and temperature on CaCO3 crystallization in aqueous solution with water soluble matrix of pearls. J. Cryst. Growth 2010, 312, 3165–3170. [Google Scholar] [CrossRef]
- Stocks-Fischer, S.; Galinat, J.K.; Bang, S.S. Microbiological precipitation of CaCO3. Soil Biol. Biochem. 1999, 31, 1563–1571. [Google Scholar] [CrossRef]
- Ren, L.; Zhang, Y.; Bian, Y.; Liu, X.; Liu, C. Investigation of quartz flotation from decarburized vanadium-bearing coal. Physicochem. Probl. Miner. Process. 2015, 51, 755–767. [Google Scholar]
- Han, Y.S.; Hadiko, G.; Fuji, M.; Takahashi, M. Crystallization and transformation of vaterite at controlled pH. J. Cryst. Growth 2006, 289, 269–274. [Google Scholar]
- Westin, K.-J.; Rasmuson, A.C. Crystal growth of aragonite and calcite in presence of citric acid, DTPA, EDTA and pyromellitic acid. J. Colloid Interface Sci. 2005, 282, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Maroto-Valer, M.M. Integration of CO2 capture and mineral carbonation by using recyclable ammonium salts. ChemSusChem 2011, 4, 1291–1300. [Google Scholar] [CrossRef] [PubMed]
- Colfen, H.; Qi, L. A systematic examination of the morphogenesis of calcium carbonate in the presence of a double-hydrophilic block copolymer. Chemistry 2001, 7, 106–116. [Google Scholar] [CrossRef]
- Iizuka, A.; Fujii, M.; Yamasaki, A.; Yanagisawa, Y. Development of a new CO2 sequestration process utilizing the carbonation of waste cement. Ind. Eng. Chem. Res. 2004, 43, 7880–7887. [Google Scholar] [CrossRef]
- Kakizawa, M.; Yamasaki, A.; Yanagisawa, Y. A new CO2 disposal process via artificial weathering of calcium silicate accelerated by acetic acid. Energy 2001, 26, 341–354. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.S.; Han, J.; Lee, J.S.; Kim, K.-M.; Jo, H.J.; Min, B.R. Comparison of Two Processes Forming CaCO3 Precipitates by Electrolysis. Energies 2016, 9, 1052. https://doi.org/10.3390/en9121052
Park HS, Han J, Lee JS, Kim K-M, Jo HJ, Min BR. Comparison of Two Processes Forming CaCO3 Precipitates by Electrolysis. Energies. 2016; 9(12):1052. https://doi.org/10.3390/en9121052
Chicago/Turabian StylePark, Hyun Sic, JunYoung Han, Ju Sung Lee, Kwang-Mo Kim, Hyung Jun Jo, and Byoung Ryul Min. 2016. "Comparison of Two Processes Forming CaCO3 Precipitates by Electrolysis" Energies 9, no. 12: 1052. https://doi.org/10.3390/en9121052
APA StylePark, H. S., Han, J., Lee, J. S., Kim, K.-M., Jo, H. J., & Min, B. R. (2016). Comparison of Two Processes Forming CaCO3 Precipitates by Electrolysis. Energies, 9(12), 1052. https://doi.org/10.3390/en9121052