BiCuSeO Thermoelectrics: An Update on Recent Progress and Perspective
Abstract
:1. Introduction
2. A Short Review for Various Attempts to Optimize BiCuSeO System
2.1. Enhancing Thermoelectric Properties through Doping and Compositing
2.2. Developing Less Time-Consuming Methods
2.3. Attempting to Synthesize BiCuSeO Single Crystals
3. Exploring the Origins of Low Thermal Conductivity in BiCuSeO
3.1. Low Thermal Conductivity Due to In-Layer/Interlayer Anharmonic Vibrations
3.2. Heavy Bi Is a Predominant Factor That Causes Low Thermal Conductivity
3.3. Dose Cu Matter in Low Thermal Conductivity?
3.4. Microstructures Investigations on Heavy Ba-Doped BiCuSeO
4. Typical Examples to Enhance Thermoelectric Performance of BiCuSeO
4.1. Enhancing Electrical Conductivity by Modulation Doping
4.2. Improving ZT Value of BiCuSeO by Synergetic Approaches
4.2.1. Pb/Ca Dual-Doping
4.2.2. Bi/Cu Dual Vacancies
5. Summery and Perspective
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhao, L.-D.; Berardan, D.; Pei, Y.L.; Byl, C.; Pinsard-Gaudart, L.; Dragoe, N. Bi1−xSrxCuSeO oxyselenides as promising thermoelectric materials. Appl. Phys. Lett. 2010, 97, 092118. [Google Scholar] [CrossRef]
- Li, J.; Sui, J.; Pei, Y.; Barreteau, C.; Berardan, D.; Dragoe, N.; Cai, W.; He, J.; Zhao, L.-D. A high thermoelectric figure of merit ZT > 1 in Ba heavily doped BiCuSeO oxyselenides. Energy Environ. Sci. 2012, 5, 8543–8547. [Google Scholar] [CrossRef]
- Li, F.; Li, J.-F.; Zhao, L.-D.; Xiang, K.; Liu, Y.; Zhang, B.-P.; Lin, Y.-H.; Nan, C.-W.; Zhu, H.-M. Polycrystalline BiCuSeO oxide as a potential thermoelectric material. Energy Environ. Sci. 2012, 5, 7188–7195. [Google Scholar]
- Li, F.; Wei, T.-R.; Kang, F.; Li, J.-F. Enhanced thermoelectric performance of Ca-doped BiCuSeO in a wide temperature range. J. Mater. Chem. A 2013, 1, 11942–11949. [Google Scholar] [CrossRef]
- Pan, L.; Berardan, D.; Zhao, L.-D.; Barreteau, C.; Dragoe, N. Influence of Pb doping on the electrical transport properties of BiCuSeO. Appl. Phys. Lett. 2013, 102, 023902. [Google Scholar] [CrossRef]
- Pei, Y.-L.; He, J.; Li, J.-F.; Li, F.; Liu, Q.; Pan, W.; Barreteau, C.; Berardan, D.; Dragoe, N.; Zhao, L.-D. High thermoelectric performance of oxyselenides: Intrinsically low thermal conductivity of Ca-doped BiCuSeO. NPG Asia Mater. 2013, 5, e47. [Google Scholar] [CrossRef]
- Sui, J.H.; Li, J.; He, J.Q.; Pei, Y.L.; Berardan, D.; Wu, H.J.; Dragoe, N.; Cai, W.; Zhao, L.-D. Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides. Energy Environ. Sci. 2013, 6, 2916–2920. [Google Scholar] [CrossRef]
- Pei, Y.L.; Wu, H.; Wu, D.; Zheng, F.; He, J. High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping. J. Am. Chem. Soc. 2014, 136, 13902–13908. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xiao, C.; Fan, S.J.; Deng, Y.; Zhang, W.S.; Ye, B.J.; Xie, Y. Dual vacancies: An effective strategy realizing synergistic optimization of thermoelectric property in BiCuSeO. J. Am. Chem. Soc. 2015, 137, 6587–6593. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, L.-D.; Zhu, Y.; Liu, Y.; Li, F.; Yu, M.; Liu, D.-B.; Xu, W.; Lin, Y.-H.; Nan, C.-W. Synergistically optimizing electrical and thermal transport properties of BiCuSeO via a dual-doping approach. Adv. Energy Mater. 2016, 6, 1502423. [Google Scholar] [CrossRef]
- Zhao, L.-D.; He, J.; Berardan, D.; Lin, Y.; Li, J.-F.; Nan, C.-W.; Dragoe, N. BiCuSeO oxyselenides: New promising thermoelectric materials. Energy Environ. Sci. 2014, 7, 2900. [Google Scholar] [CrossRef]
- Tan, G.; Shi, F.; Hao, S.; Zhao, L.-D.; Chi, H.; Zhang, X.; Uher, C.; Wolverton, C.; Dravid, V.P.; Kanatzidis, M.G. Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe–SrTe. Nat. Commun. 2016, 7, 12167. [Google Scholar] [CrossRef] [PubMed]
- Heremans, J.P.; Jovovic, V.; Toberer, E.S.; Saramat, A.; Kurosaki, K.; Charoenphakdee, A.; Yamanaka, S.; Snyder, G.J. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 2008, 321, 554–557. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.-D.; Lo, S.H.; Zhang, Y.S.; Sun, H.; Tan, G.J.; Uher, C.; Wolverton, C.; Dravid, V.P.; Kanatzidis, M.G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.-D.; Tan, G.J.; Hao, S.Q.; He, J.Q.; Pei, Y.L.; Chi, H.; Wang, H.; Gong, S.K.; Xu, H.B.; Dravid, V.P.; et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 2016, 351, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.J.; Shi, F.Y.; Hao, S.Q.; Chi, H.; Zhao, L.-D.; Uher, C.; Wolverton, C.; Dravid, V.P.; Kanatzidis, M.G. Codoping in SnTe: Enhancement of thermoelectric performance through synergy of resonance levels and band convergence. J. Am. Chem. Soc. 2015, 137, 5100–5112. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.J.; Shi, F.Y.; Hao, S.Q.; Chi, H.; Bailey, T.P.; Zhao, L.-D.; Uher, C.; Wolverton, C.; Dravid, V.P.; Kanatzidis, M.G. Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe. J. Am. Chem. Soc. 2015, 137, 11507–11516. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.; Shi, F.; Doak, J.W.; Sun, H.; Zhao, L.-D.; Wang, P.; Uher, C.; Wolverton, C.; Dravid, V.P.; Kanatzidis, M.G. Extraordinary role of hg in enhancing the thermoelectric performance of p-type SnTe. Energy Environ. Sci. 2015, 8, 267–277. [Google Scholar] [CrossRef]
- Kim, S.I.; Lee, K.H.; Mun, H.A.; Kim, H.S.; Hwang, S.W.; Roh, J.W.; Yang, D.J.; Shin, W.H.; Li, X.S.; Lee, Y.H.; et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 2015, 348, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Chung, D.-Y.; Hogan, T.; Brazis, P.; Rocci-Lane, M.; Kannewurf, C.; Bastea, M.; Uher, C.; Kanatzidis, M.G. CsBi4Te6: A high-performance thermoelectric material for low-temperature applications. Science 2000, 287, 1024–1027. [Google Scholar] [CrossRef]
- Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O’Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 2001, 413, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Biswas, K.; Zhao, L.-D.; Kanatzidis, M.G. Tellurium-free thermoelectric: The anisotropic n-type semiconductor Bi2S3. Adv. Energy Mater. 2012, 2, 634–638. [Google Scholar] [CrossRef]
- Wang, S.; Tan, G.; Xie, W.; Zheng, G.; Li, H.; Yang, J.; Tang, X. Enhanced thermoelectric properties of Bi2(Te1−xSex)3-based compounds as n-type legs for low-temperature power generation. J. Mater. Chem. 2012, 22, 20943–20951. [Google Scholar] [CrossRef]
- Shi, X.; Kong, H.; Li, C.-P.; Uher, C.; Yang, J.; Salvador, J.R.; Wang, H.; Chen, L.; Zhang, W. Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites. Appl. Phys. Lett. 2008, 92, 182101. [Google Scholar] [CrossRef]
- Tan, G.; Liu, W.; Chi, H.; Su, X.; Wang, S.; Yan, Y.; Tang, X.; Wong-Ng, W.; Uher, C. Realization of high thermoelectric performance in p-type unfilled ternary skutterudites FeSb2+xTe1−x via band structure modification and significant point defect scattering. Acta Mater. 2013, 61, 7693–7704. [Google Scholar] [CrossRef]
- Tan, G.; Zheng, Y.; Tang, X. High thermoelectric performance of nonequilibrium synthesized CeFe4Sb12 composite with multi-scaled nanostructures. Appl. Phys. Lett. 2013, 103, 183904. [Google Scholar] [CrossRef]
- Tan, G.; Zheng, Y.; Yan, Y.; Tang, X. Preparation and thermoelectric properties of p-type filled skutteruditesCeyFe4−xNixSb12. J. Alloys Compd. 2014, 584, 216–221. [Google Scholar] [CrossRef]
- Tan, G.; Wang, S.; Li, H.; Yan, Y.; Tang, X. Enhanced thermoelectric performance in zinc substituted p-type filled skutterudites CeFe4−xZnxSb12. J. Solid State Chem. 2012, 187, 316–322. [Google Scholar] [CrossRef]
- Liu, W.S.; Zhang, B.P.; Li, J.F.; Zhao, L.-D. Effects of SB compensation on microstructure, thermoelectric properties and point defect of CoSb3 compound. J. Phys. D Appl. Phys. 2007, 40, 6784–6790. [Google Scholar] [CrossRef]
- Li, J.; Sui, J.; Barreteau, C.; Berardan, D.; Dragoe, N.; Cai, W.; Pei, Y.; Zhao, L.-D. Thermoelectric properties of Mg doped p-type BiCuSeO oxyselenides. J. Alloys Compd. 2013, 551, 649–653. [Google Scholar] [CrossRef]
- Liu, Y.C.; Zheng, Y.H.; Zhan, B.; Chen, K.; Butt, S.; Zhang, B.P.; Lin, Y.H. Influence of Ag doping on thermoelectric properties of BiCuSeO. J. Eur. Ceram. Soc. 2015, 35, 845–849. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, J.; Xu, B.; Lan, J.; Zheng, Y.; Zhan, B.; Zhang, B.; Lin, Y.; Nan, C. Enhanced thermoelectric performance of La-doped BiCuSeO by tuning band structure. Appl. Phys. Lett. 2015, 106, 233903. [Google Scholar] [CrossRef]
- Ren, G.K.; Butt, S.; Zeng, C.C.; Liu, Y.C.; Zhan, B.; Lan, J.L.; Lin, Y.H.; Nan, C.W. Electrical and thermal transport behavior in Zn-doped BiCuSeO oxyselenides. J. Electron. Mater. 2015, 44, 1627–1631. [Google Scholar] [CrossRef]
- Farooq, M.U.; Butt, S.; Gao, K.W.; Zhu, Y.C.; Sun, X.G.; Pang, X.L.; Khan, S.U.; Mohmed, F.; Mahmood, A.; Mahmood, N.; et al. Cd-doping a facile approach for better thermoelectric transport properties of BiCuSeO oxyselenides. RSC Adv. 2016, 6, 33789–33797. [Google Scholar] [CrossRef]
- Han, M.K.; Jin, Y.S.; Yu, B.K.; Choi, W.; You, T.S.; Kim, S.J. Sulfur to oxygen substitution in BiCuSeO and its effect on the thermoelectric properties. J. Mater. Chem. A 2016, 4, 13859–13865. [Google Scholar] [CrossRef]
- Tan, S.G.; Lei, H.C.; Shao, D.F.; Lv, H.Y.; Lu, W.J.; Huang, Y.N.; Liu, Y.; Yuan, B.; Zu, L.; Kan, X.C.; et al. Enhanced low temperature thermoelectric performance of Ag-doped BiCuSeO. Appl. Phys. Lett. 2014, 105, 082109. [Google Scholar]
- Farooq, M.U.; Butt, S.; Gao, K.; Pang, X.L.; Sun, X.; Asfandiyar; Mohmed, F.; Ahmad, A.; Mahmood, A.; Mahmood, N. Improved thermoelectric performance of BiCuSeO byAg substitution at cu site. J. Alloys Compd. 2017, 691, 572–577. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, J.; Jiang, Q.; Fu, L.; Xiao, Y.; Luo, Y.; Zhang, D.; Cheng, Y.; Zhou, Z. Multi-role of sodium doping in BiCuSeO on high thermoelectric performance. J. Electron. Mater. 2015, 44, 2849–2855. [Google Scholar] [CrossRef]
- Liu, Y.; Lan, J.; Zhang, B.; Lin, Y.; Nan, C. Thermoelectric transport properties of BiCuSeO with embedded La0.8Sr0.2CoO3 nanoinclusions. Sci. China Technol. Sci. 2016, 59, 1036–1041. [Google Scholar] [CrossRef]
- Liu, Y.C.; Zhou, Y.M.; Lan, J.L.; Zeng, C.C.; Zheng, Y.H.; Zhan, B.; Zhang, B.P.; Lin, Y.H.; Nan, C.W. Enhanced thermoelectric performance of BiCuSeO composites with nanoinclusion of Cu selenides. J. Alloys Compd. 2016, 662, 320–324. [Google Scholar] [CrossRef]
- Ren, G.-K.; Lan, J.-l.; Butt, S.; Ventura, K.J.; Lin, Y.-H.; Nan, C.-W. Enhanced thermoelectric properties in Pb-doped BiCuSeO oxyselenides prepared by ultrafast synthesis. RSC Adv. 2015, 5, 69878–69885. [Google Scholar] [CrossRef]
- Yang, D.; Su, X.; Yan, Y.; Hu, T.; Xie, H.; He, J.; Uher, C.; Kanatzidis, M.G.; Tang, X. Manipulating the combustion wave during self-propagating synthesis for high thermoelectric performance of layered oxychalcogenide Bi1–xPbxCuSeO. Chem. Mater. 2016, 28, 4628–4640. [Google Scholar] [CrossRef]
- Lan, J.L.; Liu, Y.C.; Zhan, B.; Lin, Y.H.; Zhang, B.; Yuan, X.; Zhang, W.; Xu, W.; Nan, C.W. Enhanced thermoelectric properties of Pb-doped BiCuSeO ceramics. Adv. Mater. 2013, 25, 5086–5090. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Zhou, Y.C.; Lin, Z.J. Mechanical properties and atomistic deformation mechanism of γ-Y2Si2O7 from first-principles investigations. Acta Mater. 2007, 55, 6019–6026. [Google Scholar] [CrossRef]
- Dong, S.T.; Lv, Y.Y.; Zhang, B.B.; Zhang, F.; Yao, S.H.; Chen, Y.B.; Zhou, J.; Zhang, S.T.; Gu, Z.B.; Chen, Y.F. Strong correlation of the growth mode and electrical properties of BiCuSeO single crystals with growth temperature. Crystengcomm 2015, 17, 6136–6141. [Google Scholar] [CrossRef]
- Wu, X.; Wang, J.-L.; Zhang, H.; Wang, S.; Zhai, S.; Li, Y.; Elhadj, D.; Fu, G. Epitaxial growth and thermoelectric properties of c-axis oriented Bi1−xPbxCuSeO single crystalline thin films. Crystengcomm 2015, 17, 8697–8702. [Google Scholar] [CrossRef]
- Samanta, M.; Guin, S.N.; Biswas, K. Ultrathin few layer oxychalcogenide BiCuSeO nanosheets. Inorg. Chem. Front. 2017, 4, 84–90. [Google Scholar] [CrossRef]
- Saha, S.K.; Dutta, G. Elastic and thermal properties of the layered thermoelectrics BiCuSeO and LaOCuSe. Phys. Rev. B 2016, 94, 125209. [Google Scholar] [CrossRef]
- Liu, G.; Sun, H.Y.; Zhou, J.; Li, Q.F.; Wan, X.G. Thermal properties of layered oxychalcogenides BiCuOCh (Ch = S, Se, and Te): A first-principles calculation. J. Appl. Phys. 2016, 119, 185109. [Google Scholar] [CrossRef]
- Ji, H.S.; Togo, A.; Kaviany, M.; Tanaka, I.; Shim, J.H. Low phonon conductivity of layered BiCuSO, BiCuSeO, and BiCuTeO from first principles. Phys. Rev. B 2016, 94, 115203. [Google Scholar] [CrossRef]
- Shao, H.; Tan, X.; Liu, G.-Q.; Jiang, J.; Jiang, H. A first-principles study on the phonon transport in layered bicuose. Sci. Rep. 2016, 6, 21035. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, C.-L.; Qi, X. The oxidation states of elements in pure and Ca-doped BiCuSeO thermoelectric oxides. Acta Mater. 2016, 102, 88–96. [Google Scholar] [CrossRef]
- Chou, T.-L.; Tewari, G.C.; Chan, T.-S.; Hsu, Y.-Y.; Yamauchi, H.; Karppinen, M. Exafs study of thermoelectric BiCuOSe: Effects of Cu vacancies. Solid State Commun. 2015, 206, 12–16. [Google Scholar] [CrossRef]
- Berthebaud, D.; Guilmeau, E.; Lebedev, O.I.; Maignan, A.; Gamon, J.; Barboux, P. The BiCu1−xOS oxysulfide: Cu deficiency and electronic properties. J. Solid State Chem. 2016, 237, 292–299. [Google Scholar] [CrossRef]
- Li, F.; Wei, T.R.; Kang, F.Y.; Li, J.F. Thermal stability and oxidation resistance of BiCuSeO based thermoelectric ceramics. J. Alloys Compd. 2014, 614, 394–400. [Google Scholar] [CrossRef]
- Barreteau, C.; Berardan, D.; Dragoe, N. Studies on the thermal stability of BiCuSeO. J. Solid State Chem. 2015, 222, 53–59. [Google Scholar] [CrossRef]
- Ding, J.; Xu, B.; Lin, Y.; Nan, C.; Liu, W. Lattice vibration modes of the layered material BiCuSeO and first principles study of its thermoelectric properties. New J. Phys. 2015, 17, 083012. [Google Scholar] [CrossRef]
- Saha, S.K. Exploring the origin of ultralow thermal conductivity in layered BiOCuSe. Phys. Rev. B 2015, 92, 041202. [Google Scholar] [CrossRef]
- Vaqueiro, P.; Al Orabi, R.A.; Luu, S.D.; Guelou, G.; Powell, A.V.; Smith, R.I.; Song, J.P.; Wee, D.; Fornari, M. The role of Cu in the thermal conductivity of thermoelectric oxychalcogenides: Do lone pairs matter? Phys. Chem. Chem. Phys. 2015, 17, 31735–31740. [Google Scholar] [CrossRef] [PubMed]
- Abrahams, S.C. Piezoelectric nonlinear optic CuGaSe2 and CdGeAs2: Crystal structure, chalcopyrite microhardness, and sublattice distortion. J. Chem. Phys. 1974, 61, 1140. [Google Scholar] [CrossRef]
- Sales, B.C.; Mandrus, D.G.; Chakoumakos, B.C. Chapter 1 use of atomic displacement parameters in thermoelectric materials research. In Semiconductors and Semimetals; Terry, M.T., Ed.; Elsevier: Amsterdam, The Netherlands, 2001; Volume 70, pp. 1–36. [Google Scholar]
- Kumar, S.; Schwingenschlogl, U. Lattice thermal conductivity in layered BiCuSeO. Phys. Chem. Chem. Phys. 2016, 18, 19158–19164. [Google Scholar] [CrossRef] [PubMed]
- Barreteau, C.; Berardan, D.; Amzallag, E.; Zhao, L.-D.; Dragoe, N. Structural and electronic transport properties in Sr-doped BiCuSeO. Chem. Mat. 2012, 24, 3168–3178. [Google Scholar] [CrossRef]
- Mizuno, S.; Ishizawa, M.; Fujishiro, H.; Naito, T.; Katsui, H.; Goto, T. Ball milling effects for induced carriers and reduced grain size on thermoelectric properties in Bi1−xSrxCuSeO (x = 0, 0.1). Jpn. J. Appl. Phys. 2016, 55, 11. [Google Scholar] [CrossRef]
- Feng, D.; Zheng, F.S.; Wu, D.; Wu, M.H.; Li, W.; Huang, L.; Zhao, L.-D.; He, J.Q. Investigation into the extremely low thermal conductivity in Ba heavily doped BiCuSeO. Nano Energy 2016, 27, 167–174. [Google Scholar] [CrossRef]
- Tan, G.J.; Zhao, L.-D.; Kanatzidis, M.G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 2016, 116, 12123–12149. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Chang, C.; Zhou, Y.; Zhao, L.-D. BiCuSeO Thermoelectrics: An Update on Recent Progress and Perspective. Materials 2017, 10, 198. https://doi.org/10.3390/ma10020198
Zhang X, Chang C, Zhou Y, Zhao L-D. BiCuSeO Thermoelectrics: An Update on Recent Progress and Perspective. Materials. 2017; 10(2):198. https://doi.org/10.3390/ma10020198
Chicago/Turabian StyleZhang, Xiaoxuan, Cheng Chang, Yiming Zhou, and Li-Dong Zhao. 2017. "BiCuSeO Thermoelectrics: An Update on Recent Progress and Perspective" Materials 10, no. 2: 198. https://doi.org/10.3390/ma10020198
APA StyleZhang, X., Chang, C., Zhou, Y., & Zhao, L. -D. (2017). BiCuSeO Thermoelectrics: An Update on Recent Progress and Perspective. Materials, 10(2), 198. https://doi.org/10.3390/ma10020198