Electrical Market Management Considering Power System Constraints in Smart Distribution Grids
Abstract
:1. Introduction
- (1)
- Providing a comprehensive review of the state of the art literature on SDG.
- (2)
- Categorizing papers from the perspective of the electrical market, considering power system constraints.
- (3)
- Discussing challenges and proposing future research directions in SDG.
2. Demand Side Management
2.1. Definition and Benefits
2.2. Load Modeling
2.3. Classification of DSM Models
2.3.1. Incentive-Based Programs
2.3.2. Time-Based Programs
2.4. Future Research Directions
2.4.1. Cost Minimization of Each Customer (D1)
2.4.2. Decision Authority of Customers (D2)
2.4.3. Prevent Rebound Peak (D3)
2.4.4. Technical Constraints (D4)
2.4.5. Different Kinds of Load (D5)
3. Supply Side Management
3.1. SSM in Isolated Systems
3.2. SSM in Interconnected Distribution Grids
3.3. Future Research Directions
- (S1)
- Consider the profit of each generator instead of all generators and encourage different owners to participate.
- (S2)
- Model the probabilistic distribution of output power for different RERs.
- (S3)
- Consider the contingency scenarios and uncertainty of loads.
- (S4)
- Consider the power system constraints and a strategy to improve them.
- (S5)
- Work in coordination with practical DSM (TE mechanisms).
4. Electrical Vehicles
4.1. EV Types and Evolution
4.2. Grid to Vehicle (G2V)
4.3. Vehicle to Grid (V2G)
4.3.1. Providing Peak Demand
4.3.2. Providing Ancillary Service
4.3.3. Supporting RERs
4.4. Future Research Direction
- (E1)
- Use the smart indirect charging control to allow owners to maintain their own authority.
- (E2)
- Maximize the profit of each individual EV to increase the motivation of using EVs.
- (E3)
- Consider all the technical constraints of the power system in G2V mode.
- (E4)
- Propose incentive methods to improve the power system conditions in V2G mode.
- (E5)
- Work in coordination with practical DSM and SSM (Section 2.4 and Section 3.3).
5. Conclusion
- Controlling different loads, generations, and EVs, while considering their and the grid uncertainty; in other words, the management system must connect the DSM program, SSM program, and EVs charging/discharging method together.
- Using indirect methods to give decision authority to participants: planning demand and generation on a distribution grid under high uncertainty can be easily done by using centralized methods but it can also decrease the popularity and security of SDGs.
- Creating a competitive market to attract more participants: the benefits to individual customers should be valued more than minimizing the total cost of the system.
- Considering the technical issues of the power system: many existing works simplify calculations by neglecting the nonlinear power system equations, such as power loss, stability, voltage, and current constraints.
- Considering the limitations of communication and computational resources.
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
SDG | Smart Distribution Grid |
SG | Smart Grid |
MG | Micro-Grid |
EV | Electrical Vehicle |
DG | Distributed Generations |
CHP | Combined Heat and Power |
RER | Renewable Energy Resources |
ESS | Energy Storage Systems |
DR | Demand Response |
DRP | Demand Response Provider |
DSM | Demand Side Management |
SSM | Source Side Management |
SCADA | Supervisory Control and Data Acquisition |
DA | Day-Ahead |
DLC | Direct Load Control |
TOU | Time of Use |
CPP | Critical Peak Pricing |
PLP | Peak Load Pricing |
RTP | Real-Time Pricing |
OPF | Optimal Power Flow |
UC | Unit Commitment |
CVAR | Condition Value At Risk |
CET | Carbon Emission Trading |
REC | Renewable Energy Certificates |
SOC | State Of Charge |
TCO | Total Cost of Ownership |
VMT | Vehicle Miles of Travel |
G2V | Grid to Vehicle |
V2G | Vehicle to Grid |
BEV | Battery EV |
EREV | Extended-Range EV |
PHEV | Plug-in Hybrid EV |
TE | Transactive energy |
References
- Hashmi, M. Survey of smart grids concepts worldwide. Technical Research Centre of Finland, 2011. [Google Scholar]
- Najjar, M.; Ghoulam, E.; Fares, H. Mini renewable hybrid distributed power plants for Lebanon. Energy Procedia 2012, 18, 612–621. [Google Scholar] [CrossRef]
- Lo, C.-H.; Ansari, N. The progressive smart grid system from both power and communications aspects. Commun. Surv. Tutor. IEEE 2012, 14, 799–821. [Google Scholar] [CrossRef]
- World Energy Outlook 2014. Availabe online: http://www.worldenergyoutlook.org/weo2014/ (accessed on 8 May 2016).
- Gungor, V.C.; Sahin, D.; Kocak, T.; Ergut, S.; Buccella, C.; Cecati, C.; Hancke, G.P. A survey on smart grid potential applications and communication requirements. IEEE Trans. Ind. Inform. 2013, 9, 28–42. [Google Scholar] [CrossRef]
- Renewables 2015 global status report. Availabe online: http://www.ren21.net/wp-content/uploads/2015/07/GSR2015_KeyFindings_lowres.pdf (accessed on 8 May 2016).
- Reza, M. Stability Analysis of Transmission System with High Penetration of Distributed Generation. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2006. [Google Scholar]
- Lasseter, R.H. Microgrids and distributed generation. J. Energy Eng. 2007, 133, 144–149. [Google Scholar] [CrossRef]
- Piagi, P.; Lasseter, R.H. Autonomous control of microgrids. In Proceedings of the 2006 IEEE Power Engineering Society General Meeting, Montreal, QC, Canada, 2 June 2006.
- Divshali, P.H.; Alimardani, A.; Hosseinian, S.H.; Abedi, M. Decentralized cooperative control strategy of microsources for stabilizing autonomous VSC-based microgrids. IEEE Trans. Power Syst. 2012, 27, 1949–1959. [Google Scholar] [CrossRef]
- Gharavi, H.; Ghafurian, R. Smart grid: The electric energy system of the future. Proc. IEEE 2011, 99, 917–921. [Google Scholar] [CrossRef]
- Cardenas, J.A.; Gemoets, L.; Rosas, J.H.A.; Sarfi, R. A literature survey on smart grid distribution: an analytical approach. J. Clean. Product. 2014, 65, 202–216. [Google Scholar] [CrossRef]
- Sheble, G.B. Real-time economic dispatch and reserve allocation using merit order loading and linear programming rules. IEEE Trans. Power Syst. 1989, 4, 1414–1420. [Google Scholar] [CrossRef]
- Chattopadhyay, B.; Sachdev, M.; Sidhu, T. An on-line relay coordination algorithm for adaptive protection using linear programming technique. IEEE Trans. Power Deliv. 1996, 11, 165–173. [Google Scholar] [CrossRef]
- Dutta, P.; Gupta, P.D. Microprocessor-based UHS relaying for distance protection using advanced generation signal processing. IEEE Trans. Power Deliv. 1992, 7, 1121–1128. [Google Scholar] [CrossRef]
- Fang, X.; Misra, S.; Xue, G.; Yang, D. Smart grid-The new and improved power grid: A survey. Commun. Surv. Tutor. IEEE 2012, 14, 944–980. [Google Scholar] [CrossRef]
- Flueck, A.J.; Nguyen, C.P. Integrating renewable and distributed resources-IIT perfect power smart grid prototype. In Proceedings of the IEEE Power and Energy Society General Meeting, Minnesota, MN, USA, 25–29 July 2010.
- Wilson, K.; Cieslicki, D. Smart Grid at Santa Clara University. Availabe online: http://www.comsocscv.org/docs/Talk_051210_SmartGridWAN.pdf (accessed on 8 May 2016).
- ETown Concept for Smart Grid Simulation and Demonstration Projects. Availabe online: http://rri.wvu.edu/wp-content/uploads/2012/12/ETown_Concept_for_Smart_Grid_Simulation.pdf (accessed on 8 May 2016).
- Lasseter, R.H.; Eto, J.H.; Schenkman, B.; Stevens, J.; Vollkommer, H.; Klapp, D.; Linton, E.; Hurtado, H.; Roy, J. CERTS microgrid laboratory test bed. IEEE Trans. Power Deliv. 2011, 26, 325–332. [Google Scholar] [CrossRef]
- Alegria, E.; Brown, T.; Minear, E.; Lasseter, R.H. CERTS microgrid demonstration with large-scale energy storage and renewable generation. IEEE Trans. Smart Grid 2014, 5, 937–943. [Google Scholar] [CrossRef]
- Turner, G.; Kelley, J.P.; Storm, C.L.; Wetz, D.; Lee, W.-J. Design and active control of a microgrid testbed. IEEE Trans. Smart Grid 2015, 6, 73–81. [Google Scholar] [CrossRef]
- The University of Texas Forms Microgrid. Availabe online: http://www.utexas.edu/research/cem/micro_team.html (accessed on 8 May 2016).
- Covrig, C.F.; Ardelean, M.; Vasiljevska, J.; Mengolini, A.; Fulli, G.; Amoiralis, E.; Jiménez, M.S.; Filiou, C. Smart Grid Projects Outlook 2014; Joint Research Centre of the European Commission: Petten, The Netherlands, 2014. [Google Scholar]
- Huang, P.; Kalagnanam, J.; Natarajan, R.; Sharma, M.; Ambrosio, R.; Hammerstrom, D.; Melton, R. Analytics and transactive control design for the pacific northwest smart grid demonstration project. In Proceedings of the 2010 First IEEE International Conference on Smart Grid Communications (SmartGridComm), Gaithersburg, MD, USA, 4–6 October 2010.
- SmartGridCity Pricing Plan Comparison Chart. Availabe online: http://smartgridcity.xcelenergy.com/media/pdf/SGC-pricing-plan-chart.pdf (accessed on 8 May 2016).
- Rohjans, S.; Uslar, M.; Bleiker, R.; González, J.; Specht, M.; Suding, T.; Weidelt, T. Survey of smart grid standardization studies and recommendations. In Proceedings of the 2010 First IEEE International Conference on Smart grid Communications (SmartGridComm), Gaithersburg, MD, USA, 4–6 October 2010.
- Albadi, M.H.; El-Saadany, E. A summary of demand response in electricity markets. Electr. Power Syst. Res. 2008, 78, 1989–1996. [Google Scholar] [CrossRef]
- Vardakas, J.S.; Zorba, N.; Verikoukis, C.V. A survey on demand response programs in smart grids: Pricing methods and optimization algorithms. Commun. Surv. Tutor. IEEE 2015, 17, 152–178. [Google Scholar] [CrossRef]
- Su, W.; Eichi, H.; Zeng, W.; Chow, M.-Y. A survey on the electrification of transportation in a smart grid environment. IEEE Trans. Ind. Inform. 2012, 8, 1–10. [Google Scholar] [CrossRef]
- Gungor, V.C.; Lambert, F.C. A survey on communication networks for electric system automation. Comput. Netw. 2006, 50, 877–897. [Google Scholar] [CrossRef]
- Akyol, B.; Kirkham, H.; Clements, S.; Hadley, M. A Survey of Wireless Communications for the Electric Power System; Pacific Northwest National Laboratory: Richland, WA, USA, 2010. [Google Scholar]
- Wang, W.; Xu, Y.; Khanna, M. A survey on the communication architectures in smart grid. Comput. Netw. 2011, 55, 3604–3629. [Google Scholar] [CrossRef]
- Alizadeh, M.; Li, X.; Wang, Z.; Scaglione, A.; Melton, R. Demand-side management in the smart grid: Information processing for the power switch. EIEEE Signal Process. Mag. 2012, 29, 55–67. [Google Scholar] [CrossRef]
- Benefits of Demand Response in Electricity Markets and Recommendations for Achieving Them; A report to the United States Congress Pursuant to Section 1252 of the Energy Policy Act of 2005; U.S. Department of Energy: Washington, DC, USA, January 2006.
- Mohagheghi, S.; Yang, F.; Falahati, B. Impact of demand response on distribution system reliability. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Michigan, MI, USA, 24–29 July 2011.
- Moghaddas Tafreshi, S.M.; Saliminia Lahiji, A. Long-term market equilibrium in smart grid paradigm with introducing demand response provider in competition. IEEE Trans. Smart Grid 2015, 6, 2794–2806. [Google Scholar] [CrossRef]
- Ardakanian, O.; Keshav, S.; Rosenberg, C. Markovian models for home electricity consumption. In Proceedings of the 2nd ACM SIGCOMM Workshop on Green Networking, Toronto, ON, Canada, 15–19 August 2011.
- Labeeuw, W.; Stragier, J.; Deconinck, G. Potential of active demand reduction with residential wet appliances: A case study for Belgium. IEEE Trans. Smart Grid 2015, 6, 315–323. [Google Scholar] [CrossRef]
- Richardson, I.; Thomson, M.; Infield, D.; Delahunty, A. Domestic lighting: A high-resolution energy demand model. Energy Build. 2009, 41, 781–789. [Google Scholar] [CrossRef] [Green Version]
- Richardson, I.; Thomson, M.; Infield, D.; Clifford, C. Domestic electricity use: A high-resolution energy demand model. Energy Build. 2010, 42, 1878–1887. [Google Scholar] [CrossRef] [Green Version]
- Richardson, I.T. Domestic Electricity Demand Model-Simulation Example. Availabe online: https://dspace.lboro.ac.uk/dspace-jspui/handle/2134/5786 (accessed on 19 May 2016).
- Electric Power Monthly with Data for August 2015. Availabe online: http://www.eia.gov/electricity/monthly/current_year/february2015.pdf (accessed on 19 May 2016).
- Samad, T.; Kiliccote, S. Smart grid technologies and applications for the industrial sector. Comput. Chem. Eng. 2012, 47, 76–84. [Google Scholar] [CrossRef]
- Alcázar-Ortega, M.; Álvarez-Bel, C.; Escrivá-Escrivá, G.; Domijan, A. Evaluation and assessment of demand response potential applied to the meat industry. Appl. Energy 2012, 92, 84–91. [Google Scholar] [CrossRef]
- Motegi, N.; Piette, M.A.; Watson, D.S.; Kiliccote, S.; Xu, P. Introduction to Commercial Building Control Strategies and Techniques for Demand Response; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2007. [Google Scholar]
- Alcázar-Ortega, M.; Escrivá-Escrivá, G.; Segura-Heras, I. Methodology for validating technical tools to assess customer demand response: Application to a commercial customer. Energy Convers. Manag. 2011, 52, 1507–1511. [Google Scholar] [CrossRef]
- Palensky, P.; Dietrich, D. Demand side management: Demand response, intelligent energy systems, and smart loads. IEEE Trans. Ind. Inform. 2011, 7, 381–388. [Google Scholar] [CrossRef]
- Xiong, G.; Chen, C.; Kishore, S.; Yener, A. Smart (in-home) power scheduling for demand response on the smart grid. In Proceedings of the Innovative Smart Grid Technologies (ISGT), 2011 IEEE PES, Hilton Anaheim, CA, 17–19 January 2011.
- Idaho Power Company. Availabe online: https://www.idahopower.com/EnergyEfficiency/Residential/Programs/ACCoolCredit/default.cfm (accessed on 8 May 2016).
- Kim, B.-G.; Zhang, Y.; van der Schaar, M.; Lee, J.-W. Dynamic pricing and energy consumption scheduling with reinforcement learning. IEEE Trans. Smart Grid 2015. [Google Scholar] [CrossRef]
- Kwac, J.; Rajagopal, R. Data-driven targeting of customers for demand response. IEEE Trans. Smart Grid 2016. [Google Scholar] [CrossRef]
- Hassan, N.U.; Khalid, Y.; Yuen, C.; Tushar, W. Customer engagement plans for peak load reduction in residential smart grids. IEEE Trans. Smart Grid 2015, 6, 3029–3041. [Google Scholar] [CrossRef]
- Steen, D.; Tuan, L.A.; Carlson, O. Effects of network tariffs on residential distribution systems and price-responsive customers under hourly electricity pricing. IEEE Trans. Smart Grid 2016, 7, 617–626. [Google Scholar] [CrossRef]
- Aalami, H.; Moghaddam, M.P.; Yousefi, G. Demand response modeling considering interruptible/curtailable loads and capacity market programs. Appl. Energy 2010, 87, 243–250. [Google Scholar] [CrossRef]
- O’Brien, G.; El Gamal, A.; Rajagopal, R. Shapley value estimation for compensation of participants in demand response programs. IEEE Trans. Smart Grid 2015, 6, 2837–2844. [Google Scholar] [CrossRef]
- Yao, E.; Samadi, P.; Wong, V.W.; Schober, R. Residential demand side management under high penetration of rooftop photovoltaic units. IEEE Trans. Smart Grid 2016, 7, 1597–1608. [Google Scholar] [CrossRef]
- Ragnarsson, E. Price it right: Household response to a time-of-use electricity pricing experiment in Auckland, New Zealand. Master’s Thesis, University of Otago, Dunedin, New Zealand, 2012. [Google Scholar]
- Faruqui, A.; Sergici, S.; Sharif, A. The impact of informational feedback on energy consumption—A survey of the experimental evidence. Energy 2010, 35, 1598–1608. [Google Scholar] [CrossRef]
- Feng, D.; Sun, T.; Fang, C.; Shi, Y.; Xu, S. Optimal Demand Contracting Strategy Under Uncertainty and Its Implication for Advanced Pricing. IEEE Trans. Smart Grid 2016. [Google Scholar] [CrossRef]
- Samadi, P.; Mohsenian-Rad, H.; Schober, R.; Wong, V.W. Advanced demand side management for the future smart grid using mechanism design. IEEE Trans. Smart Grid 2012, 3, 1170–1180. [Google Scholar] [CrossRef]
- Huang, H.; Li, F.; Mishra, Y. Modeling dynamic demand response using monte carlo simulation and interval mathematics for boundary estimation. IEEE Trans. Smart Grid 2015, 6, 2704–2713. [Google Scholar] [CrossRef]
- Eksin, C.; Deliç, H.; Ribeiro, A. Demand response management in smart grids with heterogeneous consumer preferences. IEEE Trans. Smart Grid 2015, 6, 3082–3094. [Google Scholar] [CrossRef]
- Wang, Z.; Paranjape, R. Optimal residential demand response for multiple heterogeneous homes with real-time price prediction in ashould be a spacemultiagent framework. IEEE Trans. Smart Grid 2015. [Google Scholar] [CrossRef]
- Namerikawa, T.; Okubo, N.; Sato, R.; Okawa, Y.; Ono, M. Real-time pricing mechanism for electricity market with built-in incentive for participation. IEEE Trans. Smart Grid 2015, 6, 2714–2724. [Google Scholar] [CrossRef]
- Mojica-Nava, E.; Barreto, C.; Quijano, N. Population games methods for distributed control of microgrids. IEEE Trans. Smart Grid 2015, 6, 2586–2595. [Google Scholar] [CrossRef]
- Xu, Z.; Hu, Z.; Song, Y.; Wang, J. Risk-averse optimal bidding strategy for demand-side resource aggregators in day-ahead electricity markets under uncertainty. IEEE Trans. Smart Grid 2015. [Google Scholar] [CrossRef]
- McNamara, P.; McLoone, S. Hierarchical demand response for peak minimization using dantzig-wolfe decomposition. IEEE Trans. Smart Grid 2015, 6, 2807–2815. [Google Scholar] [CrossRef]
- Wei, W.; Liu, F.; Mei, S. Energy pricing and dispatch for smart grid retailers under demand response and market price uncertainty. IEEE Trans. Smart Grid 2015, 6, 1364–1374. [Google Scholar] [CrossRef]
- Moradzadeh, B.; Tomsovic, K. Two-stage residential energy management considering network operational constraints. IEEE Trans. Smart Grid 2013, 4, 2339–2346. [Google Scholar] [CrossRef]
- Tsai, S.-C.; Tseng, Y.-H.; Chang, T.-H. Communication-efficient distributed demand response: A randomized admm approach. IEEE Trans. Smart Grid 2016. [Google Scholar] [CrossRef]
- Parvania, M.; Fotuhi-Firuzabad, M. Demand response scheduling by stochastic SCUC. IEEE Trans. Smart Grid 2010, 1, 89–98. [Google Scholar] [CrossRef]
- Shad, M.; Momeni, A.; Errouissi, R.; Diduch, C.P.; Kaye, M.E.; Chang, L. Identification and estimation for electric water heaters in direct load control programs. IEEE Trans. Smart Grid 2015. [Google Scholar] [CrossRef]
- Braithwait, S. Behavior modification. IEEE Power Energy Mag. 2010, 8, 36–45. [Google Scholar] [CrossRef]
- Berger, A.W.; Schweppe, F.C. Real time pricing to assist in load frequency control. IEEE Trans. Power Syst. 1989, 4, 920–926. [Google Scholar] [CrossRef]
- Safdarian, A.; Fotuhi-Firuzabad, M.; Lehtonen, M. A distributed algorithm for managing residential demand response in smart grids. IEEE Trans. Ind. Inform. 2014, 10, 2385–2393. [Google Scholar] [CrossRef]
- Chang, T.-H.; Alizadeh, M.; Scaglione, A. Real-time power balancing via decentralized coordinated home energy scheduling. IEEE Trans. Smart Grid 2013, 4, 1490–1504. [Google Scholar] [CrossRef]
- Alamaniotis, M.; Bargiotas, D.; Bourbakis, N.G.; Tsoukalas, L.H. Genetic optimal regression of relevance vector machines for electricity pricing signal forecasting in smart grids. IEEE Trans. Smart Grid 2015, 6, 2997–3005. [Google Scholar] [CrossRef]
- Logenthiran, T.; Srinivasan, D.; Shun, T.Z. Demand side management in smart grid using heuristic optimization. IEEE Trans. Smart Grid 2012, 3, 1244–1252. [Google Scholar] [CrossRef]
- Deng, R.; Yang, Z.; Chen, J.; Chow, M.-Y. Load scheduling with price uncertainty and temporally-coupled constraints in smart grids. IEEE Trans. Power Syst. 2014, 29, 2823–2834. [Google Scholar] [CrossRef]
- Palomar, D.P.; Chiang, M. A tutorial on decomposition methods for network utility maximization. IEEE J. Sel. Areas Commun. 2006, 24, 1439–1451. [Google Scholar] [CrossRef]
- Shafie-khah, M.; Heydarian-Forushani, E.; Osorio, G.J.; Gil, F.A.; Aghaei, J.; Barani, M.; Catalao, J.P. Optimal behavior of electric vehicle parking lots as demand response aggregation agents. IEEE Trans. Smart Grid 2016. [Google Scholar] [CrossRef]
- Jiang, B.; Fei, Y. Smart home in smart microgrid: A cost-effective energy ecosystem with intelligent hierarchical agents. IEEE Trans. Smart Grid 2015, 6, 3–13. [Google Scholar] [CrossRef]
- Liang, Y.; He, L.; Cao, X.; Shen, Z.-J. Stochastic control for smart grid users with flexible demand. IEEE Trans. Smart Grid 2013, 4, 2296–2308. [Google Scholar] [CrossRef]
- Kirschen, D.S.; Strbac, G. Fundamentals of Power System Economic; John Wiley & Sons: West Sussex, UK, 2004. [Google Scholar]
- Ardakanian, O.; Keshav, S.; Rosenberg, C. Real-time distributed control for smart electric vehicle chargers: From a static to a dynamic study. IEEE Trans. Smart Grid 2014, 5, 2295–2305. [Google Scholar] [CrossRef]
- Zhang, N.; Hu, Z.; Dai, D.; Dang, S.; Yao, M.; Zhou, Y. Unit commitment model in smart grid environment considering carbon emissions trading. IEEE Trans. Smart Grid 2016, 7, 420–427. [Google Scholar] [CrossRef]
- Macedo, L.H.; Franco, J.F.; Rider, M.J.; Romero, R. Optimal operation of distribution networks considering energy storage devices. IEEE Trans. Smart Grid 2015, 6, 2825–2836. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, W.; Zhang, B. A fully distributed power dispatch method for fast frequency recovery and minimal generation cost in autonomous microgrids. IEEE Trans. Smart Grid 2016, 7, 19–31. [Google Scholar] [CrossRef]
- Xiong, P.; Jirutitijaroen, P. A stochastic optimization formulation of unit commitment with reliability constraints. IEEE Trans. Smart Grid 2013, 4, 2200–2208. [Google Scholar] [CrossRef]
- Luh, P.B.; Yu, Y.; Zhang, B.; Litvinov, E.; Zheng, T.; Zhao, F.; Zhao, J.; Wang, C. Grid integration of intermittent wind generation: A Markovian approach. IEEE Trans. Smart Grid 2014, 5, 732–741. [Google Scholar] [CrossRef]
- Murillo-Sanchez, C.E.; Zimmerman, R.D.; Lindsay Anderson, C.; Thomas, R.J. Secure planning and operations of systems with stochastic sources, energy storage, and active demand. IEEE Trans. Smart Grid 2013, 4, 2220–2229. [Google Scholar] [CrossRef]
- Reddy, S.S.; Momoh, J. Realistic and transparent optimum scheduling strategy for hybrid power system. IEEE Trans. Smart Grid 2015, 6, 3114–3124. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Guan, Y. Stochastic unit commitment with uncertain demand response. IEEE Trans. Power Syst. 2013, 28, 562–563. [Google Scholar] [CrossRef]
- Tumuluru, V.K.; Huang, Z.; Tsang, D.H. Integrating price responsive demand into the unit commitment problem. IEEE Trans. Smart Grid 2014, 5, 2757–2765. [Google Scholar] [CrossRef]
- Mahmoodi, M.; Shamsi, P.; Fahimi, B. Economic dispatch of a hybrid microgrid with distributed energy storage. IEEE Trans. Smart Grid 2015, 6, 2607–2614. [Google Scholar] [CrossRef]
- Wang, T.; O'Neill, D.; Kamath, H. Dynamic control and optimization of distributed energy resources in a microgrid. IEEE Trans. Smart Grid 2015, 6, 2884–2894. [Google Scholar] [CrossRef]
- Olivares, D.E.; Lara, J.D.; Cañizares, C.A.; Kazerani, M. Stochastic-predictive energy management system for isolated microgrids. IEEE Trans. Smart Grid 2015, 6, 2681–2693. [Google Scholar] [CrossRef]
- Bertsimas, D.; Litvinov, E.; Sun, X.A.; Zhao, J.; Zheng, T. Adaptive robust optimization for the security constrained unit commitment problem. IEEE Trans. Power Syst. 2013, 28, 52–63. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, J.; Watson, J.-P.; Guan, Y. Multi-stage robust unit commitment considering wind and demand response uncertainties. IEEE Trans. Power Syst. 2013, 28, 2708–2717. [Google Scholar] [CrossRef]
- Yu, Y.; Luh, P.B.; Litvinov, E.; Zheng, T.; Zhao, J.; Zhao, F. Grid integration of distributed wind generation: hybrid markovian and interval unit commitment. IEEE Trans. Smart Grid 2015, 6, 3061–3072. [Google Scholar] [CrossRef]
- Zhang, N.; Kang, C.; Xia, Q.; Ding, Y.; Huang, Y.; Sun, R.; Huang, J.; Bai, J. A convex model of risk-based unit commitment for day-ahead market clearing considering wind power uncertainty. IEEE Trans. Power Syst. 2015, 30, 1582–1592. [Google Scholar] [CrossRef]
- Asensio, M.; Contreras, J. Stochastic unit commitment in isolated systems with renewable penetration under cvar assessment. IEEE Trans. Smart Grid 2016, 7, 1356–1367. [Google Scholar] [CrossRef]
- Kumar Nunna, H.; Doolla, S. Energy management in microgrids using demand response and distributed storage—A multiagent approach. IEEE Trans. Power Deliv. 2013, 28, 939–947. [Google Scholar] [CrossRef]
- Xiao, L.; Mandayam, N.B.; Poor, H.V. Prospect theoretic analysis of energy exchange among microgrids. IEEE Trans. Smart Grid 2015, 6, 63–72. [Google Scholar] [CrossRef]
- Su, W.; Wang, J.; Roh, J. Stochastic energy scheduling in microgrids with intermittent renewable energy resources. IEEE Trans. Smart Grid 2014, 5, 1876–1883. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, R.; Yang, J.; Long, K.; You, P. Economical operation of microgrid with various devices via distributed optimization. IEEE Trans. Smart Grid 2016, 7, 857–867. [Google Scholar] [CrossRef]
- Han, J.; Khushalani-Solanki, S.; Solanki, J.; Liang, J. Adaptive critic design-based dynamic stochastic optimal control design for a microgrid with multiple renewable resources. IEEE Trans. Smart Grid 2015, 6, 2694–2703. [Google Scholar] [CrossRef]
- Chen, Y.-W.; Chang, J.M. EMaaS: Cloud-based energy management service for distributed renewable energy integration. IEEE Trans. Smart Grid 2015, 6, 2816–2824. [Google Scholar] [CrossRef]
- Safdarian, A.; Fotuhi-Firuzabad, M.; Lehtonen, M.; Aminifar, F. Optimal electricity procurement in smart grids with autonomous distributed energy resources. IEEE Trans. Smart Grid 2015, 6, 2975–2984. [Google Scholar] [CrossRef]
- La, Q.D.; Chan, Y.W.E.; Soong, B.-H. Power management of intelligent buildings facilitated by smart grid: A market approach. IEEE Trans. Smart Grid 2016, 7, 1389–1400. [Google Scholar] [CrossRef]
- La, Q.D.; Chan, Y.W.E.; Soong, B.-H. Dynamic market for distributed energy resources in the Smart Grid. In Proceedings of the 2014 IEEE 11th Consumer Communications and Networking Conference (CCNC), Losvegas, NV, USA, 10–13 January 2014.
- Nguyen, H.K.; Mohsenian-Rad, H.; Khodaei, A.; Han, Z. Decentralized reactive power compensation using nash bargaining solution. IEEE Trans. Smart Grid 2016. [Google Scholar] [CrossRef]
- Rahimi, F.A.; Ipakchi, A. Transactive energy techniques: closing the gap between wholesale and retail markets. Electr. J. 2012, 25, 29–35. [Google Scholar] [CrossRef]
- GridWise Transactive Energy Framework (Version 1.0); Pacific Northwest National Laboratory (PNNL): Richland, WA, USA, 2015.
- Kok, K.; Widergren, S. A society of devices: Integrating intelligent distributed resources with transactive energy. IEEE Power Energy Mag. 2016, 14, 34–45. [Google Scholar] [CrossRef]
- Tang, W.; Jain, R. Dynamic economic dispatch game: The value of storage. IEEE Trans. Smart Grid 2016. [Google Scholar] [CrossRef]
- Kwon, S.; Xu, Y.; Gautam, N. Meeting inelastic demand in systems with storage and renewable sources. IEEE Trans. Smart Grid 2016. [Google Scholar] [CrossRef]
- Richardson, D.B. Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration. Renew. Sustain. Energy Rev. 2013, 19, 247–254. [Google Scholar] [CrossRef]
- Jorgensen, K. Technologies for electric, hybrid and hydrogen vehicles: Electricity from renewable energy sources in transport. Util. Policy 2008, 16, 72–79. [Google Scholar] [CrossRef]
- Pelletier, S.; Jabali, O.; Laporte, G. Battery Electric Vehicles for Goods Distribution: A Survey of Vehicle Technology, Market Penetration, Incentives and Practices. Availabe online: https://www.cirrelt.ca/DocumentsTravail/CIRRELT-2014-43.pdf (accessed on 19 May 2016).
- Tie, S.F.; Tan, C.W. A review of energy sources and energy management system in electric vehicles. Renew. Sustain. Energy Rev. 2013, 20, 82–102. [Google Scholar] [CrossRef]
- Morrow, K.; Karner, D.; Francfort, J. Plug-in Hybrid Electric Vehicle Charging Infrastructure Review; Battelle Energy Alliance: Idaho Falls, ID, USA, 2008. [Google Scholar]
- Neubauer, J.; Brooker, A.; Wood, E. Sensitivity of battery electric vehicle economics to drive patterns, vehicle range, and charge strategies. J. Power Sources 2012, 209, 269–277. [Google Scholar] [CrossRef]
- National Houshold Travel Survey. Availabe online: http://nhts.ornl.gov/2009/pub/stt.pdf (accessed on 8 May 2016).
- Jabeen, F.; Olaru, D.; Smith, B.; Braunl, T.; Speidel, S. Electric vehicle battery charging behaviour: findings from a driver survey. In Proceedings of the Australasian Transport Research Forum 2013, Brisbane, Australia, 2–4 October 2013.
- Xi, X.; Sioshansi, R.; Marano, V. Simulation–optimization model for location of a public electric vehicle charging infrastructure. Transp. Res. Part D Transp. Env. 2013, 22, 60–69. [Google Scholar] [CrossRef]
- Plötz, P.; Gnann, T.; Wietschel, M. Total ownership cost projection for the German electric vehicle market with implications for its future power and electricity demand. In Proceedings of the 7th Conference on Energy Economics and Technology Infrastructure for the Energy Transformation, Dresden, Germany, 27 April 2012.
- Al-Alawi, B.M.; Bradley, T.H. Total cost of ownership, payback, and consumer preference modeling of plug-in hybrid electric vehicles. Appl. Energy 2013, 103, 488–506. [Google Scholar] [CrossRef]
- Dumortier, J.; Siddiki, S.; Carley, S.; Cisney, J.; Krause, R.M.; Lane, B.W.; Rupp, J.A.; Graham, J.D. Effects of providing total cost of ownership information on consumers’ intent to purchase a hybrid or plug-in electric vehicle. Transp. Res. Part A Policy Pract. 2015, 72, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Al-Alawi, B.M.; Bradley, T.H. Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies. Renew. Sustain. Energy Rev. 2013, 21, 190–203. [Google Scholar] [CrossRef]
- Rezvani, Z.; Jansson, J.; Bodin, J. Advances in consumer electric vehicle adoption research: A review and research agenda. Transp. Res. Part D Transp. Environ. 2015, 34, 122–136. [Google Scholar] [CrossRef]
- Tuttle, D.P.; Baldick, R. The evolution of plug-in electric vehicle-grid interactions. IEEE Trans. Smart Grid 2012, 3, 500–505. [Google Scholar] [CrossRef]
- SAE Standard on EV Charging Connector Approved. Availabe online: http://www.sae.org/mags/AEI/7479 (accessed on 8 May 2016).
- Pasaoglu, G.; Thiel, C.; Martino, A.; Zubaryeva, A.; Fiorello, D.; Zani, L. Projections for Electric Vehicle Load Profiles in Europe Based on Travel Survey Data; Joint Research Centre of the European Commission: Petten, The Netherlands, 2013. [Google Scholar]
- Weiller, C. Plug-in hybrid electric vehicle impacts on hourly electricity demand in the United States. Energy Policy 2011, 39, 3766–3778. [Google Scholar] [CrossRef]
- Wu, D.; Aliprantis, D.C.; Gkritza, K. Electric energy and power consumption by light-duty plug-in electric vehicles. IEEE Trans. Power Syst. 2011, 26, 738–746. [Google Scholar] [CrossRef]
- Sun, K.; Sarker, M.R.; Ortega-Vazquez, M.A. Statistical characterization of electric vehicle charging in different locations of the grid. In Proceedings of the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015.
- Axsen, J.; Bailey, H.J.; Kamiya, G. The Canadian Plug-in Electric Vehicle Survey (CPEVS 2013): Anticipating Purchase, Use, and Grid Interactions in British Columbia; Energy and Materials Research Group, School of Resource and Environmental Management, Simon Fraser University: Burnaby, BC, Canada, 2013. [Google Scholar]
- Tudor, C.; Sprung, E.; Nguyen, L.; Tatro, R. Plug-in & hybrid electric vehicle charging impacts: A survey of California’s utility companies. In Proceedings of the 2012 IEEE 13th International Conference on Information Reuse and Integration (IRI), Las Vegas, NV, USA, 8–10 August 2012.
- Xiao, H.; Huimei, Y.; Chen, W.; Hongjun, L. A survey of influence of electrics vehicle charging on power grid. In Proceedings of the 2014 9th IEEE Conference on Industrial Electronics and Applications, Hangzhou, China, 9–11 June 2014.
- Putrus, G.; Suwanapingkarl, P.; Johnston, D.; Bentley, E.; Narayana, M. Impact of electric vehicles on power distribution networks. In Proceedings of the 2009 IEEE Vehicle Power and Propulsion Conference, Dearborn, MI, USA, 7–10 September 2009.
- Gómez, J.C.; Morcos, M.M. Impact of EV battery chargers on the power quality of distribution systems. IEEE Trans. Power Deliv. 2003, 18, 975–981. [Google Scholar] [CrossRef]
- Kuss, M.C.; Markel, A.J.; Kramer, W.E. Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-carlo Method: Preprint; National Renewable Energy Laboratory: Shenzhen, China, 2011. [Google Scholar]
- Hilshey, A.D.; Hines, P.D.; Rezaei, P.; Dowds, J.R. Estimating the impact of electric vehicle smart charging on distribution transformer aging. IEEE Trans. Smart Grid 2013, 4, 905–913. [Google Scholar] [CrossRef]
- Liu, R.; Dow, L.; Liu, E. A survey of PEV impacts on electric utilities. In Proceedings of the Innovative Smart Grid Technologies (ISGT), 2011 IEEE PES, Hilton Anaheim, CA, USA, 17–19 January 2011.
- Clement-Nyns, K.; Haesen, E.; Driesen, J. The impact of charging plug-in hybrid electric vehicles on a residential distribution grid. IEEE Trans. Power Syst. 2010, 25, 371–380. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, L.P.; Román, T.G.S.; Cossent, R.; Domingo, C.M.; Frias, P. Assessment of the impact of plug-in electric vehicles on distribution networks. IEEE Trans. Power Syst. 2011, 26, 206–213. [Google Scholar] [CrossRef]
- Davis, B.M.; Bradley, T.H. The efficacy of electric vehicle time-of-use rates in guiding plug-in hybrid electric vehicle charging behavior. IEEE Trans. Smart Grid 2012, 3, 1679–1686. [Google Scholar] [CrossRef]
- de Hoog, J.; Alpcan, T.; Brazil, M.; Thomas, D.A.; Mareels, I. A Market Mechanism for Electric Vehicle Charging Under Network Constraints. IEEE Trans. Smart Grid 2016, 7, 827–836. [Google Scholar] [CrossRef]
- Kuran, M.S.; Viana, A.C.; Iannone, L.; Kofman, D.; Mermoud, G.; Vasseur, J.P. A Smart Parking Lot Management System for Scheduling the Recharging of Electric Vehicles. IEEE Trans. Smart Grid 2015, 6, 2942–2953. [Google Scholar] [CrossRef]
- Dallinger, D.; Wietschel, M. Grid integration of intermittent renewable energy sources using price-responsive plug-in electric vehicles. Renew. Sustain. Energy Rev. 2012, 16, 3370–3382. [Google Scholar] [CrossRef]
- Kempton, W.; Letendre, S.E. Electric vehicles as a new power source for electric utilities. Transp. Res. Part D Transp. Environ. 1997, 2, 157–175. [Google Scholar] [CrossRef]
- Peterson, S.B.; Whitacre, J.; Apt, J. The economics of using plug-in hybrid electric vehicle battery packs for grid storage. J. Power Sources 2010, 195, 2377–2384. [Google Scholar] [CrossRef]
- Lunz, B.; Yan, Z.; Gerschler, J.B.; Sauer, D.U. Influence of plug-in hybrid electric vehicle charging strategies on charging and battery degradation costs. Energy Policy 2012, 46, 511–519. [Google Scholar] [CrossRef]
- Bessa, R.J.; Matos, M.A. Economic and technical management of an aggregation agent for electric vehicles: A literature survey. Europ. Trans. Electr. Power 2012, 22, 334–350. [Google Scholar] [CrossRef]
- Nafisi, H.; Agah, S.M.M.; Askarian Abyaneh, H.; Abedi, M. Two-stage optimization method for energy loss minimization in microgrid based on smart power management scheme of PHEVs. IEEE Trans. Smart Grid 2016, 7, 1268–1276. [Google Scholar] [CrossRef]
- Birnie, D.P. Solar-to-vehicle (S2V) systems for powering commuters of the future. J. Power Sources 2009, 186, 539–542. [Google Scholar] [CrossRef]
- Wei, W.; Liu, F.; Mei, S. Charging strategies of EV aggregator under renewable generation and congestion: A normalized nash equilibrium approach. IEEE Trans. Smart Grid 2016, 7, 1630–1641. [Google Scholar] [CrossRef]
- Brooks, A.; Thesen, S.H. PG&E and tesla motors: Vehicle to grid demonstration and evaluation program. In Proceedings of the 23rd International Electric Vehicle Symposium and Exposition 2007, Anaheim, CA, USA, 2–5 December 2007.
- Kempton, W.; Tomić, J. Vehicle-to-grid power implementation: From stabilizing the grid to supporting large-scale renewable energy. J. Power Sources 2005, 144, 280–294. [Google Scholar] [CrossRef]
- Alam, M.; Muttaqi, K.M.; Sutanto, D. Effective utilization of available pev battery capacity for mitigation of solar PV impact and grid support with integrated V2G functionality. IEEE Trans. Smart Grid 2016, 7, 1562–1571. [Google Scholar] [CrossRef]
- Kou, P.; Liang, D.; Gao, L.; Gao, F. Stochastic coordination of plug-in electric vehicles and wind turbines in microgrid: A model predictive control approach. IEEE Trans. Smart Grid 2016, 7, 1537–1551. [Google Scholar] [CrossRef]
- Shao, C.; Wang, X.; Wang, X.; Du, C.; Dang, C.; Liu, S. Cooperative dispatch of wind generation and electric vehicles with battery storage capacity constraints in SCUC. IEEE Trans. Smart Grid 2014, 5, 2219–2226. [Google Scholar] [CrossRef]
Owner | Locations | Properties |
---|---|---|
IIT [17] | Campus of Illinois Institute of Technology, Chicago, IL, USA | Real-time reconfiguration and optimization of gas turbine. |
SCU [18] | Campus of Santa Clara University, Santa Clara, CA, USA | Research on solar photovoltaics, fuel cells, and micro-turbines in a SDG. |
WVU [19] | Etown, West Virginia University, WV, USA | Testbed under controlled environment for investigating new idea before integration into the larger environment. |
CERTS [20,21] | Columbus, OH, USA, operated by American Electric Power | Testbed developing a SDG control architecture including fuel cells, solar photovoltaics, diesel generators, a storage system, a fast static switch, and a power factor correcting capacitor bank. |
UTA [22,23] | University of Texas at Arlington, TX, USA | Testbed validating of modeling and simulation results in dynamic and transient condition and can operate in either AC or DC and in connected or autonomous mode. |
Europe [24] | 578 projects across Europe | Mostly smaller scale projects investigating the practical usage of smart metering. |
PNSG [25] | Five US states: Idaho, Montana, Oregon, Washington, and Wyoming | One of largest SG implementations, which started in 2010 and is still in progress. |
CSGC [26] | Colorado Smart Grid City, Boulder, CO, USA | A pilot project proposing different DSM programs allowing exploration of SG tools in a real-world environment and studying people‘s behavior. |
Reference | Year | Description | Objective Function | Solution method | Specifications | ||||
---|---|---|---|---|---|---|---|---|---|
D1 | D2 | D3 | D4 | D5 | |||||
[51] | 2016 | Determine dynamic price considering demand (discrete Markov) and price uncertainty | Minimize customers cost and maximize retailers profit | Improved Q-learning method | ✓ | ✓ | ✓ | - | - |
[66] | 2015 | DR strategies considering both social and economic incentives | Maximize profit of each customer | Population game | - | - | - | - | ✓ |
[67] | 2016 | DA_RTP using expected regret value (Risk-based optimization, see Section 3.2) | Minimize cost and regret value | Linear programing | - | - | - | - | ✓ |
[71] | 2016 | Distributed DR algorithm using the randomized dual consensus alternating direction method | Minimize total cost of customers | Linear program solver of MATLAB | - | ✓ | ✓ | - | ✓ |
[68] | 2015 | Decentralized hierarchical algorithm for peak minimization of grid | Minimize peak demand | Dantzig–Wolfe decomposition | - | - | ✓ | - | ✓ |
[52] | 2016 | A customer selection and direct control to reach desire stochastic reduction | Maximize probability of reduction | Stochastic knapsack problem | - | - | - | ✓ | ✓ |
[53] | 2015 | Peak load reduction using DLC by adjusting the temperature setting instead of on/off control | Minimize maximum load (peak load) | Suboptimal heuristic method | - | - | - | ✓ | ✓ |
[54] | 2016 | Evaluate the possible cost reduction under different flat pricing techniques in Sweden | Minimize daily electricity cost of customers | Mixed integer linear programing | - | - | - | - | - |
[57] | 2016 | A modified TOU to reduce the voltage rise problem of rooftop PV panels | Minimize modified cost function | Linear and mixed-integer programing | - | ✓ | - | ✓ | - |
[60] | 2016 | Determine the optimal demand under uncertainty using a stochastic programming model | Minimize energy bill of customers | The first-order optimality condition | ✓ | ✓ | - | - | - |
Reference | Year | Description | Objective Function | Solution method | Specifications | ||||
---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | |||||
[66] | 2015 | Active and reactive power Economic dispatch in MG | Minimize cost of the whole system | Replicator dynamics (population game) | - | - | - | - | - |
[96] | 2015 | Economic dispatch | Minimize cost of the whole system | Integer programing | - | - | - | - | - |
[89] | 2016 | A distributed power dispatch on island MGs | Minimize generation cost | Equal incremental rates | ✓ | - | - | - | - |
[117] | 2015 | Dynamic economic dispatch with an ESS for each generator | Minimize system cost and maximize generator profit | Game theory, Nash equilibrium | ✓ | - | - | - | ✓ |
[109] | 2015 | Energy management system based on a cloud framework | Maximize benefit of each participant | Linear programing | ✓ | - | - | - | ✓ |
[110] | 2015 | A decentralized DG management to procure the system demand | Minimize demand cost and maximize DGs‘ profit | Linear programing | ✓ | - | - | - | ✓ |
[111,112] | 2014, 2016 | Dynamic price for an smart building with RERs, storage, and inelastic loads | Maximize the profit of each building | Cournot oligopoly | ✓ | - | - | - | - |
[97] | 2015 | Source and demand scheduling in interconnected MG using internal market | Minimize total cost of generation | Alternating direction method of multipliers | - | - | - | ✓ | - |
[98] | 2015 | Two-stage stochastic energy management in isolated SG (UC and OPF) | Minimize cost of whole system | Mixed-integer linear and nonlinear programing | - | ✓ | - | ✓ | - |
[118] | 2016 | Stochastic management in interconnected SG (Markov chains) using RTP | Minimize cost of energy | Lyapunov optimization | - | ✓ | - | - | - |
Charging Strategy | Reference | Specification | |||||
---|---|---|---|---|---|---|---|
E1 | E2 | E3 | E4 | E5 | |||
Non-smart Charging | Simple charging | - | - | - | - | - | - |
Delayed charging | [149] | ✓ | ✓ | - | - | ✓ | |
Smart Charging | Direct control | [65] | - | - | ✓ | - | - |
[106] | - | - | ✓ | - | ✓ | ||
[138] | - | - | ✓ | - | - | ||
[150] | - | - | ✓ | - | - | ||
[151] | Only for parking lots | ||||||
Indirect control | [67] | ✓ | - | - | ✓ | - | |
[152] | ✓ | ✓ | - | - | - |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Astero, P.; Choi, B.J. Electrical Market Management Considering Power System Constraints in Smart Distribution Grids. Energies 2016, 9, 405. https://doi.org/10.3390/en9060405
Astero P, Choi BJ. Electrical Market Management Considering Power System Constraints in Smart Distribution Grids. Energies. 2016; 9(6):405. https://doi.org/10.3390/en9060405
Chicago/Turabian StyleAstero, Poria, and Bong Jun Choi. 2016. "Electrical Market Management Considering Power System Constraints in Smart Distribution Grids" Energies 9, no. 6: 405. https://doi.org/10.3390/en9060405
APA StyleAstero, P., & Choi, B. J. (2016). Electrical Market Management Considering Power System Constraints in Smart Distribution Grids. Energies, 9(6), 405. https://doi.org/10.3390/en9060405