Particle Surface Softening as Universal Behaviour during Flash Sintering of Oxide Nano-Powders
Abstract
:1. Introduction
2. Analysis and Discussion
2.1. Energy Balance during the Flash Event
2.2. Possibility for Plasma Formation
2.3. The Heat Transfer Regime
3. Summary and Conclusions
Acknowledgments
Conflicts of Interest
References
- Jiang, T.; Wang, Z.; Zhang, J.; Hao, X.; Rooney, D.; Liu, Y.; Sun, W.; Qiao, J.; Sun, K. Understanding the flash sintering of rare-earth-doped ceria for solid oxide fuel cell. J. Am. Ceram. Soc. 2015, 98, 1717–1723. [Google Scholar] [CrossRef]
- Corapcioglu, G.; Gulgun, M.A.; Kisslinger, K.; Sturm, S.; Jha, S.K.; Raj, R. Microstructure and microchemistry of flash sintered K0.5Na0.5NbO3. J. Ceram. Soc. Jpn. 2016, 124, 321–328. [Google Scholar] [CrossRef]
- Downs, J.A.; Sglavo, V.M. Electric field assisted sintering of cubic zirconia at 390 °C. J. Am. Ceram. Soc. 2013, 96, 1342–1344. [Google Scholar] [CrossRef]
- Raj, R. Analysis of the power density at the onset of flash sintering. J. Am. Ceram. Soc. 2016, 99, 3226–3232. [Google Scholar] [CrossRef]
- Zhang, Y.; Jung, J.I.; Luo, J. Thermal runaway, flash sintering and asymmetrical microstructural development of ZnO and ZnO-Bi2O3 under direct currents. Acta Mater. 2015, 94, 87–100. [Google Scholar] [CrossRef]
- Todd, R.I.; Zapata-Solvas, E.; Bonilla, R.S.; Sneddon, T.; Wilshaw, P.R. Electrical characteristics of flash sintering: Thermal runaway of Joule heating. J. Eur. Ceram. Soc. 2015, 35, 1865–1877. [Google Scholar] [CrossRef]
- Dong, Y.; Chen, I.W. Onset criterion for flash sintering. J. Am. Ceram. Soc. 2015, 98, 3624–3627. [Google Scholar] [CrossRef]
- Shomrat, N.; Baltianski, S.; Dor, E.; Tsur, Y. The influence of doping on flash sintering conditions in SrTi1-xFexO3-δ. J. Eur. Ceram. Soc. 2017, 37, 179–188. [Google Scholar] [CrossRef]
- Lebrun, J.M.; Jha, S.K.; McCormack, S.J.; Kriven, W.M.; Raj, R. Broadening of diffraction peak widths and temperature nonuniformity during flash experiments. J. Am. Ceram. Soc. 2016, 99, 3429–3434. [Google Scholar] [CrossRef]
- Park, J.; Chen, I.W. In situ thermometry measuring temperature flashes exceeding 1700 °C in 8 mol % Y2O3-stabilized zirconia under constant-voltage heating. J. Am. Ceram. Soc. 2013, 96, 697–700. [Google Scholar] [CrossRef]
- Terauds, K.; Lebrun, J.M.; Lee, H.H.; Jeon, T.Y.; Lee, S.H.; Je, J.H.; Raj, R. Electroluminescence and the measurement of temperature during stage III of flash experiments. J. Eur. Ceram. Soc. 2015, 35, 3195–3199. [Google Scholar] [CrossRef]
- Naik, K.; Jha, S.K.; Raj, R. Correlation between conductivity, electroluminescence and flash sintering. Scr. Mater. 2016, 118, 1–4. [Google Scholar] [CrossRef]
- Pereira da Silva, J.G.; Lebrun, J.M.; Al-Qureshi, H.A.; Janssen, R.; Raj, R. Temperature distributions during flash sintering of 8% Yttria-stabilized zirconia. J. Am. Ceram. Soc. 2015, 98, 3525–3528. [Google Scholar] [CrossRef]
- Dong, Y.; Chen, I.W. Predicting the onset of flash sintering. J. Am. Ceram. Soc. 2015, 98, 2333–2335. [Google Scholar] [CrossRef]
- Chaim, R. Liquid film capillary mechanism for densification of ceramic powders during flash sintering. Materials 2016, 9, 280. [Google Scholar] [CrossRef]
- Caliman, L.B.; Bouchet, R.; Gouvea, D.; Soudant, P.; Steil, M.C. Flash sintering of ionic conductors: The need of a reversible electrochemical reaction. J. Eur. Ceram. Soc. 2016, 36, 1253–1260. [Google Scholar] [CrossRef]
- Biesuz, M.; Sglavo, V.M. Flash sintering of alumina: Effect of different operating conditions on densification. J. Eur. Ceram. Soc. 2016, 36, 2535–2542. [Google Scholar] [CrossRef]
- Qin, W.; Majidi, H.; Yun, J.; van Benthem, K. Electrode effects on microstructure formation during flash sintering of yttrium-stabilized zirconia. J. Am. Ceram. Soc. 2016, 99, 2253–2259. [Google Scholar] [CrossRef]
- Francis, J.S.C.; Raj, R. Flash-sinterforging of nanograin zirconia: Field assisted sintering and superplasticity. J. Am. Ceram. Soc. 2012, 95, 138–146. [Google Scholar] [CrossRef]
- Raj, R. Joule heating during flash-sintering. J. Eur. Ceram. Soc. 2012, 32, 2293–2301. [Google Scholar] [CrossRef]
- Straley, J.P. Critical exponents for the conductivity of random resistor lattices. Phys. Rev. B 1977, 15, 5733–5737. [Google Scholar] [CrossRef]
- Jacob, K.T.; Rajitha, G. Thermodynamic properties of strontium titanates: Sr2TiO4, Sr3Ti2O7, Sr4Ti3O10, and SrTiO3. J. Chem. Thermodyn. 2011, 43, 51–57. [Google Scholar] [CrossRef]
- Degueldre, C.; Tissot, P.; Lartigue, H.; Pouchon, M. Specific heat capacity and Debye temperature of zirconia and its solid solution. Thermochim. Acta 2003, 403, 267–273. [Google Scholar] [CrossRef]
- Wan, C.; Motohashi, Y.; Shibata, T.; Baba, S.; Ishihara, M.; Hoshiya, T. Thermal conductivity of superplastically deformed 3Y-TZP. Mater. Trans. 2002, 43, 2473–2479. [Google Scholar] [CrossRef]
- Gugushev, C.; Klimm, D.; Langhnas, F.; Galazka, Z.; Kok, D.; Juda, U.; Uecker, R. Top-seeded solution growth of SrTiO3 crystals and phase diagram studies in the SrO-TiO2 system. arXiv 2013. [Google Scholar]
- Barsoum, M. Fundamentals of Ceramics; McGraw-Hill: New York, NY, USA, 1997; pp. 96–97. [Google Scholar]
- Holland, T.B.; Anselmi-Tamburini, U.; Quach, D.V.; Tran, T.B.; Mukherjee, A. Effects of local Joule heating during the field assisted sintering of ionic ceramics. J. Eur. Ceram. Soc. 2012, 32, 3667–3674. [Google Scholar] [CrossRef]
- Schütze, A.; Jeong, J.Y.; Babayan, S.E.; Park, J.; Selwyn, G.S.; Hicks, R.F. The atmospheric-pressure plasma jet: A review and comparison to other plasma sources. IEEE Trans. Plasma Sci. 1998, 26, 1685–1694. [Google Scholar] [CrossRef]
- Hourdakis, E.; Simonds, B.J.; Zimmerman, N.M. Submicron gap capacitor for measurement of breakdown voltage in air. Rev. Sci. Instrum. 2006, 77, 034702. [Google Scholar] [CrossRef]
- Sili, E.; Cambronne, J.P.; Koliatene, F. Temperature dependence of electrical breakdown mechanism on the left of the Paschen minimum. IEEE Trans. Plasma Sci. 2011, 39, 3173–3179. [Google Scholar] [CrossRef]
- Osmokrović, P.; Krivokapić, I.; Krstić, S. Mechanism of electrical breakdown left of Paschen minimum. IEEE Trans. Dielectr. Electr. Insul. 1994, 1, 77–81. [Google Scholar] [CrossRef]
- Hourdakis, E.; Bryant, G.W.; Zimmerman, N.M. Electrical breakdown in the microscale: Testing the standard theory. J. Appl. Phys. 2006, 100, 123306. [Google Scholar] [CrossRef]
- Marder, R.; Estournes, C.; Chevallier, G.; Chaim, R. Numerical model for sparking and plasma formation during spark plasma sintering of ceramic compacts. J. Mater. Sci. 2015, 50, 4636–4645. [Google Scholar] [CrossRef]
- Marder, R.; Estournes, C.; Chevallier, G.; Chaim, R. Plasma in spark plasma sintering of ceramic particle compacts. Scr. Mater. 2014, 82, 57–60. [Google Scholar] [CrossRef]
- Marder, R.; Estournes, C.; Chevallier, G.; Chaim, R. Spark and plasma in spark plasma sintering of rigid ceramic nanoparticles: A model system of YAG. J. Eur. Ceram. Soc. 2015, 35, 211–218. [Google Scholar] [CrossRef]
- Holland, T.B.; Anselmi-Tamburini, U.; Quach, D.V.; Tran, T.B.; Mukherjee, A. Local field strengths during early stage field assisted sintering (FAST) of dielectric materials. J. Eur. Ceram. Soc. 2012, 32, 3659–3666. [Google Scholar] [CrossRef]
- Biesuz, M.; Luchi, P.; Quaranta, A.; Sglavo, V.M. Theoretical and phenomenological analogies between flash sintering and dielectric breakdown in α-alumina. J. Appl. Phys. 2016, 120, 145107. [Google Scholar] [CrossRef]
- Filippov, A.V.; Rosner, D.E. Energy transfer between an aerosol particle and gas at high temperature ratios in the Knudsen transition regime. Int. J. Heat Mass Trans. 2000, 43, 127–138. [Google Scholar] [CrossRef]
- Pustovalov, V.K. Theoretical study of heating of spherical nanoparticle in media by short laser pulses. Chem. Phys. 2005, 308, 103–108. [Google Scholar] [CrossRef]
- Liu, F.; Daun, K.J.; Snelling, D.R.; Smallwood, G.J. Heat conduction from a spherical nanoparticle: Status of modeling heat conduction in laser-induced incandescence. Appl. Phys. B 2006, 83, 355–382. [Google Scholar] [CrossRef]
- Merabia, S.; Shenogin, S.; Joly, L.; Keblinski, P.; Barrat, J.L. Heat transfer from nanoparticles: A corresponding state physics. Proc. Natl. Acad. Sic. USA 2009, 106, 15113–15118. [Google Scholar] [CrossRef] [PubMed]
- Merabia, S.; Keblinski, P.; Joly, L.; Lewis, L.J.; Barrat, J.L. Critical heat flux around strongly heated nanoparticles. Phys. Rev. E 2009, 79, 021404. [Google Scholar] [CrossRef] [PubMed]
- Francis, J.S.C.; Cologna, M.; Raj, R. Particle size effects in flash sintering. J. Eur. Ceram. Soc. 2012, 32, 3129–3136. [Google Scholar] [CrossRef]
- Bykov, Y.V.; Egorov, S.V.; Eremeev, A.G.; Kholoptsev, V.V.; Plotnikov, I.V.; Rybakov, K.I.; Sorokin, A.A. On the mechanism of microwave flash sintering of ceramics. Materials 2016, 9, 684. [Google Scholar] [CrossRef]
Parameter | (Units) | SrTiO3 [8] | 3YSZ [19,20] |
---|---|---|---|
ρ | g·cm−3 | 5.11 | 6.05 |
W mol | g·mol−1 | 183.52 | 123.22 |
ρ green | % | 60 | 52.5 |
As | cm2 | 1.20 | 1.57 |
Vs | cm3 | 0.09 | 0.196 |
As/Vs | cm−1 | 13.33 | 8.00 |
P applied pressure | MPa | dilatometer | sinter-forge @ 5 MPa |
V | Volt·cm−1 | 600 | 100 |
cp at °C | J·mol−1·K−1 | 126 at 886 K [22] | 85 at 1000 K [23] |
h | W·m−2·K−1 | 20 # | 20 # |
k | W·m·K−1 | 11.2 | 2.8 [24] |
Δt flash event | s | 2.75 | 2.5 |
T surface | °C | 886 | 1000 |
T furnace | °C | 815 | 877 |
T melting | °C | 2080 | 2680 |
ΔS melting (fusion) | J·mol−1·K−1 | 53.20 [25] | 26.77 [26] |
T particle contact | K (°C) | 4489 (4216) | 3387 (3114) |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaim, R. Particle Surface Softening as Universal Behaviour during Flash Sintering of Oxide Nano-Powders. Materials 2017, 10, 179. https://doi.org/10.3390/ma10020179
Chaim R. Particle Surface Softening as Universal Behaviour during Flash Sintering of Oxide Nano-Powders. Materials. 2017; 10(2):179. https://doi.org/10.3390/ma10020179
Chicago/Turabian StyleChaim, Rachman. 2017. "Particle Surface Softening as Universal Behaviour during Flash Sintering of Oxide Nano-Powders" Materials 10, no. 2: 179. https://doi.org/10.3390/ma10020179
APA StyleChaim, R. (2017). Particle Surface Softening as Universal Behaviour during Flash Sintering of Oxide Nano-Powders. Materials, 10(2), 179. https://doi.org/10.3390/ma10020179