Recent Progress and Required Developments in Atmospheric Corrosion of Galvanised Steel and Zinc
Abstract
:1. Introduction
2. Climate Effects
2.1. State of the Art in 2009
2.2. Developments Since 2009
2.3. Significance of Developments and Need for More Research
3. Oxide Formation
3.1. State of the Art in 2009
3.2. Developments Since 2009
- (a)
- A three layer structure built up over the 6 h with consisting of a zone below the original metal surface where oxide has filled in previous areas of metal attack which appear to be along microstructural features, a zone above the original metal surface that is relatively compact, and a third zone above the first two where a highly porous crystalline structure is observed. The elemental composition of the first layer was predominately zinc and oxygen with some areas of zinc, oxygen, and chloride; the second layer contained zinc, oxygen, and carbon; and the third zinc, oxygen, carbon, and chloride.
- (b)
- After the build-up of an initial oxide, the underlying metal is subject to localized attack that appears to be along grain boundaries.
- (c)
- The oxide in the second and third layers appears to decrease in void content with time until it is relatively compact (except the upper surface) after 6 h.
3.3. Significance of Developments and Need for More Research
4. Pitting
4.1. State of the Art in 2009
4.2. Developments Since 2009
4.3. Significance of Developments and Need for More Research
5. Laboratory Duplication of Atmospheric Corrosion
5.1. State of the Art in 2009
5.2. Developments Since 2009
5.3. Significance of Developments and Need for More Research
6. Oxide Properties
6.1. State of the Art in 2009
6.2. Developments Since 2009
6.3. Significance of Developments and Need for More Research
7. Modelling
7.1. State of the Art in 2009
7.2. Developments Since 2009
7.3. Significance of Developments and Need for More Research
8. Overall Significance of Developments and Need for More Research
- (a)
- The development of corrosion patinas both in field and laboratory experiments and in particular the formation of multi-layered structures and compact layers.
- (b)
- The identification of local attack as a significant phenomenon in zinc corrosion.
- (c)
- Formulating methods to undertake corrosion under droplets and the critical role of drop size in determining the dominant corrosion processes and the oxides that form.
- (d)
- Role of oxide layers, particularly ZnO, in promoting the ORR.
- (e)
- The modelling or porous oxide and how the occurrence of ORR on oxide pore walls could have strong implications for pore chemistry and oxide densification.
Conflicts of Interest
References
- Cole, I.S.; Azmat, N.S.; Kanta, A.; Venkatraman, M. What really controls the atmospheric corrosion of zinc? Effect of marine aerosols on atmospheric corrosion of zinc. Int. Mater. Rev. 2009, 54, 117–133. [Google Scholar] [CrossRef]
- Cole, I.S.; Muster, T.H.; Paterson, D.A.; Furman, S.A.; Trinidad, G.S.; Wright, N. Multi-scale modeling of the corrosion of metals under atmospheric corrosion. In Pricm 6: Sixth Pacific Rim International Conference on Advanced Materials and Processing, pts 1–3; Chang, Y.W., Kim, N.J., Lee, C.S., Eds.; Trans Tech Publications Ltd.: Zürich, Switzerland, 2007; Volume 561–565, pp. 2209–2212. [Google Scholar]
- Ganther, W.D.; Cole, I.S.; Helal, A.M.; Chan, W.; Paterson, D.A.; Trinidad, G.; Corrigan, P.; Mohamed, R.; Sabah, N.; Al-Mazrouei, A. Towards the development of a corrosion map for Abu Dhabi. Mater. Corros.-Werkstoffe Und Korrosion 2011, 62, 1066–1073. [Google Scholar] [CrossRef]
- Cole, I.S.; Ganther, W.D.; Helal, A.M.; Chan, W.; Paterson, D.; Trinidad, G.; Corrigan, P.; Mohamed, R.; Sabah, N.; Al-Mazrouei, A. A corrosion map of Abu Dhabi. Mater. Corros.-Werkstoffe Und Korrosion 2013, 64, 247–255. [Google Scholar] [CrossRef]
- Chico, B.; de la Fuente, D.; Vega, J.M.; Morcillo, M. Corrosivity maps of Spain for zinc in rural atmospheres. Rev. Met. 2010, 46, 485–492. [Google Scholar] [CrossRef] [Green Version]
- Panchenko, Y.M.; Marshakov, A.I.; Nikolaeva, L.A.; Kovtanyuk, V.V.; Igonin, T.N.; Andryushchenko, T.A. Comparative estimation of long-term predictions of corrosion losses for carbon steel and zinc using various models for the Russian territory. Corros. Eng. Sci. Technol. 2017, 52, 149–157. [Google Scholar] [CrossRef]
- Tidblad, J.; Kreislova, K.; Faller, M.; de la Fuente, D.; Yates, T.; Verney-Carron, A.; Grontoft, T.; Gordon, A.; Hans, U. ICP materials trends in corrosion, soiling and air pollution (1987–2014). Materials 2017, 10, 969. [Google Scholar] [CrossRef] [PubMed]
- Cole, I.S.; Paterson, D.A. Possible effects of climate change on atmospheric corrosion in Australia. Corros. Eng. Sci. Technol. 2010, 45, 19–26. [Google Scholar] [CrossRef]
- Trivedi, N.S.; Venkatraman, M.S.; Chu, C.; Cole, I.S. Effect of climate change on corrosion rates of structures in Australia. Clim. Chang. 2014, 124, 133–146. [Google Scholar] [CrossRef]
- Leygraf, C.; Graedel, T.E. Atmospheric Corrosion; Wiley-Interscience: Hoboken, NJ, USA, 2000. [Google Scholar]
- Odnevall, I.; Leygraf, C. Formation of NaZn4Cl(OH)6SO4·6H2O in a marine atmosphere. Corros. Sci. 1993, 34, 1213–1229. [Google Scholar] [CrossRef]
- Odnevall, I.; Leygraf, C. The formation of Zn4Cl2(OH)4SO4·5H2O in an urban and an industrial atmosphere. Corros. Sci. 1994, 36, 1551–1559. [Google Scholar] [CrossRef]
- Friel, J.J. Atmospheric corrosion products on Al, Zn, and AIZn metallic coatings. Corrosion 1986, 42, 422–426. [Google Scholar] [CrossRef]
- Cole, I.S.; Muster, T.H.; Furman, S.A.; Wright, N.; Bradbury, A. Products formed during the interaction of seawater droplets with zinc surfaces: I. Results from 1-and 2.5-day exposures. J. Electrochem. Soc. 2008, 155, C244–C255. [Google Scholar] [CrossRef]
- Bernard, M.C.; Hugotlegoff, A.; Phillips, N. In-situ raman-study of the corrosion of zinc-coated steel in the presence of chloride .1. Characterization and stability of zinc corrosion products. J. Electrochem. Soc. 1995, 142, 2162–2167. [Google Scholar] [CrossRef]
- Wallinder, O.; Leygraf, C. A critical review on corrosion and runoff from zinc and zinc-based alloys in atmospheric environments. Corrosion 2017, 73, 1060–1077. [Google Scholar] [CrossRef]
- Hedberg, J.; Le Bozec, N.; Wallinder, I.O. Spatial distribution and formation of corrosion products in relation to zinc release for zinc sheet and coated pre-weathered zinc at an urban and a marine atmospheric condition. Mater. Corros.-Werkstoffe Und Korrosion 2013, 64, 300–308. [Google Scholar] [CrossRef]
- Cui, Z.Y.; Li, X.G.; Xiao, K.; Dong, C.F.; Liu, Z.Y.; Wang, L.W. Corrosion behavior of field-exposed zinc in a tropical marine atmosphere. Corrosion 2014, 70, 731–748. [Google Scholar] [CrossRef]
- Liu, Y.W.; Wang, Z.Y.; Cao, G.W.; Cao, Y.; Huo, Y. Study on corrosion behavior of zinc exposed in coastal-industrial atmospheric environment. Mater. Chem. Phys. 2017, 198, 243–249. [Google Scholar] [CrossRef]
- Persson, D.; Thierry, D.; Karlsson. Corrosion and corrosion products of hot dipped galvanized steel during long term atmospheric exposure at different sites world-wide. Corros. Sci. 2017, 126, 152–165. [Google Scholar] [CrossRef]
- Li, S.X.; Hihara, L.H. Aerosol salt particle deposition on metals exposed to marine environments: A study related to marine atmospheric corrosion. J. Electrochem. Soc. 2014, 161, C268–C275. [Google Scholar] [CrossRef]
- Cole, I.S.; Lau, D.; Paterson, D.A. Holistic model for atmospheric corrosion—Part 6—From wet aerosol to salt deposit. Corros. Eng. Sci. Technol. 2004, 39, 209–218. [Google Scholar] [CrossRef]
- Cole, I.S.; Muster, T.H.; Lau, D.; Wright, N.; Azmat, N.S. Products formed during the interaction of seawater droplets with zinc surfaces II. Results from short exposures. J. Electrochem. Soc. 2010, 157, C213–C222. [Google Scholar] [CrossRef]
- Thomas, S.; Cole, I.S.; Birbilis, N. Compact oxides formed on zinc during exposure to a single sea-water droplet. J. Electrochem. Soc. 2013, 160, C59–C63. [Google Scholar] [CrossRef]
- Macdonald, D.D.; Ismail, K.M.; Sikora, E. Characterization of the passive state on zinc. J. Electrochem. Soc. 1998, 145, 3141–3149. [Google Scholar] [CrossRef]
- Prestat, M.; Holzer, L.; Lescop, B.; Rioual, S.; Zaubitzer, C.; Diler, E.; Thierry, D. Microstructure and spatial distribution of corrosion products anodically grown on zinc in chloride solutions. Electrochem. Commun. 2017, 81, 56–60. [Google Scholar] [CrossRef]
- Thomas, S.; Cole, I.S.; Sridhar, M.; Birbilis, N. Revisiting zinc passivation in alkaline solutions. Electrochim. Acta 2013, 97, 192–201. [Google Scholar] [CrossRef]
- Fattah-alhosseini, A.; Mirshekari, M. Effect of film formation potential on the electrochemical behavior of the passive films formed on zinc in 0.01 m NaOH. Trans. Indian Inst. Met. 2015, 68, 851–857. [Google Scholar] [CrossRef]
- Muster, T.H.; Ganther, W.D.; Cole, I.S. The influence of microstructure on surface phenomena: Rolled zinc. Corros. Sci. 2007, 49, 2037–2058. [Google Scholar] [CrossRef]
- Mena, E.; Veleva, L.; Souto, R.M. Mapping of local corrosion behavior of zinc in substitute ocean water at its initial stages by SVET. Int. J. Electrochem. Sci. 2016, 11, 5256–5266. [Google Scholar] [CrossRef]
- Abd El-Rehim, S.S.; Hamed, E.; Shaltot, A.M.; Amin, M.A. Pitting corrosion of zinc in Na2S2O3 solutions. Part I. Polarization studies and morphology of pitting. Int. J. Res. Phys. Chem. Chem. Phys. 2012, 226, 59–85. [Google Scholar]
- Cole, I.S.; Ganther, W.D.; Furman, S.A.; Muster, T.H.; Neufeld, A.K. Pitting of zinc: Observations on atmospheric corrosion in tropical countries. Corros. Sci. 2010, 52, 848–858. [Google Scholar] [CrossRef]
- Keitelman, A.; Alvarez, M.G. 40 years of JR galvele’s localized acidification pitting model: Past, present, and future. Corrosion 2017, 73, 8–17. [Google Scholar] [CrossRef]
- Cheng, Q.L.; Song, S.H.; Song, L.Y.; Hou, B.R. Effect of relative humidity on the initial atmospheric corrosion behavior of zinc during drying. J. Electrochem. Soc. 2013, 160, C380–C389. [Google Scholar] [CrossRef]
- Song, S.H.; Chen, Z.Y. Initial corrosion of pure zinc under NaCl electrolyte droplet using a Zn-Pt-Pt three-electrode system. Int. J. Electrochem. Sci. 2013, 8, 6851–6863. [Google Scholar]
- Azmat, N.S.; Ralston, K.D.; Muster, T.H.; Muddle, B.C.; Cole, I.S. A high-throughput test methodology for atmospheric corrosion studies. Electrochem. Solid State Lett. 2011, 14, C9–C11. [Google Scholar] [CrossRef]
- Azmat, N.S.; Ralston, K.D.; Muddle, B.C.; Cole, I.S. Corrosion of Zn under fine size aerosols and droplets using inkjet printer deposition and optical profilometry quantification. Corros. Sci. 2011, 53, 3534–3541. [Google Scholar] [CrossRef]
- Azmat, N.S.; Ralston, K.D.; Muddle, B.C.; Cole, I.S. Corrosion of Zn under acidified marine droplets. Corros. Sci. 2011, 53, 1604–1615. [Google Scholar] [CrossRef]
- Risteen, B.E.; Schindelholz, E.; Kelly, R.G. Marine aerosol drop size effects on the corrosion behavior of low carbon steel and high purity iron. J. Electrochem. Soc. 2014, 161, C580–C586. [Google Scholar] [CrossRef]
- Muster, T.H.; Cole, I.S. The protective nature of passivation films on zinc: Surface charge. Corros. Sci. 2004, 46, 2319–2335. [Google Scholar] [CrossRef]
- Muster, T.H.; Neufeld, A.K.; Cole, I.S. The protective nature of passivation films on zinc: Wetting and surface energy. Corros. Sci. 2004, 46, 2337–2354. [Google Scholar] [CrossRef]
- Thomas, S.; Cole, I.S.; Gonzalez-Garcia, Y.; Chen, M.; Musameh, M.; Mol, J.M.C.; Terryn, H.; Birbilis, N. Oxygen consumption upon electrochemically polarised zinc. J. Appl. Electrochem. 2014, 44, 747–757. [Google Scholar] [CrossRef]
- Prestat, M.; Vucko, F.; Lescop, B.; Rioual, S.; Peltier, F.; Thierry, D. Oxygen reduction at electrodeposited zno layers in alkaline solution. Electrochim. Acta 2016, 218, 228–236. [Google Scholar] [CrossRef]
- Venkatraman, M.S.; Cole, I.S.; Emmanuel, B. Corrosion under a porous layer: A porous electrode model and its implications for self-repair. Electrochim. Acta 2011, 56, 8192–8203. [Google Scholar] [CrossRef]
- Nazarov, A.; Thierry, D.; Prosek, T. Formation of galvanic cells and localized corrosion of zinc and zinc alloys under atmospheric conditions. Corrosion 2017, 73, 77–86. [Google Scholar] [CrossRef]
- Gunasegaram, D.R.; Venkatraman, M.S.; Cole, I.S. Towards multiscale modelling of localised corrosion. Int. Mater. Rev. 2014, 59, 84–114. [Google Scholar] [CrossRef]
- Simillion, H.; Dolgikh, O.; Terryn, H.; Deconinck, J. Atmospheric corrosion modeling. Corros. Rev. 2014, 32, 73–100. [Google Scholar] [CrossRef]
- Graedel, T.E. Gildes model studies of aqueous chemistry. 1. Formulation and potential applications of the multi-regime model. Corros. Sci. 1996, 38, 2153–2180. [Google Scholar] [CrossRef]
- Graedel, T.E. Corrosion mechanisms for zinc exposed to the atmosphere. J. Electrochem. Soc. 1989, 136, C193–C203. [Google Scholar] [CrossRef]
- Cole, I.S.; Paterson, D.A.; Ganther, W.D. Holistic model for atmospheric corrosion—Part 1—Theoretical framework for production, transportation and deposition of marine salts. Corros. Eng. Sci. Technol. 2003, 38, 129–134. [Google Scholar] [CrossRef]
- Spence, J.; Haynie, F. Derivation of a damage function for galvanised steel structures: Corrosion kinetics and thermodynamic considerations. In Corrosion Testing and Evaluation: SILVER Anniversary Volume; ASTM: Philadelphia, PA, USA, 1990; Volume 1000, pp. 2008–2024. [Google Scholar]
- Sherwood, D.; Emmanuel, B.; Cole, I. Moisture distribution in porous oxide and polymer over-layers and critical relative humidity and time of wetness for chloride and non-chloride-bearing atmospheres for atmospheric corrosion of metals. J. Electrochem. Soc. 2016, 163, C675–C685. [Google Scholar] [CrossRef]
- Sherwood, D.; Reddy, M.V.; Cole, I.; Emmanuel, B. A model to estimate moisture distribution in porous oxides as a function of atmospheric conditions. J. Electroanal. Chem. 2014, 725, 1–6. [Google Scholar] [CrossRef]
- Venkatraman, M.S.; Cole, I.S.; Emmanuel, B. Model for corrosion of metals covered with thin electrolyte layers: Pseudo-steady state diffusion of oxygen. Electrochim. Acta 2011, 56, 7171–7179. [Google Scholar] [CrossRef]
- Simillion, H.; Van den Steen, N.; Terryn, H.; Deconinck, J. Geometry influence on corrosion in dynamic thin film electrolytes. Electrochim. Acta 2016, 209, 149–158. [Google Scholar] [CrossRef]
- Todorova, M.; Neugebauer, J. Identification of bulk oxide defects in an electrochemical environment. Faraday Discuss. 2015, 180, 97–112. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cole, I.S. Recent Progress and Required Developments in Atmospheric Corrosion of Galvanised Steel and Zinc. Materials 2017, 10, 1288. https://doi.org/10.3390/ma10111288
Cole IS. Recent Progress and Required Developments in Atmospheric Corrosion of Galvanised Steel and Zinc. Materials. 2017; 10(11):1288. https://doi.org/10.3390/ma10111288
Chicago/Turabian StyleCole, Ivan S. 2017. "Recent Progress and Required Developments in Atmospheric Corrosion of Galvanised Steel and Zinc" Materials 10, no. 11: 1288. https://doi.org/10.3390/ma10111288
APA StyleCole, I. S. (2017). Recent Progress and Required Developments in Atmospheric Corrosion of Galvanised Steel and Zinc. Materials, 10(11), 1288. https://doi.org/10.3390/ma10111288