A Natural Analogy to the Diffusion of Energy-Efficient Technologies
Abstract
:1. Introduction
How This New Approach to the Diffusion of Technology Innovations Is Framed within the State of Research
2. A New Approach to Explaining the Diffusion of Technology Innovations
The Solution of the Diffusion Equation
3. Application to the Case of the Diffusion of an Energy Efficient Technology: The Diffusion of Electric Arc Furnaces (EAF) in Japan
3.1. Adjustment of the Diffusion of EAF in Japan with an ARMAX Model
3.2. Adjustment of the Diffusion Equation to the Case of EAF in Japan
4. Discussion
5. Conclusions
Acknowledgments
Conflicts of Interest
Abbreviations
EAF | electric arc furnace |
ARMAX | autoregressive moving-average and regression models |
MAPE | mean absolute percentage error |
Appendix A
- SetDirectory["working directory"]
- datos = ReadList["JAPAN_Mathematica_data.txt", Number, RecordLists -> True];
- {year, steelPrice, scrapPrice, eleJP, perJP} = Transpose[datos];
- (*Expression (6), function driver of innovations*)
- Tdriver2[Diff_, L_, B0_, B1_, B2_, B3_, ele_] := Join[
- Table[{i, 0}, {i, 0, 1973}], Transpose[{Table[i, {i, 1974, 2011}],
- Apply[Plus, Transpose[{Table[B0, {i, 1974, 2011}], B1steelPrice,B2scrapPrice, B3ele}], 1]}]];
- funcion[Diff_, L_, B0_, B1_, B2_, B3_, ele_] := Interpolation[Tdriver2[Diff, L, B0, B1, B2, B3 , ele]];
- (*Expression (4), convolution *)
- Convo[Diff_?NumericQ, L_?NumericQ, B0_?NumericQ, B1_?NumericQ,
- B2_?NumericQ, B3_?NumericQ, tt_?NumericQ, per_, ele_] := (
- percen = Transpose[{Table[i, {i, 1974, 2011, 1}], per}];
- Min[Hold[(Plus @@ {percen[[1, 2]], percen[[2, 2]], percen[[3, 2]]})/3 +
- NIntegrate[(funcion[Diff, L, B0, B1, B2, B3, ele][tt - t]) (
- L E^(-(L^2/(4 Diff t))))/(2 Sqrt[[Pi] Diff] t^(3/2)), {t, 0, tt},
- WorkingPrecision -> 4, MinRecursion -> 5, AccuracyGoal -> 2]], 100]);
- SSEE[{{x_, y_} /; (Release[x] - y)^2 < 10000, Resto___}] := (Release[x] - y)^2 + SSEE[{Resto}]
- SSEE[{{x_, y_} /; (Release[x] - y)^2 >= 10000, Resto___}] := 10^10
- SSEE[{}] := 0
- Ajuste2[Diff_?NumericQ, B0_?NumericQ, B1_?NumericQ, B2_?NumericQ,
- B3_?NumericQ, per_, ele_] :=
- SSEE[Transpose[{Release[Plotconvo[Diff, B0, B1, B2, B3, per, ele]], per}]]
- Ajuste2[{Diff_, B0_, B1_, B2_, B3_}, {per___}, {ele___}] := Ajuste2[Diff, B0, B1, B2, B3, {per}, {ele}]
- Resul[Diff_?NumericQ, B0_?NumericQ, B1_?NumericQ, B2_?NumericQ, B3_?NumericQ, per_, ele_] :=
- Transpose[{Table[i, {i, 1974, 2011}], Release[Plotconvo[Diff, B0, B1, B2, B3, per, ele]]}];
- Resul[{Diff_, B0_, B1_, B2_, B3_}, {per___}, {ele___}] := Resul[Diff, B0, B1, B2, B3, {per}, {ele}]
- Dibuja4[Diff_, B0_, B1_, B2_, B3_, per_, ele_] :=
- (Show[ ListPlot[Transpose[{Table[i, {i, 1974, 2011}], per}],
- PlotStyle -> {Blue, PointSize[.02]}],
- ListPlot[Resul[Diff, B0, B1, B2, B3, per, ele], PlotStyle -> {Green, PointSize[.02]}] ] )
- Dibuja4[{Diff_, B0_, B1_, B2_, B3_}, {per___}, {ele___}] := Dibuja4[Diff, B0, B1, B2, B3, {per}, {ele}]
- (*Expression (7), minimization *)
- (*the running time of will depend on the computer*)
- NMinimize[{Ajuste2[Diff, B0, steel, scrap, elec, perJP, eleJP], Diff > 0.0000000000001}, {Diff, B0, steel, scrap, elec}, Method -> "DifferentialEvolution"]
- (*the following line produces the estimated share of EAF in Japan, column 8 of Table 1 *)
- estJP = Transpose[Resul[.0144956, .016119, 0.833622, -2.17326, -.31262, perJP,eleJP]][[2]]
Appendix B
- # load library "dse"
- library("dse")
- # the file"EAF_japan.csv" has 38 rows (one row per year between 1974 and 2011)
- # and 4 columns:
- # column 1 has the EAF production (Mt) (is the product of column 2 and 6 of Table 1)
- # columns 2, 3 and 4 of the file correspond with columns 3, 4 and 5 of Table 1)
- datos<-read.csv("EAF_japan.csv",header=T, sep = ";", dec=".",as.is=TRUE)
- # create a time series taking differences
- # for the explanatory variables we take differences of their log
- tsdatos<-TSdata(input=apply(log(datos[,2:4]),2,diff),output=diff(datos[,1]))
- # name the explanatory variables and the output
- seriesNamesInput(tsdatos)<-c("scrap_price","elec_price","steel_price")
- seriesNamesOutput(tsdatos)<-"EAF_production"
- # estimate the ARMAX model with three lags
- model1<-estVARXls(tsdatos,max.lag=3)
- # coeficients of the ARMAX model
- model1
References
- Barreto, L.; Kemp, R. Inclusion of technology diffusion in energy-systems models: Some gaps and needs. J. Clean. Prod. 2008, 16, 95–101. [Google Scholar] [CrossRef]
- Griliches, Z. Hybrid corn: An exploration in the economics of technological change. Econometrica 1957, 25, 501–522. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations, 5th ed.; The Free Press: New York, NY, USA, 2003. [Google Scholar]
- Sarkar, J. Technological diffusion: Alternative theories and historical evidence. J. Econ. Surv. 1998, 12, 131–176. [Google Scholar] [CrossRef]
- Geroski, P.A. Models of technology diffusion. Res. Policy 2000, 29, 603–625. [Google Scholar] [CrossRef]
- Meade, N.; Islam, T. Modelling and forecasting the diffusion of innovation—A 25-year review. Int. J. Forecast. 2006, 22, 519–545. [Google Scholar] [CrossRef]
- Chandrasekaran, D.; Tellis, G.J. A Critical Review of Marketing Research on Diffusion of New Products. In Review of Marketing Research; Malhotra, N.K., Ed.; Emerald Group Publishing Limited: Bingley, UK, 2007; Volume 3, pp. 39–80. [Google Scholar]
- Fisher, J.C.; Pry, R.H. A simple subtitution model of technological change. Technol. Forecast. Soc. Chang. 1971, 3, 75–88. [Google Scholar] [CrossRef]
- Mansfield, E. Technical change and the rate of imitation. Econometrica 1961, 29, 741–765. [Google Scholar] [CrossRef]
- Bass, F. A new product growth model for consumer durables. Manage Sci. 1969, 15, 215–227. [Google Scholar] [CrossRef]
- Mulder, P.; De Groot, H.L.F.; Hofkes, M.W. Economic growth and technological change: A comparison of insights from a neo-classical and an evolutionary perspective. Technol. Forecast. Soc. Chang. 2001, 68, 151–171. [Google Scholar] [CrossRef]
- Romer, P.M. Increasing returns and long-run growth. J. Polit. Econ. 1986, 94, 1002–1037. [Google Scholar] [CrossRef]
- Lucas, R.E. On the mechanics of economic development. J. Monet. Econ. 1988, 22, 3–42. [Google Scholar] [CrossRef]
- David, P.A. A Contribution to the Theory of Diffusion; Centre for Research in Economic Growth Research Memorandum, Stanford University: Standford, CA, USA, 1969. [Google Scholar]
- Montalvo, C.; Kemp, R. Cleaner technology diffusion: Case studies, modeling and policy. J. Clean. Prod. 2008, 16, S1–S6. [Google Scholar] [CrossRef]
- Fernandez, V.P. Forecasting home appliance sales: Incorporating adoption and replacement. J. Int. Consum. Mark. 1999, 12, 39–61. [Google Scholar] [CrossRef]
- Jain, D.C.; Rao, R.C. Effect of Price on the Demand for Consumer Durables: Modeling, Estimation, and Findings. J. Bus. Econ. Stat. 1990, 8, 163–170. [Google Scholar]
- Hlavinka, A.N.; Mjelde, J.W.; Dharmasena, S.; Holland, C. Forecasting the adoption of residential ductless heat pumps. Energy Econ. 2016, 54, 60–67. [Google Scholar] [CrossRef]
- Shinohara, K. Space-time innovation diffusion based on physical analogy. Appl. Math. Sci. 2012, 6, 2527–2558. [Google Scholar]
- Suriñach, J.; Autant-Bernard, C.; Manca, F.; Massard, N.; Moreno, R. The Diffusion/Adoption of Innovation in the Internal Market; Economic Papers No. 384; Dirctorate-General Economic and Finantial Affairs, European Commission: Brussels, Belgium, 2009. [Google Scholar]
- Hall, B.; Khan, B. Adoption of New Technology. NBER Working paper series. Working paper 9730. 2003. Available online: http://www.nber.org/papers/w9730.pdf (accessed on 16 January 2014).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee, the Committe of the Regions and the European Investment Bank; COM(2015) 572; State of the Energy Union: Brussels, Belgium, 2015. [Google Scholar]
- Fleiter, T.; Plötz, P. Diffusion of energy efficient technologies. Encycl. Energy Nat. Resour. Environ. Econ. 2013, 1, 63–73. [Google Scholar]
- Jaffe, A.B.; Stavins, R.N. The energy-efficiency gap What does it mean? Energy Policy 1994, 22, 804–810. [Google Scholar] [CrossRef]
- Hirst, E.; Brown, M. Closing the efficiency gap: barriers to the efficient use of energy. Resour. Conserv. Recycl. 1990, 3, 267–281. [Google Scholar] [CrossRef]
- Domenico, P.A.; Schwartz, F.W. Physical and Chemical Hydrogeology, 2nd ed.; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Freeze, R.A. Henry Darcy and the fountains of Dijon. Ground Water 1994, 32, 23–30. [Google Scholar] [CrossRef]
- Okazaki, T.; Yamaguchi, M. Accelerating the transfer and diffusion of energy saving technologies steel sector experience-lessons learned. Energy Policy 2011, 39, 1296–1304. [Google Scholar] [CrossRef]
- Bear, J. Dynamics of Fluids in Porous Media (Dover Civil and Mechanical Engineering); Dover Publications: New York, NY, USA, 1988. [Google Scholar]
- Moore, M.C.; Arent, D.J.; Norland, D. R&D advancement, technology diffusion, and impact on evaluation of public R&D. Energy Policy 2007, 35, 1464–1473. [Google Scholar]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Claredon Press: Oxford, UK, 1975. [Google Scholar]
- Smith, G.D. Numerical Solution of Partial Differential Equations: Finate Difference Methods (Oxford Applied Mathematics and Computing Science Series), 3rd ed.; Oxford University Press: New York, NY, USA, 1985. [Google Scholar]
- Ames, W.F. Numerical Methods for Partial Differential Equations. Computer Science and Scientific Computing, 3rd ed.; Academic Press Limited: San Diego, CA, USA, 1992. [Google Scholar]
- Nill, J. Diffusion as time-dependent result of technological evolution, competition, and policies: The case of cleaner iron and steel technologies. J. Clean. Prod. 2008, 16, 58–66. [Google Scholar] [CrossRef]
- Crompton, P. The diffusion of new steelmaking technology. Resour. Policy 2001, 27, 87–95. [Google Scholar] [CrossRef]
- Labson, B.S.; Gooday, P. Factors influencing the diffusion of electric arc furnace steelmaking technology. Appl. Econ. 1994, 26, 917–925. [Google Scholar] [CrossRef]
- Reppelin-Hill, V. Trade and environment: An empirical analysis of the technology effect in the steel industry. J. Environ. Econ. Manag. 1999, 38, 283–301. [Google Scholar] [CrossRef]
- Crompton, P. Forecasting steel consumption in South–East Asia. Resour. Policy 1999, 25, 111–123. [Google Scholar] [CrossRef]
- USGS. USGS Minerals Information: Iron and Steel Scrap. 2012. Available online: http://minerals.usgs.gov/minerals/pubs/commodity/iron_&_steel_scrap/ (accessed on 18 October 2013). [Google Scholar]
- The World Bank. Global Economic Monitor (GEM) Commodities Database. 2012. Available online: http://databank.worldbank.org/data/databases.aspx (accessed on 3 October 2013).
- Fxtop company. Historical-exchange-rates. 2016. Available online: http://fxtop.com/en/historical-exchange-rates.php?A=1&C1=EUR&C2=JPY&YA=1&DD1=01&MM1=01&YYYY1=1974&B=1&P=&I=1&DD2=01&MM2=01&YYYY2=2012&btnOK=Go%21 (accessed on 19 March 2016).
- Worldsteel. Steel statistical yearbook (several volumes). 2013. Available online: http://www.worldsteel.org/ (accessed on 25 September 2013).
- International Energy Agency (IEA). Electricity Information (several volumes). 2013. Available online: http://www.oecd-ilibrary.org/energy/electricity-information-2001_electricity-2001-en (accessed on 12 October 2013).
- Moya, J.A.; Boulamanti, A. Production Costs from Energy-intensive Industries in the EU and Third Countries; EUR-Scientific and Technical Research Reports; Publications Office of the European Union: Luxembourg City, Luxembourg, 2016. [Google Scholar] [CrossRef]
- Genet, M. Impacts of the energy market developments on the steel industry. In Presented at the 74th session of the OECD Steel Committee [Online], Paris, France, 1–2 July 2013; OECD Web site. http://www.oecd.org/sti/ind/Item%209.%20Laplace%20-%20Steel%20Energy.pdf (accessed on 25 November 2013).
- Christodoulos, C.; Michalakelis, C.; Varoutas, D. Forecasting with limited data: Combining ARIMA and diffusion models. Technol. Forecast. Soc. Chang. 2010, 77, 558–565. [Google Scholar] [CrossRef]
- Diamond, J. Guns, Germs, and Steel: The Fates of Human Societies, 1st ed.; W.W. Norton: New York, NY, USA, 1997. [Google Scholar]
- Bunse, K.; Vodicka, M.; Schönsleben, P.; Brülhart, M.; Ernst, F.O. Integrating energy efficiency performance in production management—Gap analysis between industrial needs and scientific literature. J. Clean. Prod. 2011, 19, 667–679. [Google Scholar] [CrossRef]
- Cooremans, C. The role of formal capital budgeting analysis in corporate investment decision making a literature review. In Proceeding of eceee 2009 Summer Study Act! Innovate! Deliver! Reducing energy demand sustainability, La Colle sur Loup, France, 1–6 June 2009.
- Halsnæs, K.; Shukla, P.; Ahuja, D.; Akumu, G.; Beale, R.; Edmonds, J.; Gollier, C.; Grübler, A.; Ha Duong, M.; Markandya, A.; et al. Framing issues. In Climate Change 2007: Mitigation of Climate Change; Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Fleiter, T.; Worrell, E.; Eichhammer, W. Barriers to energy efficiency in industrial bottom-up energy demand models—A review. Renew. Sustain. Energy Rev. 2011, 15, 3099–3111. [Google Scholar] [CrossRef]
- Gilbert, P.D. Brief User’s Guide: Dynamic Systems Estimation distributed with the dse package. (2006 or later). Available online: http://cran.r-project.org/web/packages/dse/vignettes/Guide.pdf (accessed on 11 January 2014).
Column 1 | Column 2 | Column 3 | Column 4 | Column 5 | Column 6 | Column 7 | Column 8 |
---|---|---|---|---|---|---|---|
Year | Total Steel Production | Scrap Price | Electricity Price | Steel Price | EAF Observed | EAF Estimated | EAF Estimated Share |
share | share ARMAX Model | Diffusion Model. Section 3.2 | |||||
Mt | EUR/t | EUR/MWh | EUR/t | % | % | % | |
1974 | 117.1 | 272.8 | 143.6 | 850.3 | 17.8 | 17.6 | |
1975 | 102.3 | 167.2 | 129.0 | 778.2 | 16.4 | 17.6 | |
1976 | 102.3 | 171.9 | 130.5 | 737.7 | 18.6 | 17.6 | |
1977 | 107.4 | 132.4 | 107.6 | 694.6 | 19.1 | 17.8 | |
1978 | 102.4 | 149.3 | 72.0 | 649.0 | 21.9 | 19.9 | 18.3 |
1979 | 111.7 | 176.0 | 78.0 | 599.5 | 23.6 | 22.0 | 19.4 |
1980 | 111.4 | 151.5 | 85.8 | 550.6 | 24.5 | 23.8 | 21.1 |
1981 | 101.7 | 140.1 | 122.8 | 477.0 | 24.8 | 24.3 | 23.2 |
1982 | 99.5 | 88.9 | 181.8 | 347.6 | 26.6 | 24.0 | 25.3 |
1983 | 97.2 | 99.3 | 215.1 | 306.8 | 28.4 | 27.5 | 27.8 |
1984 | 105.6 | 114.5 | 269.1 | 310.7 | 27.7 | 28.5 | 29.7 |
1985 | 105.3 | 89.0 | 308.6 | 290.9 | 29 | 27.1 | 31.4 |
1986 | 98.3 | 92.3 | 154.2 | 277.7 | 29.7 | 30.6 | 32.5 |
1987 | 98.5 | 103.6 | 106.1 | 250.3 | 29.8 | 29.8 | 34.2 |
1988 | 105.7 | 127.5 | 86.7 | 312.8 | 29.7 | 29.9 | 33.4 |
1989 | 107.9 | 121.6 | 91.8 | 391.9 | 30.6 | 29.6 | 33.1 |
1990 | 110.3 | 117.3 | 75.7 | 402.8 | 31.4 | 31.0 | 32.6 |
1991 | 109.6 | 98.5 | 73.7 | 393.0 | 31.4 | 30.8 | 32.0 |
1992 | 98.1 | 89.0 | 67.5 | 321.0 | 31.6 | 31.2 | 31.3 |
1993 | 99.6 | 114.5 | 67.4 | 356.5 | 31.2 | 31.5 | 30.7 |
1994 | 98.3 | 127.1 | 63.4 | 322.8 | 31.6 | 31.4 | 30.4 |
1995 | 101.6 | 132.4 | 55.0 | 374.3 | 32.3 | 32.0 | 30.3 |
1996 | 98.8 | 126.2 | 68.4 | 346.8 | 33.3 | 32.5 | 30.4 |
1997 | 104.5 | 124.0 | 91.0 | 307.9 | 32.8 | 33.0 | 30.5 |
1998 | 93.5 | 101.2 | 89.8 | 241.2 | 31.9 | 32.6 | 30.8 |
1999 | 99.5 | 86.8 | 96.0 | 216.2 | 31.9 | 31.7 | 30.7 |
2000 | 106.4 | 86.7 | 123.0 | 220.5 | 28.8 | 32.1 | 30.0 |
2001 | 102.9 | 66.2 | 129.3 | 195.5 | 27.6 | 27.8 | 30.4 |
2002 | 107.7 | 76.5 | 112.9 | 177.5 | 27.1 | 28.0 | 28.3 |
2003 | 110.5 | 101.4 | 78.4 | 226.6 | 26.4 | 27.8 | 28.4 |
2004 | 112.7 | 170.1 | 64.3 | 355.7 | 26.4 | 27.0 | 27.6 |
2005 | 110.5 | 151.9 | 62.8 | 340.1 | 26.4 | 26.2 | 26.8 |
2006 | 116.2 | 166.9 | 63.6 | 346.0 | 26 | 26.4 | 25.9 |
2007 | 120.2 | 189.2 | 54.3 | 396.2 | 25.8 | 26.0 | 25.0 |
2008 | 118.7 | 260.0 | 50.1 | 566.4 | 24.8 | 26.0 | 23.9 |
2009 | 87.5 | 153.8 | 57.6 | 359.4 | 21.9 | 23.9 | 22.8 |
2010 | 109.6 | 233.0 | 59.8 | 410.9 | 21.8 | 21.3 | 21.0 |
2011 | 107.6 | 280.9 | 58.3 | 451.4 | 23.1 | 22.4 | 20.2 |
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moya, J.A. A Natural Analogy to the Diffusion of Energy-Efficient Technologies. Energies 2016, 9, 471. https://doi.org/10.3390/en9060471
Moya JA. A Natural Analogy to the Diffusion of Energy-Efficient Technologies. Energies. 2016; 9(6):471. https://doi.org/10.3390/en9060471
Chicago/Turabian StyleMoya, José Antonio. 2016. "A Natural Analogy to the Diffusion of Energy-Efficient Technologies" Energies 9, no. 6: 471. https://doi.org/10.3390/en9060471
APA StyleMoya, J. A. (2016). A Natural Analogy to the Diffusion of Energy-Efficient Technologies. Energies, 9(6), 471. https://doi.org/10.3390/en9060471