Preparation and Characterization of Ternary Antimicrobial Films of β-Cyclodextrin/Allyl Isothiocyanate/Polylactic Acid for the Enhancement of Long-Term Controlled Release
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the IC of β-CD/AITC
2.3. Preparation of Ternary Antimicrobial Films of β-CD/AITC/PLA
2.4. Thickness of Films
2.5. Mechanical Properties
2.6. Differential Scanning Calorimetry (DSC)
2.7. Scanning Electron Microscopy (SEM)
2.8. Fourier Transform Infrared Spectroscopy Analysis
2.9. Assay for Antimicrobial Activity
2.10. The Cumulative Release of AITC from Ternary Antimicrobial Films
2.11. Statistical Analysis
3. Results and Discussion
3.1. Mechanical Properties of Antimicrobial Films
3.2. Thermal Properties of Antimicrobial Films
3.3. SEM Images of Antimicrobial Films
3.4. Fourier Transformation Infrared Spectroscopy Analysis
3.5. Antimicrobial Activity
3.6. Release Kinetics Study
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Plackett, D.; Ghanbari-Siahkali, A.; Szente, L. Behavior of α- and β-cyclodextrin-encapsulated allyl isothiocyanate as slow-release additives in polylactide-co-polycaprolactone films. J. Appl. Polym. Sci. 2007, 105, 2850–2857. [Google Scholar] [CrossRef]
- Raouche, S.; Mauricio-Iglesias, M.; Peyron, S.; Guillard, V.; Gontard, N. Combined effect of high pressure treatment and anti-microbial bio-sourced materials on microorganisms’ growth in model food during storage. Innov. Food Sci. Emerg. Technol. 2001, 12, 426–434. [Google Scholar] [CrossRef]
- Lashkari, E.; Wang, H.; Liu, L.; Li, J.; Yam, K. Innovative application of metal-organic frameworks for encapsulation and controlled release of allyl isothiocyanate. Food Chem. 2017, 221, 926–935. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Harte, B.; Ryser, E.; Selke, S. Active packaging of fresh chicken breast, with allyl isothiocyanate (AITC) in combination with modified atmosphere packaging (MAP) to control the growth of pathogens. J. Food Sci. 2010, 75, M65–M71. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Chang, R.; Yang, J.; Ge, S.; Xiong, L.; Zhao, M.; Li, M.; Sun, Q. Preparation and characterization of essential oil-loaded starch nanoparticles formed by short glucan chains. Food Chem. 2017, 221, 1426–1433. [Google Scholar] [CrossRef] [PubMed]
- Delaquis, P.J.; Sholberg, P.L. Antimicrobial Activity of Gaseous Allyl Isothiocyanate. J. Food Prot. 1997, 60, 943–947. [Google Scholar] [CrossRef]
- Janatova, A.; Bernardos, A.; Smid, J.; Frankova, A.; Lhotka, M.; Kourimská, L.; Pulkrabek, J.; Kloucek, P. Long-term antifungal activity of volatile essential oil components released from mesoporous silica materials. Ind. Crops. Prod. 2015, 67, 216–220. [Google Scholar] [CrossRef]
- Nadarajah, D.; Han, J.H.; Holley, R.A. Inactivation of Escherichia coli O157: H7 in packaged ground beef by allyl isothiocyanate. Int. J. Food Microbiol. 2005, 99, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, P.V.; Rios, R. Inhibition of fungal growth on bread by volatile components from spices and herbs, and the possible application in active packaging, with special emphasis on mustard essential oil. Int. J. Food Microbiol. 2000, 60, 219–229. [Google Scholar] [CrossRef]
- Aytac, Z.; Dogan, S.Y.; Tekinay, T.; Uyar, T. Release and antibacterial activity of allyl isothiocyanate/β-cyclodextrin complex encapsulated in electrospun nanofibers. Colloids Surf. B Biointerfaces 2014, 120, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.A.; Kim, W.Y.; Park, H.J. Effects of microencapsulated Allyl isothiocyanate (AITC) on the extension of the shelf-life of Kimchi. Int. J. Food Microbiol. 2012, 153, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Chacon, P.A.; Buffo, R.A.; Holley, R.A. Inhibitory effects of microencapsulated allyl isothiocyanate (AIT) against Escherichia coli O157: H7 in refrigerated, nitrogen packed, finely chopped beef. Int. J. Food Microbiol. 2006, 107, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Jin, Z.; Wang, J. Complexation of allyl isothiocyanate by α- and β-cyclodextrin and its controlled release characteristics. Food Chem. 2007, 103, 461–466. [Google Scholar] [CrossRef]
- Kurkov, S.V.; Loftsson, T. Cyclodextrins. Int. J. Pharm. 2013, 453, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Valle, E.M.M.D. Cyclodextrins and their uses: A review. Process Biochem. 2004, 39, 1033–1046. [Google Scholar] [CrossRef]
- Li, W.; Coffin, D.R.; Jin, T.Z.; Latona, N.; Liu, C.K.; Liu, B.; Zhang, J.; Liu, L.S. Biodegradable composites from polyester and sugar beet pulp with antimicrobial coating for food packaging. J. Appl. Polym. Sci. 2012, 126, E362–E373. [Google Scholar] [CrossRef]
- Liu, L.S.; Jin, T.; Coffin, D.R.; Liu, C.K.; Hicks, K.B. Poly (lactic acid) membranes containing bacteriocins and EDTA for inhibition of the surface growth of gram-negative bacteria. J. Appl. Polym. Sci. 2010, 117, 486–492. [Google Scholar] [CrossRef]
- Arrieta, M.P.; Peltzer, M.A.; López, J.; Mdc, G.; Ajm, V.; Jiménez, A. Functional properties of sodium and calcium caseinate antimicrobial active films containing carvacrol. J. Food Eng. 2014, 121, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Arrieta, M.P.; Peltzer, M.A.; Mdc, G.; Jiménez, A. Structure and mechanical properties of sodium and calcium caseinate edible active films with carvacrol. J. Food Eng. 2013, 114, 486–494. [Google Scholar] [CrossRef] [Green Version]
- Fortunati, E.; Armentano, I.; Iannoni, A.; Barbale, M.; Zaccheo, S.; Scavone, M.; Visai, L.; Kenny, J.M. New multifunctional poly (lactide acid) composites: Mechanical, antibacterial, and degradation properties. J. Appl. Polym. Sci. 2012, 124, 87–98. [Google Scholar] [CrossRef]
- Jamshidian, M.; Tehrany, E.A.; Imran, M.; Jacquot, M.; Desobry, S. Poly-lactic acid: Production, applications, nanocomposites, and release studies. Compr. Rev. Food Sci. Food Saf. 2010, 9, 552–571. [Google Scholar] [CrossRef]
- Armentano, I.; Fortunati, E.; Burgos, N.; Dominici, F.; Luzi, F.; Fiori, S.; Jiménez, A.; Yoon, K.; Ahn, J.; Kang, S.; et al. Bio-based PLA_PHB plasticized blend films: Processing and structural characterization. LWT Food Sci. Technol. 2015, 64, 980–988. [Google Scholar] [CrossRef]
- Bhandari, B.R.; D’Arc, B.R.; Thi Bich, L.L. Lemon oil to β-cyclodextrin ratio effect on the inclusion efficiency of β-cyclodextrin and the retention of oil volatiles in the complex. J. Agric. Food Chem. 1998, 46, 1494–1499. [Google Scholar] [CrossRef]
- Chanvrier, H.; Uthayakumaran, S.; Appelqvist, I.A.M.; Gidley, M.J.; Gilbert, E.P.; Lopez-Rubio, A. Influence of storage conditions on the structure, thermal behaviour and formation of enzyme-resistant starch in extruded starches. J. Agric. Food Chem. 2007, 55, 9883–9890. [Google Scholar] [CrossRef] [PubMed]
- De la Caba, K.; Pena, C.; Ciannamea, E.M.; Stefani, P.M.; Mondragon, I.; Ruseckaite, R.A. Characterization of soybean protein concentrate—stearic acid/palmitic acid blend edible films. J. Appl. Polym. Sci. 2012, 124, 1796–1807. [Google Scholar] [CrossRef]
- Cano, A.; Fortunati, E.; Cháfer, M.; Kenny, J.M.; Chiralt, A.; González-Martínez, C. Properties and ageing behaviour of pea starch films as affected by blend with poly (vinyl alcohol). Food Hydrocoll. 2015, 48, 84–93. [Google Scholar] [CrossRef]
- Vega-Lugo, A.-C.; Lim, L.-T. Controlled release of allyl isothiocyanate using soy protein and poly (lactic acid) electrospun fibers. Food Res. Int. 2009, 42, 933–940. [Google Scholar] [CrossRef]
- Rehmann, L.; Yoshii, H.; Furuta, T. Characteristics of Modified β-Cyclodextrin Bound to Cellulose Powder. Starch Stärke 2003, 55, 313–318. [Google Scholar] [CrossRef]
Label | Composition | Added Active Compound Content (wt. %) |
---|---|---|
PLA | 90% PLA + 10% PEG | 0 |
PLA/AITC | 92% (PLA:PEG = 9:1) + 8% AITC | 8% |
PLA/2-CDAITC | 98% (PLA:PEG = 9:1) + 2% β-CDAITC | 0.16% |
PLA/5-CDAITC | 95% (PLA:PEG = 9:1) + 5% β-CDAITC | 0.40% |
PLA/10-CDAITC | 90% (PLA:PEG = 9:1) + 10% β-CDAITC | 0.80% |
PLA/15-CDAITC | 85% (PLA:PEG = 9:1) + 15% β-CDAITC | 1.20% |
PLA/20-CDAITC | 80% (PLA:PEG = 9:1) + 20% β-CDAITC | 1.60% |
Label | Thickness (μm) | TS (MPa) | E (%) | M (Mpa) |
---|---|---|---|---|
PLA | 26.59 ± 0.23 e | 48.83 ± 0.99 a | 61.33 ± 0.86 e | 559 ± 23 a |
PLA/2-CDAITC | 27.22 ± 0.41 e | 46.62 ± 0.82 b | 76.77 ± 0.68 c | 503 ± 36 b |
PLA/5-CDAITC | 28.42 ± 0.62 d | 42.64 ± 1.03 c | 80.26 ± 1.12 b | 475 ± 28 c |
PLA/10-CDAITC | 32.16 ± 0.68 c | 39.79 ± 1.21 d | 88.56 ± 1.26 a | 380 ± 35 d |
PLA/15-CDAITC | 35.21 ± 0.87 b | 33.56 ± 0.83 e | 65.31 ± 0.97 d | 385 ± 31 d |
PLA/20-CDAITC | 38.64 ± 1.12 a | 30.51 ± 0.96 f | 56.79 ± 0.75 f | 327 ± 26 e |
Sample | To (°C) | Tp (°C) | Tc (°C) | ΔH (J·g −1) |
---|---|---|---|---|
PLA | 143.61 ± 1.22 d | 161.62 ± 0.64 d | 170.34 ± 0.62 c | 27.58 ± 0.62 d |
PLA/2-CDAITC | 144.12 ± 1.35 c | 164.80 ± 0.47 c | 171.26 ± 0.53 b | 38.23 ± 0.46 b |
PLA/5-CDAITC | 144.63 ± 1.26 bc | 165.17 ± 0.63 b | 172.41 ± 1.21 a | 40.46 ± 0.42 a |
PLA/10-CDAITC | 146.31 ± 0.93 b | 166.03 ± 0.37 a | 172.11 ± 1.17 a | 39.51 ± 0.73 a |
PLA/20-CDAITC | 148.16 ± 0.83 a | 165.40 ± 0.28 b | 170.23 ± 0.89 c | 35.48 ± 0.25 c |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Qiu, C.; Narsimhan, G.; Jin, Z. Preparation and Characterization of Ternary Antimicrobial Films of β-Cyclodextrin/Allyl Isothiocyanate/Polylactic Acid for the Enhancement of Long-Term Controlled Release. Materials 2017, 10, 1210. https://doi.org/10.3390/ma10101210
Wang J, Qiu C, Narsimhan G, Jin Z. Preparation and Characterization of Ternary Antimicrobial Films of β-Cyclodextrin/Allyl Isothiocyanate/Polylactic Acid for the Enhancement of Long-Term Controlled Release. Materials. 2017; 10(10):1210. https://doi.org/10.3390/ma10101210
Chicago/Turabian StyleWang, Jinpeng, Chao Qiu, Ganesan Narsimhan, and Zhengyu Jin. 2017. "Preparation and Characterization of Ternary Antimicrobial Films of β-Cyclodextrin/Allyl Isothiocyanate/Polylactic Acid for the Enhancement of Long-Term Controlled Release" Materials 10, no. 10: 1210. https://doi.org/10.3390/ma10101210
APA StyleWang, J., Qiu, C., Narsimhan, G., & Jin, Z. (2017). Preparation and Characterization of Ternary Antimicrobial Films of β-Cyclodextrin/Allyl Isothiocyanate/Polylactic Acid for the Enhancement of Long-Term Controlled Release. Materials, 10(10), 1210. https://doi.org/10.3390/ma10101210