Fabrication and Cytotoxicity of Fucoidan-Cisplatin Nanoparticles for Macrophage and Tumor Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Fucoidan-Cisplatin Nanoparticles (FCNPs)
2.3. Characterization of Fucoidan-Cisplatin Nanoparticles
2.4. Cell Culture
2.5. Cells Viability of Cisplatin, Fucoidan, and Fu100Cis20 in RAW264.7 and HCT-8 Cells
2.6. Statistical Analysis
3. Results and Discussion
3.1. Production Process of FCNPs
3.2. Characteristics of FCNPs and Fu100Cis20
3.3. Immunomodulatory Activity of Cisplatin, Fucoidan, and Fu100Cis20
3.4. Cytotoxicity against Tumor Cell of Cisplatin, Fucoidan and Fu100Cis20
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gordon, M.; Hollander, S. Review of platinum anticancer compounds. J. Med. 1993, 24, 209–265. [Google Scholar] [PubMed]
- Wang, D.; Lippard, S.J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 2005, 4, 307–320. [Google Scholar] [CrossRef] [PubMed]
- Florea, A.M.; Büsselberg, D. Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance and induced side effects. Cancers 2011, 3, 1351–1371. [Google Scholar] [CrossRef] [PubMed]
- Pruefer, F.G.; Lizarraga, F.; Maldonado, V.; Melendez-Zajgla, J. Participation of Omi Htra2 serine-protease activity in the apoptosis induced by cisplatin on SW480 colon cancer cells. J. Chemother. 2008, 20, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Fink, D.; Nebel, S.; Aebi, S.; Zheng, H.; Cenni, B.; Nehme, A.; Christen, R.D.; Howell, S.B. The role of DNA mismatch repair in platinum drug resistance. Cancer Res. 1996, 56, 4881–4886. [Google Scholar] [PubMed]
- Morral-Ruiz, G.; Melgar-Lesmes, P.; Solans, C.; Garcia-Celma, M.J. Multifunctional polyurethane-urea nanoparticles to target and arrest inflamed vascular environment: A potential tool for cancer therapy and diagnosis. J. Control. Release 2013, 171, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, P.; Sodhi, A.; Shrivastava, A. Cisplatin primes murine peritoneal macrophages for enhanced expression of nitric oxide, proinflammatory cytokines, TLRs, transcription factors and activation of MAP kinases upon co-incubation with L929 cells. Immunobiology 2009, 214, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.H.; Oh, D.J.; Dursun, B.; He, Z.; Hoke, T.S.; Faubel, S.; Edelstein, C.L. Increased macrophage infiltration and fractalkine expression in cisplatin-induced acute renal failure in mice. J. Pharmacol. Exp. Ther. 2008, 324, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, A.C.; Bourbon, A.I.; Cerqueira, M.A.; Maricato, E.; Nunes, C.; Coimbra, M.A.; Vicente, A.A. Chitosan/fucoidan multilayer nanocapsules as a vehicle for controlled release of bioactive compounds. Carbohydr. Polym. 2015, 115, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Greish, K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol. 2010, 624, 25–37. [Google Scholar] [PubMed]
- Ye, H.; Jin, L.; Hu, R.; Yi, Z.; Li, J.; Wu, Y.; Xi, X.; Wu, Z. Poly(gamma,l-glutamic acid)-cisplatin conjugate effectively inhibits human breast tumor xenografted in nude mice. Biomaterials 2006, 27, 5958–5965. [Google Scholar] [CrossRef] [PubMed]
- Araki, H.T.T.; Kodama, M. Anti-tumor effect of cisplatin incorporated into polylactic acid microcapsules. Artif. Organs 1999, 23, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Kylin, H. Biochemistry of sea algae. Phys. Chem. 1913, 83, 171–197. [Google Scholar]
- Venkatesan, J.; Bhatnagar, I.; Kim, S.K. Chitosan-Alginate Biocomposite Containing Fucoidan for Bone Tissue Engineering. Mar. Drugs 2014, 12, 300–316. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.C.; Hsu, W.L.; Hwang, P.A.; Chen, Y.L.; Chou, T.C. Combined administration of fucoidan ameliorates tumor and chemotherapy-induced skeletal muscle atrophy in bladder cancer-bearing mice. Oncotarget 2016, 7, 51608–51618. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.Y.; Lin, T.Y.; Hwang, P.A.; Tseng, L.M.; Chen, R.H.; Tsao, S.M.; Hsu, J. Fucoidan induces changes in the epithelial to mesenchymal transition and decreases metastasis by enhancing ubiquitin-dependent TGFbeta receptor degradation in breast cancer. Carcinogenesis 2013, 34, 874–884. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.Y.; Lin, T.Y.; Wu, Y.C.; Tsao, S.M.; Hwang, P.A.; Shih, Y.W.; Hsu, J. Fucoidan inhibition of lung cancer in vivo and in vitro : Role of the Smurf2-dependent ubiquitin proteasome pathway in TGFbeta receptor degradation. Oncotarget 2014, 5, 7870–7885. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.C.; Hsu, W.L.; Hwang, P.A.; Chou, T.C. Low Molecular Weight Fucoidan Inhibits Tumor Angiogenesis through Downregulation of HIF-1/VEGF Signaling under Hypoxia. Mar. Drugs 2015, 13, 4436–4451. [Google Scholar] [CrossRef] [PubMed]
- Hwang, P.A.; Chien, S.Y.; Chan, Y.L.; Lu, M.K.; Wu, C.H.; Kong, Z.L.; Wu, C.J. Inhibition of Lipopolysaccharide (LPS)-induced inflammatory responses by Sargassum hemiphyllum sulfated polysaccharide extract in RAW 264.7 macrophage cells. J. Agric. Food Chem. 2011, 59, 2062–2068. [Google Scholar] [CrossRef] [PubMed]
- Hwang, P.A.; Hung, Y.L.; Chien, S.Y. Inhibitory activity of Sargassum hemiphyllum sulfated polysaccharide in arachidonic acid-induced animal models of inflammation. J. Food Drug Anal. 2015, 23, 49–56. [Google Scholar] [CrossRef]
- Irhimeh, M.R.; Fitton, J.H.; Lowenthal, R.M. Pilot clinical study to evaluate the anticoagulant activity of fucoidan. Blood Coagul. Fibrinolysis 2009, 20, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Hwang, P.A.; Hung, Y.L.; Phan, N.N.; Hieu, B.T.N.; Chang, P.M.; Li, K.L.; Lin, Y.C. The in vitro and in vivo effects of the low molecular weight fucoidan on the bone osteogenic differentiation properties. Cytotechnology 2016, 68, 1349–1359. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhao, Y.; Zhang, Y.; Zhang, D. Fucoidan induces cancer cell apoptosis by modulating the endoplasmic reticulum stress cascades. PLoS ONE 2014, 9, e108157. [Google Scholar] [CrossRef] [PubMed]
- Park, H.Y.; Kim, G.Y.; Moon, S.K.; Kim, W.J.; Yoo, Y.H.; Choi, Y.H. Fucoidan inhibits the proliferation of human urinary bladder cancer T24 cells by blocking cell cycle progression and inducing apoptosis. Molecules 2014, 19, 5981–5998. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.C.; Kuo, T.H. O-carboxymethyl chitosan/fucoidan nanoparticles increase cellular curcumin uptake. Food Hydrocoll. 2016, 53, 261–269. [Google Scholar] [CrossRef]
- Lee, K.W.; Jeong, D.; Na, K. Doxorubicin loading fucoidan acetate nanoparticles for immune and chemotherapy in cancer treatment. Carbohydr. Polym. 2013, 94, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Golla, E.D.; Ayres, G.H. Spectrophotometric determination of platinum with o-phenylenediamine. Talanta 1973, 20, 199–210. [Google Scholar] [CrossRef]
- Ermakova, S.; Kusaykin, M.; Trincone, A.; Tatiana, Z. Are multifunctional marine polysaccharides a myth or reality? Front. Chem. 2015, 3, 39. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.W.; Yu, D.S.; Tsao, S.W.; Hsu, F.Y. Hyaluronan-cisplatin conjugate nanoparticles embedded in Eudragit S100-coated pectin/alginate microbeads for colon drug delivery. Int. J. Nanomed. 2013, 8, 2399–2407. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, N.; Okazaki, S.; Cabral, H.; Miyamoto, M.; Kato, Y.; Sugiyama, Y.; Nishio, K.; Matsumura, Y.; Kataoka, K. Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res. 2003, 63, 8977–8983. [Google Scholar] [PubMed]
- Cai, S.; Xie, Y.M.; Bagby, T.R.; Cohen, M.S.; Forrest, M.L. Intralymphatic chemotherapy using a hyaluronan-cisplatin conjugate. J. Surg. Res. 2008, 147, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Dellian, M.; Fukumura, D.; Leunig, M.; Berk, D.A.; Torchilin, V.P.; Jain, R.K. Vascular permeability in a human tumor xenograft: Molecular size dependence and cutoff size. Cancer Res. 1995, 55, 3752–3756. [Google Scholar] [PubMed]
- Huang, Y.C.; Lam, U.I. Chitosan/Fucoidan pH Sensitive Nanoparticles for Oral Delivery System. J. Chin. Chem. Soc. 2011, 58, 779–785. [Google Scholar] [CrossRef]
- Maruyama, H.; Tamauchi, H.; Iizuka, M.; Nakano, T. The role of NK cells in antitumor activity of dietary fucoidan from Undaria pinnatifida sporophylls (Mekabu). Planta Med. 2006, 72, 1415–1417. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.H.; Joo, H.G. Immunostimulatory effects of fucoidan on bone marrow-derived dendritic cells. Immunol. Lett. 2008, 115, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Ale, M.T.; Maruyama, H.; Tamauchi, H.; Mikkelsen, J.D.; Meyer, A.S. Fucoidan from Sargassum sp. and Fucus vesiculosus reduces cell viability of lung carcinoma and melanoma cells in vitro and activates natural killer cells in mice in vivo. Int. J. Biol. Macromol. 2011, 49, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, R.K. Review of Cisplatin and oxaliplatin in current immunogenic and monoclonal antibody treatments. Oncol. Rev. 2014, 8, 256. [Google Scholar] [CrossRef] [PubMed]
- Song, M.Y.; Ku, S.K.; Kim, H.J.; Han, J.S. Low molecular weight fucoidan ameliorating the chronic cisplatin-induced delayed gastrointestinal motility in rats. Food Chem. Toxicol. 2012, 50, 4468–4478. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.I.; Kim, S.T.; Jin, S.G.; Ryu, H.H.; Jin, Y.H.; Jung, T.Y.; Kim, I.Y.; Jung, S. Cisplatin-incorporated hyaluronic acid nanoparticles based on ion-complex formation. J. Pharm. Sci. 2008, 97, 1268–1276. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.S.; Cai, S.; Xie, Y.; Forrest, M.L. A novel intralymphatic nanocarrier delivery system for cisplatin therapy in breast cancer with improved tumor efficacy and lower systemic toxicity in vivo. Am. J. Surg. 2009, 198, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Park, S.Y.; Lee, J.Y.; Park, J.H. Fucoidan present in brown algae induces apoptosis of human colon cancer cells. BMC Gastroenterol. 2010, 10, 96. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.H.; Zhao, X.S.; Qu, X.K.; Fang, J. pH sensitive polymeric complex of cisplatin with hyaluronic acid exhibits tumor-targeted delivery and improved in vivo antitumor effect. Int. J. Pharm. 2015, 496, 644–653. [Google Scholar] [CrossRef] [PubMed]
Fucoidan (mg) | Cisplatin (mg) | Input Weight (mg) | Recovery (%) | Cisplatin Content (%) | Cisplatin Loading Efficiency (%) | |
---|---|---|---|---|---|---|
Fu25Cis20 | 2.5 | 2.0 | 4.5 | 62.2 ± 5.5 a | 6.9 ± 1.6 a | 9.5 ± 1.4 a |
Fu50Cis20 | 5.0 | 2.0 | 7.0 | 72.6 ± 0.3 b | 11.1 ± 0.3 b | 28.3 ± ± 2.3 b |
Fu75Cis20 | 7.5 | 2.0 | 9.5 | 84.2 ± 4.7 c | 13.4 ± 3.1 b | 53.9 ± 13.1 c |
Fu100Cis20 | 10.0 | 2.0 | 12.0 | 82.8 ± 5.7 c | 18.9 ± 2.7 c | 93.3 ± 7.8 d |
Fucoidan (mg) | Cisplatin (mg) | Input Weight (mg) | Recovery (%) | Cisplatin Content (%) | Cisplatin Loading Efficiency (%) | |
---|---|---|---|---|---|---|
Fu100Cis5 | 10.0 | 0.5 | 4.5 | 85.7 ± 4.3 a | 3.4 ± 0.3 a | 59.5 ± 0.9 a |
Fu100Cis15 | 10.0 | 1.5 | 7.0 | 74.8 ± 4.6 b | 11.1 ± 0.4 b | 66.1 ± ± 4.9 b |
Fu100Cis20 | 10.0 | 2.0 | 12.0 | 82.8 ± 5.7 a | 18.9 ± 2.7 c | 93.3 ± 7.8 c |
Fu100Cis40 | 10.0 | 4.0 | 14.0 | 75.0 ± 2.0 b | 10.0 ± 0.2 b | 26.2 ± 1.2 d |
Fucoidan (mg) | Cisplatin (mg) | Average Particle Size (nm) | Zeta Potential (mV) | |
---|---|---|---|---|
Fu25Cis20 | 2.5 | 2.0 | 468.1 ± 21.7 a | −31.5 ± 4.7 a |
Fu50Cis20 | 5.0 | 2.0 | 426.2 ± 15.8 a | −33.5 ± 5.6 a |
Fu75Cis20 | 7.5 | 2.0 | 391.6 ± 34.9 a | −44.9 ± 4.5 b |
Fu100Cis20 | 10.0 | 2.0 | 181.2 ± 21.0 b | −67.4 ± 2.3 c |
Fucoidan (mg) | Cisplatin (mg) | Average Particle Size (nm) | Zeta Potential (mV) | |
---|---|---|---|---|
Fu100Cis5 | 10.0 | 0.5 | 224.0 ± 45.2 a | −63.2 ± 5.2 a |
Fu100Cis15 | 10.0 | 1.5 | 193.4 ± 31.1 b | −68.9 ± 8.3 a |
Fu100Cis20 | 10.0 | 2.0 | 181.2 ± 21.0 b | −67.4 ± 2.3 a |
Fu100Cis40 | 10.0 | 4.0 | 145.2 ± 23.0 c | −59.4 ± 8.0 b |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, P.-A.; Lin, X.-Z.; Kuo, K.-L.; Hsu, F.-Y. Fabrication and Cytotoxicity of Fucoidan-Cisplatin Nanoparticles for Macrophage and Tumor Cells. Materials 2017, 10, 291. https://doi.org/10.3390/ma10030291
Hwang P-A, Lin X-Z, Kuo K-L, Hsu F-Y. Fabrication and Cytotoxicity of Fucoidan-Cisplatin Nanoparticles for Macrophage and Tumor Cells. Materials. 2017; 10(3):291. https://doi.org/10.3390/ma10030291
Chicago/Turabian StyleHwang, Pai-An, Xiao-Zhen Lin, Ko-Liang Kuo, and Fu-Yin Hsu. 2017. "Fabrication and Cytotoxicity of Fucoidan-Cisplatin Nanoparticles for Macrophage and Tumor Cells" Materials 10, no. 3: 291. https://doi.org/10.3390/ma10030291
APA StyleHwang, P.-A., Lin, X.-Z., Kuo, K.-L., & Hsu, F.-Y. (2017). Fabrication and Cytotoxicity of Fucoidan-Cisplatin Nanoparticles for Macrophage and Tumor Cells. Materials, 10(3), 291. https://doi.org/10.3390/ma10030291