Artist Photovoltaic Modules
Abstract
:1. Introduction
2. Experimental Methods
2.1. Fabrication of Artist Photovoltaic Modules
2.2. Mechenism of P4 Laser-Scribing Process for Image Patterning
3. Results and Discussion
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Fung, T.Y.Y.; Yang, H. Study on thermal performance of semi-transparent building-integrated photovoltaic glazings. Energy Build. 2008, 40, 341–350. [Google Scholar] [CrossRef]
- James, P.A.B.; Jentsch, M.F.; Bahaj, A.S. Quantifying the added value of BiPV as a shading solution in atria. Sol. Energy 2009, 83, 220–231. [Google Scholar] [CrossRef]
- Miyazaki, T.; Akisawa, A.; Kashiwagi, T. Energy savings of office buildings by the use of semi-transparent solar cells for windows. Renew. Energy 2005, 30, 281–304. [Google Scholar] [CrossRef]
- Yoon, J.H.; Song, J.; Lee, S.J. Practical application of building integrated photovoltaic (BIPV) system using transparent amorphous silicon thin-film PV module. Sol. Energy 2011, 85, 723–733. [Google Scholar] [CrossRef]
- Chow, T.T.; Fong, K.F.; He, W.; Lin, Z.; Chan, A.L.S. Performance evaluation of a PV ventilated window applying to office building of Hong Kong. Energy Build. 2007, 39, 643–650. [Google Scholar] [CrossRef]
- Chow, T.T.; Qiu, Z.; Li, C. Potential application of “see-through” solar cells in ventilated glazing in Hong Kong. Sol. Energy Mater. Sol. Cells 2009, 93, 230–238. [Google Scholar] [CrossRef]
- Dabbour, M.; Arafa, S. Silicone glazing for solar applications in rural areas. Renew. Energy 1993, 3, 245–248. [Google Scholar] [CrossRef]
- Chehab, O. The intelligent façade photovoltaic and architecture. Renew. Energy 1994, 5, 188–204. [Google Scholar] [CrossRef]
- Sick, F.; Erge, T. Photovoltaics in Buildings: A Handbook for Architects and Engineers; Earthscan Publications Ltd.: London, UK, 1996; pp. 95–105. [Google Scholar]
- Takeoka, A.; Kouzuma, S.; Tanaka, H.; Inoue, H.; Murata, K.; Morizane, M.; Nakamura, N.; Nishiwaki, H.; Ohnishi, M.; Nakano, S.; et al. Development and application of see-through a-Si solar cells. Sol. Energy Mater. Sol. Cells 1993, 29, 243–252. [Google Scholar] [CrossRef]
- Nishiwaki, H.; Sakai, S.; Matsumi, S.; Tsuda, S.; Kiyama, S.; Yamamoto, Y.; Hosokawa, H.; Suzuki, R.; Osumi, M.; Ohnishi, M.; et al. Through-Hole Contact (THC) integrated-type a-Si solar cell submodule by a new laser photo-etching method. Sol. Energy Mater. Sol. Cells 1993, 31, 97–108. [Google Scholar] [CrossRef]
- Tarui, H.; Tsuda, S.; Nakano, S. Recent progress of amorphous silicon solar cell applications and systems. Renew. Energy 1996, 8, 390–395. [Google Scholar] [CrossRef]
- Nitta, Y.; Yamagishi, H.; Nomura, T.; Minabuchi, K.; Kondo, M.; Hatta, M.; Tawada, Y. New photovoltaic system exploited by the unique characteristics in thin film Si modules. In Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 18 May 2003; Volume 2, pp. 1903–1907.
- Leal, V.; Maldonado, E.; Erell, E.; Etzion, Y. Modeling a reversible ventilated window for simulation within ESP-R—The SOLVENT case. In Proceedings of the 8th International Building Performance Simulation Association Conference, Eindhoven, The Netherlands, 11–14 August 2003; pp. 713–720.
- Weiss, W.; Stadler, I. Facade integration—A new and promising opportunity for thermal solar collectors. In Proceedings of the Industry Workshop of the IEA Solar Heating and Cooling Program, Delft, The Netherlands, 2 April 2001.
- Selj, J.H.; Mongstad, T.T.; Søndena, R.; Marstein, E.S. Reduction of optical losses in colored solar cells with multilayer antireflection coatings. Sol. Energy Mater. Sol. Cells 2011, 95, 2576–2582. [Google Scholar] [CrossRef]
- Tsai, C.Y.; Tsai, C.Y. Development of tandem amorphous/microcrystalline silicon thin-film large-area see-through color solar panels with reflective layer and 4-step laser scribing for building-integrated photovoltaic applications. J. Nanomater. 2014, 2014. [Google Scholar] [CrossRef]
- Myong, S.Y.; Jeon, S.W. Efficient outdoor performance of esthetic bifacial a-Si:H semi-transparent PV modules. Appl. Energy 2016, 164, 312–320. [Google Scholar] [CrossRef]
- Perret-Aebi, L.E.; Heinstein, P.; Chapuis, V.; Schlumpf, C.; Li, H.Y.; Roecker, C.; Schueler, A.; Le Caër, V.; Joly, M.; Tween, R.; et al. Innovative solution for building integrated photovoltaics. In Proceedings of the CISBAT 2013 Cleantech for Smart Cities and Buildings, Lausanne, Switzerland, 4–6 September 2013.
- García-Ballesteros, J.J.; Lauzurica, S.; Molpeceres, C.; Torres, I.; Canteli, D.; Gandia, J.J. Electrical losses induced by laser scribing during monolithic interconnection of devices based on a-Si:H. Phys. Procedia 2010, 5, 293–300. [Google Scholar] [CrossRef]
- Krishna, B.C.; Bindu, V.H.; Durga, K.L.; Lokeshwar, G.; Kumar, G.A. An efficient face recognition system by declining rejection rate using PCA. Int. J. Eng. Sci. Adv. Technol. 2012, 2, 93–98. [Google Scholar]
- Thin-Film Terrestrial Photovoltaic (PV) Modules—Design Qualification and Type Approval, 2nd ed.; 61646; International Electrotechnical Commission: Geneva, Switzerland, 2008.
- Abderrazak, K.; Kriaa, W.; Salem, W.B.; Mhiri, H.; Lepalec, G.; Autric, M. Numerical and experimental studies of molten pool formation during an interaction of a pulse laser (Nd:YAG) with a magnesium alloy. Opt. Laser Technol. 2009, 41, 470–480. [Google Scholar] [CrossRef]
- Luther-Davies, B.; Rode, A.V.; Madsen, N.R.; Gamaly, E.G. Picosecond high-repetition-rate pulsed laser ablation of dielectrics: The effect of energy accumulation between pulses. Opt. Eng. 2005, 44. [Google Scholar] [CrossRef]
- Bunea, G.E.; Wilson, K.E.; Meydbray, Y.; Campbell, M.P.; Ceuster, D.M.D. Low light performance of mono-crystalline silicon solar cells. In Proceedings of the 2006 IEEE 4th World Conference on Photovoltaic Energy, Waikoloa, HI, USA, 7–12 May 2006; pp. 1312–1314.
Parameter | P1 | P2 | P3 | P4 |
---|---|---|---|---|
Wavelength (nm) | 1064 | 532 | 532 | 532 |
Focal length (mm) | 18 | 27 | 27 | 37 |
Power (W) | 5 | 0.25 | 0.35 | 0.6 |
Line width (µm) | 30 | 29.8 | 42 | 40 |
Velocity (mm/s) | 350 | 400 | 325 | 400 |
Pulse frequency (Hz) | 20 | 16 | 12 | 18 |
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lien, S.-Y. Artist Photovoltaic Modules. Energies 2016, 9, 551. https://doi.org/10.3390/en9070551
Lien S-Y. Artist Photovoltaic Modules. Energies. 2016; 9(7):551. https://doi.org/10.3390/en9070551
Chicago/Turabian StyleLien, Shui-Yang. 2016. "Artist Photovoltaic Modules" Energies 9, no. 7: 551. https://doi.org/10.3390/en9070551
APA StyleLien, S. -Y. (2016). Artist Photovoltaic Modules. Energies, 9(7), 551. https://doi.org/10.3390/en9070551