Properties of a Laser Shock Wave in Al-Cu Alloy under Elevated Temperatures: A Molecular Dynamics Simulation Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laser Shock Wave (LSW)
2.2. Molecular Dynamics Model and Simulation Methods
- The total energy of the Al-Cu model was decreased to the minimum value by the conjugate gradient method.
- The whole model was relaxed for 10 ps to make the Al-Cu lattices stable.
- A particle velocity was loaded on the piston in the direction of [001] orientation for 10 ps.
2.3. Characterization of Dislocations
3. Results and Discussion
3.1. Propagation Properties of LSW
3.2. Elastic and Plastic Waves Generated by LSW in the [001] Direction
3.3. Dislocations Induced by LSW
4. Conclusions
- (1)
- Within the strain rate of LSW, the shock velocity and shock pressure both decrease with the increasing temperatures.
- (2)
- LSW can be divided into an elastic wave and plastic wave in the [001] direction. The velocity of the elastic wave and plastic wave both decrease with the increasing treatment temperature. Moreover, the difference between the velocity of the elastic wave and plastic wave decreases as the temperature increases.
- (3)
- The dislocation atoms induced by LSW increases with the increasing temperature before 2 ps, while it decreases with the increasing temperature after 2 ps. The reasons for the results are related to the formation and evolution of extended dislocations. The mechanism of dislocation proliferation is due to dislocation nucleations generated by point defects before 2 ps, while extended dislocation developed after 2 ps.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gujba, A.K.; Medraj, M. Laser Peening Process and Its Impact on Materials Properties in Comparison with Shot Peening and Ultrasonic Impact Peening. Materials 2014, 7, 7925–7974. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Ma, Y.J.; Shen, Z.B.; Sun, X.Q.; Sha, C.F.; Gao, S.; Li, L.Y.; Liu, H.X. An Experimental Study on Micro Clinching of Metal Foils with Cutting by Laser Shock Forming. Materials 2016, 9, 571. [Google Scholar] [CrossRef]
- Liu, H.X.; Gao, S.; Yan, Z.; Li, L.Y.; Li, C.; Sun, X.Q.; Sha, C.F.; Shen, Z.B.; Ma, Y.J.; Wang, X. Investigation on a Novel Laser Impact Spot Welding. Metals 2016, 6, 179. [Google Scholar] [CrossRef]
- Huang, S.; Zhou, J.Z.; Sheng, J.; Lu, J.Z.; Sun, G.F.; Meng, X.K. Effects of Laser Energy on Fatigue Crack Growth Properties of 6061-T6 Aluminum Alloy Subjected to Multiple Laser Peening. Eng. Fract. Mech. 2013, 99, 87–100. [Google Scholar] [CrossRef]
- Nie, X.F.; He, W.F.; Li, Q.P.; Long, N.D.; Chai, Y. Experiment investigation on microstructure and mechanical properties of TC17 titanium alloy treated by laser shock peening with different laser fluence. J. Laser Appl. 2013, 25, 1892–1898. [Google Scholar] [CrossRef]
- Ge, M.-Z.; Xiang, J.-Y. Effect of laser shock peening on microstructure and fatigue crack growth rate of AZ31B magnesium alloy. J. Alloys Compd. 2016, 680, 544–552. [Google Scholar] [CrossRef]
- Hackel, L.; Rankin, J.; Racanellia, T.; Mills, T.; Campbell, J.H. Laser Peening to Improve Fatigue Strength and Lifetime of Critical Components. Procedia Eng. 2015, 133, 545–555. [Google Scholar] [CrossRef]
- Ren, X.D.; Zhang, Y.K. Effect of laser shock processing on the fatigue crack initiation and propagation of 7050-T7451 aluminum alloy. Mater. Sci. Eng. A 2011, 528, 2899–2903. [Google Scholar] [CrossRef]
- Zhou, J.Z.; Huang, S.; Sheng, J.; Lu, J.Z.; Wang, C.D.; Chen, K.M.; Ruan, H.Y.; Chen, H.S. Effect of Repeated Impacts on Mechanical Properties and Fatigue Fracture Morphologies of 6061-T6 Aluminum Subject to Laser Peening. Mater. Sci. Eng. A 2012, 539, 360–368. [Google Scholar] [CrossRef]
- Carpio, F.J.; Araujo, D.; Pacheco, F.J. Fatigue behaviour of laser machined 2024-T3 aeronautic aluminum alloy. Appl. Surf. Sci. 2003, 208–209, 194–198. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, C. Laser shock processing of 2024-T62 aluminum alloy. Mater. Sci. Eng. A 1998, 257, 322–327. [Google Scholar]
- Dorman, M.; Toparli, M.B.; Smyth, N.; Cini, A.; Fitzpatrick, M.E.; Irving, P.E. Effect of laser shock peening on residual stress and fatigue life of clad 2024 aluminium sheet containing scribe defects. Mater. Sci. Eng. A 2012, 548, 142–151. [Google Scholar] [CrossRef]
- Ye, C.; Suslov, S.; Kim, B.J. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening. Acta Mater. 2011, 59, 1014–1025. [Google Scholar] [CrossRef]
- Zhou, J.Z.; Meng, X.K.; Huang, S.; Sheng, J.; Lu, J.Z.; Yang, Z.R.; Su, C. Effects of warm laser peening at elevated temperature on the low-cycle fatigue behavior of Ti6Al4V alloy. Mater. Sci. Eng. A 2015, 643, 86–95. [Google Scholar] [CrossRef]
- Ye, C.; Liao, Y.L.; Suslov, S.; Lin, D.; Cheng, G.J. Ultrahigh dense and gradient nano-precipitates generated by warm laser shock peening for combination of high strength and ductility. Mater. Sci. Eng. A 2014, 609, 195–203. [Google Scholar] [CrossRef]
- Su, C.; Zhou, J.Z.; Meng, X.K.; Huang, S. Improvement in Fatigue Performance of Aluminium Alloy Welded Joints by Laser Shock Peening in a Dynamic Strain Aging Temperature Regime. Materials 2016, 9, 799. [Google Scholar] [CrossRef]
- Nedialkov, N.N.; Imamova, S.E.; Atanasov, P.A. Mechanism of ultrashort laser ablation of metals: Molecular dynamics simulation. Appl. Surf. Sci. 2005, 247, 243–248. [Google Scholar] [CrossRef]
- Nozaki, T.; Doyama, M.; Kogure, Y. Simulation of high speed deformation of copper single crystals. Mater. Sci. Eng. A 2003, 350, 233–237. [Google Scholar] [CrossRef]
- Bringa, E.M.; Cazamias, J.U.; Erhart, P. Atomistic shock Hogoniot simulation of single-crystal copper. J. Appl. Phys. 2004, 96, 3793–3799. [Google Scholar] [CrossRef]
- Chowdhury, P.; Ren, G.W.; Sehitoglu, H. NiTi superelasticity via atomistic simulations. Philos. Mag. Lett. 2015, 95, 574–586. [Google Scholar] [CrossRef]
- Li, Q.B.; Peng, X.H.; Peng, T.F.; Tang, Q.Z.; Zhang, X.M.; Huang, C. Molecular dynamics simulation of Cu/Au thin films under temperature gradient. Appl. Surf. Sci. 2015, 357, 1823–1829. [Google Scholar] [CrossRef]
- Fairand, B.P.; Clauer, A.H.; Jung, R.G.; Wilcox, B.A. Quantitative assessment of laser-induced stress waves generated at confined surfaces. Appl. Phys. Lett. 1974, 25, 431–433. [Google Scholar] [CrossRef]
- Zheng, B.; Wang, Y.N.; Qi, M. An examination of surface stress effects and deformation mechanisms in Al Cu nanowires. Model. Simul. Mater. Sci. Eng. 2008, 16, 881–891. [Google Scholar] [CrossRef]
- Daw, M.S.; Baskes, M.I. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett. 1983, 50, 1285–1288. [Google Scholar] [CrossRef]
- Ivetic, G. Three-dimensional FEM analysis of laser shock peening of aluminium alloy 2024-T351 thin sheets. Surf. Eng. 2011, 27, 445–453. [Google Scholar] [CrossRef]
- LAMMPS Documentation Manual. Available online: http://lammps.sandia.gov/doc/Manual.html (accessed on 27 June 2016).
- Chen, K.G.; Zhu, W.J.; Ma, W. Propagation of shockwave in nanocrystalline copper molecular dynamics simulation. Acta Phys. Sin. 2010, 59, 1225–1232. [Google Scholar]
- Berth, L.; Fabbro, R. Shock waves from a water-confined laser-generated plasma. J. Appl. Phys. 1977, 82, 2826–2832. [Google Scholar] [CrossRef]
- Hull, D.; Bacon, D.J. Introduction to Dislocations; Pergamon Press: Oxford, UK, 1984. [Google Scholar]
Temperature | U0 (km/s) | S1 |
---|---|---|
293 K | 5.4422 | 1.3077 |
493 K | 5.3841 | 1.3163 |
693 K | 5.3021 | 1.3383 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, X.; Zhou, J.; Huang, S.; Su, C.; Sheng, J. Properties of a Laser Shock Wave in Al-Cu Alloy under Elevated Temperatures: A Molecular Dynamics Simulation Study. Materials 2017, 10, 73. https://doi.org/10.3390/ma10010073
Meng X, Zhou J, Huang S, Su C, Sheng J. Properties of a Laser Shock Wave in Al-Cu Alloy under Elevated Temperatures: A Molecular Dynamics Simulation Study. Materials. 2017; 10(1):73. https://doi.org/10.3390/ma10010073
Chicago/Turabian StyleMeng, Xiankai, Jianzhong Zhou, Shu Huang, Chun Su, and Jie Sheng. 2017. "Properties of a Laser Shock Wave in Al-Cu Alloy under Elevated Temperatures: A Molecular Dynamics Simulation Study" Materials 10, no. 1: 73. https://doi.org/10.3390/ma10010073
APA StyleMeng, X., Zhou, J., Huang, S., Su, C., & Sheng, J. (2017). Properties of a Laser Shock Wave in Al-Cu Alloy under Elevated Temperatures: A Molecular Dynamics Simulation Study. Materials, 10(1), 73. https://doi.org/10.3390/ma10010073