Enhanced Ferromagnetism in Nanoscale GaN:Mn Wires Grown on GaN Ridges
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Content Analysis
3.2. Magnetic Properties
3.3. Structural Analysis
3.4. Micro-Raman Spectra
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Žutić, I.; Fabian, J.; Sarma, S.D. Spintronics: Fundamentals and applications. Rev. Modern Phys. 2004, 76, 323–410. [Google Scholar] [CrossRef]
- Ohno, Y.; Young, D.K.; Beschoten, B.; Matsukura, F.; Ohno, H.; Awschalom, D.D. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 1999, 402, 790–792. [Google Scholar] [CrossRef]
- Sanyal, B.; Bengone, O.; Mirbt, S. Electronic structure and magnetism of Mn-doped GaN. Phys. Rev. B 2003, 68, 205210. [Google Scholar] [CrossRef]
- Sato, K.; Katayama-Yoshida, H. Material design of GaN-based ferromagnetic diluted magnetic semiconductors. Jpn. J. Appl. Phys. 2001, 40, L485–L487. [Google Scholar] [CrossRef]
- Dietl, T.; Ohno, H.; Matsukura, F. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys. Rev. B 2001, 63, 195205. [Google Scholar] [CrossRef]
- Han, D.S.; Park, J.; Rhie, K.W.; Kim, S.; Chang, J. Ferromagnetic Mn-doped GaN nanowires. Appl. Phys. Lett. 2005, 86, 032506. [Google Scholar] [CrossRef]
- Lin, Y.T.; Wadekar, P.V.; Kao, H.S.; Chen, T.H.; Huang, H.C.; Ho, N.J.; Chen, Q.Y.; Tu, L.W. Above room-temperature ferromagnetism of Mn delta-doped GaN nanorods. Appl. Phys. Lett. 2014, 104, 062414. [Google Scholar] [CrossRef]
- Stefanowicz, S.; Kunert, G.; Simserides, C.; Majewski, J.A.; Stefanowicz, W.; Kruse, C.; Figge, S.; Li, T.; Jakieła, R.; Trohidou, K.N.; et al. Phase diagram and critical behavior of the random ferromagnet Ga1−xMnxN. Phys. Rev. B 2013, 88, 081201. [Google Scholar] [CrossRef]
- Sawicki, M.; Devillers, T.; Gałęski, S.; Simserides, C.; Dobkowska, S.; Faina, B.; Grois, A.; Navarro-Quezada, A.; Trohidou, K.N.; Majewski, J.A.; et al. Origin of low-temperature magnetic ordering in Ga1−xMnxN. Phys. Rev. B 2012, 85, 205204. [Google Scholar] [CrossRef]
- Simserides, C.; Majewski, J.A.; Trohidou, K.N.; Dietl, T. Theory of ferromagnetism driven by superexchange in dilute magnetic semi-conductors. EPJ Web Conf. 2014, 75, 01003. [Google Scholar] [CrossRef]
- Reed, M.L.; El-Masry, N.A.; Stadelmaier, H.H.; Ritums, M.K.; Reed, M.J.; Parker, C.A.; Roberts, J.C.; Bedair, S.M. Room temperature ferromagnetic properties of (Ga, Mn)N. Appl. Phys. Lett. 2001, 79, 3473. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, N.; Liu, X.; Liu, Z.; Yang, S.; Chai, C. The magnetic and structure properties of room-temperature ferromagnetic semiconductor (Ga,Mn)N. J. Cryst. Growth 2004, 262, 287–289. [Google Scholar] [CrossRef]
- Choi, H.J.; Seong, H.K.; Chang, J.; Lee, K.I.; Park, Y.J.; Kim, J.J.; Lee, S.K.; He, R.; Kuykendall, T.; Yang, P. Single-crystalline diluted magnetic semiconductor GaN:Mn nanowires. Adv. Mater. 2005, 17, 1351–1356. [Google Scholar] [CrossRef]
- Song, Y.P.; Wang, P.W.; Zhang, X.H.; Yu, D.P. Retracted: Ferromagnetic GaMnN nanowires with Tc above room temperature. Phys. B Condens. Matter 2005, 368, 16–24. [Google Scholar] [CrossRef]
- Cui, X.G.; Tao, Z.K.; Zhang, R.; Li, X.; Xiu, X.Q.; Xie, Z.L.; Gu, S.L.; Han, P.; Shi, Y.; Zheng, Y.D. Structural and magnetic properties in Mn-doped GaN grown by Metal Organic Chemical Vapor Deposition. Appl. Phys. Lett. 2008, 92, 152116. [Google Scholar] [CrossRef]
- Jeon, H.C.; Kang, T.W.; Kim, T.W.; Kang, J.; Chang, K.J. Enhancement of the magnetic properties in (Ga1−xMnx)N thin films due to Mn-delta doping. Appl. Phys. Lett. 2005, 87, 092501. [Google Scholar] [CrossRef]
- Liu, C.; Yun, F.; Morkoç, H. Ferromagnetism of ZnO and GaN: A review. J. Mater. Sci. Mater. Electron. 2005, 16, 555–597. [Google Scholar] [CrossRef]
- Chen, Z.-T.; Su, Y.-Y.; Yang, Z.-J.; Zhang, Y.; Zhang, B.; Guo, L.-P.; Xu, K.; Pan, Y.-B.; Zhang, H.; Zhang, G.-Y. Room-temperature ferromagnetism of Ga1−xMnxN grown by low-pressure Metalorganic Chemical Vapour Deposition. Chin. Phys. Lett. 2006, 23, 1286–1288. [Google Scholar] [CrossRef]
- Flatté, M.E. Dilute magnetic semiconductors: Hidden order revealed. Nat. Phys. 2011, 7, 285–286. [Google Scholar] [CrossRef]
- Dietl, T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 2010, 9, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Waag, A. GaN based nanorods for solid state lighting. J. Appl. Phys. 2012, 111, 071101. [Google Scholar] [CrossRef]
- Tchernycheva, M.; Neplokh, V.; Zhang, H.; Lavenus, P.; Rigutti, L.; Bayle, F.; Julien, F.H.; Babichev, A.; Jacopin, G.; Largeau, L.; et al. Core-shell InGaN/GaN nanowire light emitting diodes analyzed by electron beam induced current microscopy and cathodoluminescence mapping. Nanoscale 2015, 7, 11692–11701. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-T.; Yeh, T.-W.; Nakajima, Y.; Dapkus, P.D. Catalyst-free GaN nanorods synthesized by selective area growth. Adv. Funct. Mater. 2014, 24, 3162–3171. [Google Scholar] [CrossRef]
- Wang, X.-L.; Voliotis, V. Epitaxial growth and optical properties of semiconductor quantum wires. J. Appl. Phys. 2006, 99, 121301. [Google Scholar] [CrossRef]
- Herrera, M.; Cremades, A.; Stutzmann, M.; Piqueras, J. Electrical properties of pinholes in GaN:Mn epitaxial films characterized by conductive AFM. Superlattices Microstruct. 2009, 45, 435–443. [Google Scholar] [CrossRef]
- Sawicki, M.; Stefanowicz, W.; Ney, A. Sensitive SQUID magnetometry for studying nanomagnetism. Semicond. Sci. Technol. 2011, 26, 064006. [Google Scholar] [CrossRef]
- Scholz, F. Semipolar GaN grown on foreign substrates: A review. Semicond. Sci. Technol. 2012, 27, 024002. [Google Scholar] [CrossRef]
- Zou, X.; Lu, X.; Lucas, R.; Kuech, T.F.; Choi, J.W.; Gopalan, P.; May Lau, K. Growth and characterization of horizontal GaN wires on silicon. Appl. Phys. Lett. 2014, 104, 262101. [Google Scholar] [CrossRef]
- Khromov, S.; Hemmingsson, C.G.; Amano, H.; Monemar, B.; Hultman, L.; Pozina, G. Luminescence related to high density of Mg-induced stacking faults in homoepitaxially grown GaN. Phys. Rev. B 2011, 84. [Google Scholar] [CrossRef]
- Schmidt, T.M.; Miwa, R.H.; Orellana, W.; Chacham, H. Stacking fault effects in Mg-doped GaN. Phys. Rev. B 2002, 65. [Google Scholar] [CrossRef]
- Biasiol, G.; Gustafsson, A.; Leifer, K.; Kapon, E. Mechanisms of self-ordering in nonplanar epitaxy of semiconductor nanostructures. Phys. Rev. B 2002, 65, 205306. [Google Scholar] [CrossRef]
- Liu, Q.K.K.; Hoffmann, A.; Siegle, H.; Kaschner, A.; Thomsen, C.; Christen, J.; Bertram, F. Stress analysis of selective epitaxial growth of GaN. Appl. Phys. Lett. 1999, 74, 3122. [Google Scholar] [CrossRef]
- Seo, H.W.; Chen, Q.Y.; Iliev, M.N.; Tu, L.W.; Hsiao, C.L.; Mean, J.K.; Chu, W.-K. Epitaxial GaN nanorods free from strain and luminescent defects. Appl. Phys. Lett. 2006, 88, 153124. [Google Scholar] [CrossRef]
- Cui, X.-G.; Zhang, R.; Tao, Z.-K.; Li, X.; Xiu, X.-Q.; Xie, Z.-L.; Zheng, Y.-D. Optical and structural properties of Mn-doped GaN grown by Metal Organic Chemical Vapour Deposition. Chin. Phys. Lett. 2009, 26, 038103. [Google Scholar] [CrossRef]
- Asghar, M.; Hussain, I.; Bustarret, E.; Cibert, J.; Kuroda, S.; Marcet, S.; Mariette, H. Study of lattice properties of Ga1−xMnxN epilayers grown by plasma-assisted Molecular Beam Epitaxy by means of optical techniques. J. Cryst. Growth 2006, 296, 174–178. [Google Scholar] [CrossRef]
- Limmer, W.; Ritter, W.; Sauer, R.; Mensching, B.; Liu, C.; Rauschenbach, B. Raman scattering in ion-implanted GaN. Appl. Phys. Lett. 1998, 72, 2589. [Google Scholar] [CrossRef]
- Yang, X.; Wu, J.; Chen, Z.; Pan, Y.; Zhang, Y.; Yang, Z.; Yu, T.; Zhang, G. Raman scattering and ferromagnetism of (Ga, Mn)N films grown by MOCVD. Solid State Commun. 2007, 143, 236–239. [Google Scholar] [CrossRef]
- Parayanthal, P.; Pollak, F.H. Raman scattering in alloy semiconductors: “Spatial correlation” model. Phys. Rev. Lett. 1984, 52, 1822–1825. [Google Scholar] [CrossRef]
- Hu, B.; Man, B.Y.; Liu, M.; Yang, C.; Chen, C.S.; Gao, X.G.; Xu, S.C.; Wang, C.C.; Sun, Z.C. Nitrogen vacancy effects on the ferromagnetism of Mn doped GaN films. Appl. Phys. A 2012, 108, 409–413. [Google Scholar] [CrossRef]
- Thaler, G.; Frazier, R.; Gila, B.; Stapleton, J.; Davidson, M.; Abernathy, C.R.; Pearton, S.J.; Segre, C. Effect of nucleation layer on the magnetic properties of GaMnN. Appl. Phys. Lett. 2004, 84, 2578. [Google Scholar] [CrossRef]
- Keavney, D.J.; Cheung, S.H.; King, S.T.; Weinert, M.; Li, L. Role of defect sites and Ga polarization in the magnetism of Mn-doped GaN. Phys. Rev. Lett. 2005, 95. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.L.; Chen, Z.T.; Wang, C.D.; Huang, S.; Fang, H.; Zhang, G.Y.; Chen, D.L.; Yan, W.S. Effects of nitrogen vacancies induced by Mn doping in (Ga,Mn)N films grown by MOCVD. J. Phys. D Appl. Phys. 2008, 41, 125002. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J.; Jiang, S.; Zhang, Y.; Yang, Z.; Wang, C.; Yu, T.; Zhang, G. Enhanced Ferromagnetism in Nanoscale GaN:Mn Wires Grown on GaN Ridges. Materials 2017, 10, 483. https://doi.org/10.3390/ma10050483
Cheng J, Jiang S, Zhang Y, Yang Z, Wang C, Yu T, Zhang G. Enhanced Ferromagnetism in Nanoscale GaN:Mn Wires Grown on GaN Ridges. Materials. 2017; 10(5):483. https://doi.org/10.3390/ma10050483
Chicago/Turabian StyleCheng, Ji, Shengxiang Jiang, Yan Zhang, Zhijian Yang, Cunda Wang, Tongjun Yu, and Guoyi Zhang. 2017. "Enhanced Ferromagnetism in Nanoscale GaN:Mn Wires Grown on GaN Ridges" Materials 10, no. 5: 483. https://doi.org/10.3390/ma10050483
APA StyleCheng, J., Jiang, S., Zhang, Y., Yang, Z., Wang, C., Yu, T., & Zhang, G. (2017). Enhanced Ferromagnetism in Nanoscale GaN:Mn Wires Grown on GaN Ridges. Materials, 10(5), 483. https://doi.org/10.3390/ma10050483