Systematic Assessment of Carbon Emissions from Renewable Energy Access to Improve Rural Livelihoods
Abstract
:1. Introduction
2. Methodology of Life Cycle Analysis and Multi-Criteria Assessment Applied to Energy Alternatives in Rural Livelihoods
2.1. Life Cycle Analysis of Solar Home Systems
2.2. Criteria of the Life Cycle Analysis
2.3. Approach to Estimate the Socio-Economic Impact, Energy Requirements, and Global CO2 Emissions of Solar Home Systems (SHS)
2.3.1. The Resource Baseline and Pre-Selection of Energy Technologies
2.3.2. Selection of Energy Technology for Livelihoods Improvement
2.3.3. Energy for Sustainable Livelihoods and Global Emission Mitigation
2.3.4. Case Study: Las Calabazas, Cuba
3. Results: Renewable Energy for Livelihoods Improvement and Reduction of CO2 Emissions
3.1. Baseline Resources and Energy
3.2. Solar Energy for Improving Livelihoods: Demands for Energy and Technologies
3.3. Solar Energy for Sustainable Livelihoods and a Cleaner Global Environment: Life-Cycle Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- World Bank. The World Bank Annual Report 2005. Available online: http://siteresources.worldbank.org/INTANNREP2K5/Resources/51563_English.pdf (accessed on 30 August 2016).
- Niu, S.; Jia, Y.; Wang, W.; He, R.; Hu, L.; Liu, Y. Electricity consumption and human development level: A comparative analysis based on panel data for 50 countries. Int. J. Electr. Power Energy Syst. 2013, 53, 338–347. [Google Scholar] [CrossRef]
- Niu, S.W.; Zhang, X.; Zhao, C.S.; Niu, Y.Z. Variations in energy consumption and survival status between rural and urban households: A case study of the Western Loess Plateau. China Energy Policy 2012, 49, 515–527. [Google Scholar] [CrossRef]
- Activities of Member Organizations and Partners of UN-Energy in Support of “2014–2024 United Nations Decade of Sustainable Energy for All”. Available online: http://www.un-energy.org/sites/default/files/share/une/activities_un-energy_members_for_the_decade_report.pdf (accessed on 30 August 2016).
- United Nations Development Programme. Energy as a Tool for Sustainable Development; United Nations Development Programme: New York, NY, USA, 1999. [Google Scholar]
- Millennium Development Goals. Available online: http://alws.s3.amazonaws.com/New%20ALWS%20Web%20Site/Discover%20More/Schools/Mozambique/Millennium%20Development%20Goals.pdf (accessed on 30 August 2016).
- AGECC—United Nations Secretary-General’s Advisory Group of Energy and Climate Change, 2010. Energy for a Sustainable Future. Available online: http://www.un.org/wcm/webdav/site/climatechange/shared/Documents/AGECC%20summary%20report[1].pdf (accessed on 30 August 2016).
- International Panel on Climate Change (IPCC). Reports on “Impacts, Adaptation and Vulnerability” (Working group II), and “Mitigation of Climate Change” (Working Group III). 2014. Available online: http://ipcc-wg2.gov/AR5/ (accessed on 1 October 2014). [Google Scholar]
- International Energy Outlook—Energy Information Administration (EIA). Greenhouse Gases, Climate Change, and Energy. Official Energy Statistics for the U.S. Government: Energy Information Administration Brochures. 2014. Available online: http://www.eia.gov/forecasts/ieo/ (accessed on 20 September 2014). [Google Scholar]
- International Energy Agency (IEA). How the Energy Sector Can Deliver on a Climate Agreement in Copenhagen. Special Early Excerpt of the World Energy Outlook 2009 for the Bangkok UNFCC Meeting. 2009. Available online: http://www.worldenergyoutlook.org/ (accessed on 30 August 2016).
- International Energy Agency (IEA). Energy for All: Financing Access for the Poor. 2011. Available online: http://www.iea.org/papers/2011/weo2011_energy_for_all.pdf (accessed on 30 August 2016).
- Cherni, J.A.; Kalas, N. A multi-criteria decision-support approach to sustainable rural energy in developing countries. In Handbook on Decision Making. Vol 1: Techniques and Applications; Lakhmi, C.J., Lim, C.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Poor People’s Energy Outlook. 2010. Available online: https://cleanenergysolutions.org/resources/poor-peoples-energy-outlook-2010 (accessed on 30 August 2016).
- Poor People’s Energy Outlook. 2012. Available online: http://policy.practicalaction.org/policy-themes/energy/poor-peoples-energy-outlook/poor-peoples-energy-outlook-2012 (accessed on 30 August 2016).
- Markal, Leap and Homer—Long-range Energy Alternatives Planning System (LEAP) (2006) User Guide. Boston, Stockholm Environment Institute (SEI). Available online: http://www.sei.se/programmes/climate-a-energy/projects/189-leap-long-range-energy-alternatives-planning-system.html (accessed on 30 August 2016).
- Brent, A.C.; Kruger, W.J.L. Systems analyses and the sustainable transfer of renewable energy technologies: A focus on remote areas of Africa. Energy Policy 2009, 34, 1774–1781. [Google Scholar] [CrossRef]
- Cherni, J.A.; Dyner, I.; Henao, F.; Jaramillo, P.; Smith, R.; Olalde-Font, R. Energy supply for sustainable rural livelihoods. A multi-criteria decision-support system. Energy Policy 2007, 35, 1493–1504. [Google Scholar] [CrossRef]
- Shmelev, S.E.; van den Bergh, J.C.J.M. Optimal diversity of renewable energy alternatives under multiple criteria: An application to the UK. Renew. Sustain. Energy Rev. 2016, 60, 679–691. [Google Scholar] [CrossRef]
- Forsyth, T. Critical Political Ecology; Routledge: Abingdon, UK, 2003. [Google Scholar]
- NuRa. Nuon Raps Utility: Powering Opportunity. 2009. Available online: http://www.nura.co.za (accessed on 30 August 2016).
- Chowdhury, S.A.; Mourshed, M.; Kabir, S.M.R.; Islam, M.; Morshed, T.; Khan, M.R.; Patwary, M.N. Technical appraisal of solar home systems in Bangladesh: A field investigation. Renew. Energy 2011, 36, 772–778. [Google Scholar] [CrossRef] [Green Version]
- Best, S. Remote Access: Expanding Energy Provision in Rural Argentina through Public-Private Partnerships and Renewable Energy; A Case Study of the PERMER Programme; IIED: London, UK, 2011. [Google Scholar]
- Alsema, E.A. Energy Pay-Back Time and CO2 emissions of PV Systems. Prog. Photovolt. Res. Appl. 2000, 8, 17–25. [Google Scholar] [CrossRef]
- Alsema, E.A. Environmental Life Cycle Assessment of Solar Home Systems; Report NWS-E-2000-15; Department of Science, Technology and Society, Utrecht University: Utrecht, The Netherlands, 2000. [Google Scholar]
- Alsema, E.A.; Nieuwlaar, E. Energy viability of photovoltaic systems. Energy Policy 2000, 28, 999–1010. [Google Scholar] [CrossRef]
- Fhtenakis, V.; Alsema, E. Photovoltaics energy payback times, greenhouse gas emissions and external costs: 2004–Early 2005. Prog. Photovolt. Res. Appl. 2006, 14, 275–280. [Google Scholar] [CrossRef]
- Fhtenakis, V.; Kim, H.C.; Alsema, E. Emissions from photovoltaic life cycles. Environ. Sci. Technol. 2008, 42, 2168–2174. [Google Scholar] [CrossRef]
- Raugei, M.; Bargigli, S.; Ulgiati, S. Life cycle assessment and energy pay-back time of advanced photovoltaic modules: CdTe and CIS compared to poly-Si. Energy 2007, 32, 1310–1318. [Google Scholar] [CrossRef]
- Roes, A.L.; Alsema, E.A.; Blok, K.; Patel, M.K. Ex-ante environmental and economic evaluation of polymer photovoltaics. Prog. Photovolt. Res. Appl. 2009, 17, 372–393. [Google Scholar] [CrossRef]
- Garcia-Valverde, R.; Cherni, J.; Urbina, A. Life cycle analysis of organic photovoltaic technologies. Prog. Photovolt. Res. Appl. 2010, 18, 535–558. [Google Scholar] [CrossRef]
- Espinosa, N.; García-Valverde, R.; Urbina, A.; Krebs, F.C. A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions. Sol. Energy Mater. Solar Cells 2011, 95, 1293–1302. [Google Scholar] [CrossRef]
- Lorenzo, E. Photovoltaic rural electrification. Prog. Photovolt. Res. Appl. 1997, 95, 3–27. [Google Scholar] [CrossRef]
- Watt, M.; Johnson, A.; Ellis, M.; Outhred, H. Life-cycle air emissions from PV power systems. Prog. Photovolt. Res. Appl. 1998, 6, 127–136. [Google Scholar] [CrossRef]
- Díaz, P.; Egido, M.A.; Nieuwenhout, F. Dependability analysis of stand-alone photovoltaic systems. Prog. Photovolt. Res. Appl. 2007, 15, 245–264. [Google Scholar] [CrossRef]
- Jungbluth, N. Life cycle assessment of crystalline photovoltaics in the Swiss ecoinvent database. Prog. Photovolt. Res. Appl. 2005, 13, 429–446. [Google Scholar] [CrossRef]
- McDonald, N.C.; Pearce, J.M. Producer responsibility and recycling solar photovoltaic modules. Energy Policy 2010, 38, 7041–7047. [Google Scholar] [CrossRef]
- Kato, K.; Murata, A.; Sakuta, K. An evaluation on the life cycle of photovoltaic energy system considering production energy of off-grade silicon. Sol. Energy Mater. Sol. Cells 1997, 47, 95–100. [Google Scholar] [CrossRef]
- Knapp, K.; Jester, T. Empirical investigation of the energy payback time for photovoltaic modules. Sol. Energy 2001, 71, 165–172. [Google Scholar] [CrossRef]
- Krauter, S.; Ruther, R. Considerations for the calculation of greenhouse gas reduction by photovoltaic solar energy. Renew. Energy 2004, 29, 345–355. [Google Scholar] [CrossRef]
- Emmott, C.J.M.; Urbina, A.; Nelson, J. Environmental and economic assessment of ITO-free electrodes for organic solar cells. Sol. Energy Mater. Sol. Cells 2012, 97, 14–21. [Google Scholar] [CrossRef]
- Kato, K.; Hibino, T.; Komoto, K.; Ihara, S.; Yamamoto, S.; Fujihara, H. A life-cycle analysis on thin-film CdS/CdTe PV modules. Sol. Energy Mater. Sol. Cells 2001, 67, 279–287. [Google Scholar] [CrossRef]
- Greijer, H.; Karlson, L.; Lindquist, S.E.; Hagfeldt, A. Environmental aspects of electricity generation from a nanocrystalline dye sensitized solar cell system. Renew. Energy 2001, 23, 27–39. [Google Scholar] [CrossRef]
- Nieuwenhout, F.D.J.; van Dijk, A.; Lasschuit, P.E.; van Roekel, G.; van Dijk, V.A.P.; Hirsch, D.; Wade, H. Experience with solar home systems in developing countries: A review. Prog. Photovolt. Res. Appl. 2001, 9, 455–474. [Google Scholar] [CrossRef]
- Caamaño, E.; Lorenzo, E.; Zilles, R. Quality control of wide collections of PV modules: Lessons learned from the IES experience. Prog. Photovolt. Res. Appl. 1999, 7, 137–149. [Google Scholar] [CrossRef]
- Rydh, C.; Sanden, B. Energy analysis of batteries in photovoltaic systems. Part I: Performance and energy requirements. Energy Conver. Manag. 2005, 46, 1957–1979. [Google Scholar] [CrossRef]
- Rydh, C.; Sanden, B. Energy analysis of batteries in Photovoltaic systems. Part II: Energy return factor and overall battery efficiencies. Energy Conver. Manag. 2005, 46, 1980–2000. [Google Scholar] [CrossRef]
- Mulugetta, Y.; Doig, A.; Dunnet, S.; Jackson, T.; Khennas, S.; Rai, K. Energy for Rural Livelihoods; ITDG Publisher: West Yorkshire, UK, 2005. [Google Scholar]
- Morante, F.; Zilles, R. Electric Consumption in SHSs in rural communities of Brazil and Peru and recommendations for sizing. Prog. Photovolt. Res. Appl. 2008, 16, 171–179. [Google Scholar] [CrossRef]
- EPIA, European Photovoltaic Industry Association. Global Market Outlook for Photovoltaics 2014–2018. Report, June 2014. ISBN 9789082228403. 2014. Available online: www.epia.org (accessed on 30 August 2016).
- Egido, M.A.; Lorenzo, E.; Narvarte, L. Universal technical standard for solar home systems. Prog. Photovolt. Res. Appl. 1998, 6, 315–324. [Google Scholar] [CrossRef]
- Egido, M.A.; Lorenzo, E.; Narvarte, L. Universal Technical Standard for Solar Home Systems; Official Publication of the European Communities; European Commission (DGVIII): Brussels, Belgium, 1999. [Google Scholar]
- Sullivan, J.L.; Gaines, L. Status of life cycle inventories for batteries. Energy Conver. Manag. 2012, 58, 134–148. [Google Scholar] [CrossRef]
- Posorski, R.; Bussmann, M.; Menke, C. Does the use of Solar Home Systems (SHS) contribute to climate protection? Renew. Energy 2003, 28, 1061–1080. [Google Scholar] [CrossRef]
- Swiss Ecoinvent Database, Technoparkstrasse 1, 8005 Zurich, Switzerland. Available online: http://www.ecoinvent.org/ (accessed on 30 August 2016).
- Powell, D.M.; Winkler, M.T.; Choi, H.J.; Simmons, C.B.; Needleman, D.B.; Buonassisi, T. Crystalline silicon photovoltaics: A cost analysis framework for determining technology pathways to reach base load electricity costs. Energy Environ. Sci. 2012, 5, 5874–5883. [Google Scholar] [CrossRef]
- Kolhe, M.; Kolhe, S.; Joshi, J.C. Economic viability of stand-alone solar photovoltaic system in comparison with diesel-powered system for India. Energy Econ. 2002, 24, 155–165. [Google Scholar] [CrossRef]
- Luque, A. Photovoltaic market and costs forecast based on a demand elasticity model. Prog. Photovolt. Res. Appl. 2001, 9, 303–312. [Google Scholar] [CrossRef]
- Van Sark, W.G.H.M.; Alsema, E.A.; Junginger, H.M.; de Moor, H.H.C.; Schaeffer, G.J. Accuracy of progress ratios determined from experience curves: The case of crystalline silicon photovoltaic module technology development. Prog. Photovolt. Res. Appl. 2008, 16, 441–453. [Google Scholar] [CrossRef]
- EPVTP 2011: European Photovoltaic Technology Platform. A Strategic Research Agenda for Photovoltaic Solar Energy Technology. European Community, Belgium. Available online: http://www.eupvplatform.org/publications/strategic-research-agenda-implementation-plan.html#c2783 (accessed on 30 August 2016).
- Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Sariciftci, N.S.; Braun, D.; Zhang, C.; Srdanov, V.I.; Heeger, A.J.; Stucky, G.; Wudl, F. Semiconducting polymer-buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells. Appl. Phys. Lett. 1993, 62, 585–587. [Google Scholar] [CrossRef]
- Yu, G.; Gao, J.; Hummelen, J.C.; Wudl, F.; Heeger, A.J. Polymer photovoltaic cells: Enhanced Efficiencies via a network of Internal donor-acceptor Heterojunctions. Science 1995, 270, 1789–1792. [Google Scholar] [CrossRef]
- Halls, J.J.M.; Walsh, C.A.; Greenham, N.C.; Marseglia, E.A.; Friend, R.H.; Moratti, S.C.; Holmes, A.B. Efficient photodiodes from interpenetrating polymer networks. Nature 1995, 376, 498–500. [Google Scholar] [CrossRef]
- Brabec, C.J.; Sariciftci, N.S.; Hummelen, J.H. Plastic solar cells. Adv. Funct. Mater. 2001, 11, 15–26. [Google Scholar] [CrossRef]
- You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C.C.; Gao, J.; Li, G. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 2013, 4, 1446. [Google Scholar] [CrossRef] [PubMed]
- Burschka, J.; Pellet, N.; Moon, S.J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Johnston, M.B.; Snaith, H.J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Brabec, C.J.; Dyakonov, V.; Scherf, V. Socio economic impacts of low cost PV technologies. In Organic Photovoltaics: Materials, Device Physics and Manufacturing Technologies; Wiley-VCH: Hoboken, NJ, USA, 2008. [Google Scholar]
- Azzopardi, B.; Emmott, C.J.M.; Urbina, A.; Krebs, F.C.; Mutale, J.; Nelson, J. Economic assessment of solar electricity production from organic-based photovoltaic modules in a domestic environment. Energy Environ. Sci. 2011, 4, 3741–3753. [Google Scholar] [CrossRef]
- Beiley, Z.M.; McGehee, M.D. Modeling low cost hybrid tandem photovoltaics with the potential for efficiencies exceeding 20%. Energy Environ. Sci. 2012, 5, 9173–9179. [Google Scholar] [CrossRef]
- Muller, A.; Wambach, K.; Alsema, E. Life Cycle Analysis of a Solar Module Recycling Process; Cambridge University Press: London, UK, 2015. [Google Scholar]
- Salomone, R. An eco-balance of a recycling plant for spent lead-acid batteries. Environ. Manag. 2005, 35, 206–219. [Google Scholar] [CrossRef] [PubMed]
- Bombach, E.; Muller, A.; Wambach, K.; Roverl, I. Recycling of solar cells and modules—Recent improvements. In Proceedings of the 20th European Photovoltaic Solar Energy Conference, Barcelona, Spain, 6–10 June 2005.
- Henao, F.; Cherni, J.A.; Jaramillo, P.; Dyner, I. A multi-criteria approach to sustainable energy supply for the rural poor. Eur. J. Oper. Res. 2012, 218, 801–809. [Google Scholar] [CrossRef]
- Sustainable Rural Livelihoods: Practical Concepts of the 21st Century. Available online: http://www.ids.ac.uk/publication/sustainable-rural-livelihoods-practical-concepts-for-the-21st-century.
- Ashley, C.; Carney, D. Sustainable Livelihoods: Lessons from Early Experience; Department for International Development (DFID): London, UK, 1999.
- Ellis, F. Rural Livelihoods and Diversity in Developing Countries; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Zeleny, M. Multiple Criteria Decision Making; McGraw-Hill: New York, NY, USA, 1982. [Google Scholar]
- ONE. Anuario Estadístico. Cuba. 2013. Available online: http://www.one.cu/aed2013/26Villa%20Clara/Municipios/13%20Manicaragua/esp/20080618_tabla_cuadro.htm (accessed on 30 August 2016).
- Osvaldo, R.G.; President of the Municipal Government Council of Manicaragua, Manicaragua, Villa Clara, Cuba. Personal communication, 2012.
- Wilfredo, L.H.; Manager of the Hydro-Electricity Company for the province of Villa Clara, Santa Clara, Villa Clara, Cuba. Personal communication, 2012.
- CubaSolar: Red Cubana de Apoyo a la Energía Solar. Available online: http://www.cubasolar.cu/.
- International Energy Agency (IEA). CO2 Emissions from Fuel Combustion—HIGHLIGHTS; IEA: Paris, France, 2012. [Google Scholar]
- Serrano-Luján, L.; Espinosa, N.; Abad, J.; Urbina, A. The greenest decision on photovoltaic system allocation. Renew. Energy 2017, 101, 1348–1356. [Google Scholar] [CrossRef]
- González, A.M.; Sandoval, H.; Acosta, P.; Henao, F. On the acceptance and sustainability of renewable energy projects—A systems thinking perspective. Sustainability 2016, 8, 1171. [Google Scholar] [CrossRef]
Technology | Efficiency % | Expected Lifespan (years) | Capacity kWp |
---|---|---|---|
Current Silicon PV | 18 | 20 | 1 |
New Silicon PV | 18 | 30 | 5.4 |
Thin-film PV | 14 | 30 | 5.4 |
Organic PV | 5 | 30 | 5.4 |
Diesel generator | 70 | 10 | 5.4 |
Sustainable Livelihoods Capitals | Energy Technology Options | ||||
---|---|---|---|---|---|
Baseline with the Existing Silicon PV | New Silicon PV | Thin Film PV | Organic PV | Diesel | |
Natural | 50 | 40 | 40 | 40 | 10 |
Physical | 50 | 60 | 60 | 60 | 40 |
Social | 40 | 80 | 80 | 80 | 80 |
Human | 40 | 80 | 80 | 80 | 80 |
Financial | 50 | 60 | 60 | 60 | 70 |
PV Technology | Power Conversion Efficiency (%) | Embedded Energy (GJ/kW) | Weight (kg/m2) | Lifetime (years) |
---|---|---|---|---|
New Silicon PV | 18 | 50.5 | 18.91 | 30 |
Organic PV | 51 | 7.6 | 0.3 | 30 |
Thin-film PV | 14 | 14.3 | 11.6 | 30 |
Country | g CO2/kWh (from Primary Energy) | Insolation (kWh/m2/year) see [82] | g CO2/kWh (from Electricity Generation) see [83] |
---|---|---|---|
Cuba | 414 | 2050 | 755 |
China East | 282 | 1733 | 742 |
China West | 282 | 2646 | 742 |
Spain | 819 | 1666 | 298 |
Denmark | 168 | 969 | 302 |
UK | 265 | 1105 | 449 |
Colombia, North | 52 | 1551 | 175 |
Colombia, South | 52 | 1003 | 175 |
Dominican Republic | 822 | 2144 | 590 |
Country of Manufacture | Avoided Emissions (tons CO2eq.) by Type of Solar Cell | ||
---|---|---|---|
Silicon | Thin-Film | Organic | |
Cuba | 116.54 | 120.64 | 122.09 |
China | 115.90 | 120.28 | 121.93 |
Germany | 117.62 | 121.09 | 122.38 |
USA | 117.40 | 122.32 | 121.02 |
Global CO2 Mitigation Indicators | PV Technologies | ||
---|---|---|---|
Silicon | Thin-Film | Organic | |
EPBT Energy pay-back time (years) | 1.83 | 0.84 | 0.49 |
ERF Energy Return factor | 10.91 | 23.88 | 40.75 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cherni, J.A.; Olalde Font, R.; Serrano, L.; Henao, F.; Urbina, A. Systematic Assessment of Carbon Emissions from Renewable Energy Access to Improve Rural Livelihoods. Energies 2016, 9, 1086. https://doi.org/10.3390/en9121086
Cherni JA, Olalde Font R, Serrano L, Henao F, Urbina A. Systematic Assessment of Carbon Emissions from Renewable Energy Access to Improve Rural Livelihoods. Energies. 2016; 9(12):1086. https://doi.org/10.3390/en9121086
Chicago/Turabian StyleCherni, Judith A., Raúl Olalde Font, Lucía Serrano, Felipe Henao, and Antonio Urbina. 2016. "Systematic Assessment of Carbon Emissions from Renewable Energy Access to Improve Rural Livelihoods" Energies 9, no. 12: 1086. https://doi.org/10.3390/en9121086
APA StyleCherni, J. A., Olalde Font, R., Serrano, L., Henao, F., & Urbina, A. (2016). Systematic Assessment of Carbon Emissions from Renewable Energy Access to Improve Rural Livelihoods. Energies, 9(12), 1086. https://doi.org/10.3390/en9121086