Chromium(VI) Removal from Aqueous Solution by Magnetite Coated by a Polymeric Ionic Liquid-Based Adsorbent
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Characterization
2.2. Adsorption Experiments
2.2.1. Batch Studies and Effect of the Solution pH
2.2.2. Adsorption Kinetics: Stirred Tank Experiments
3. Materials and Methods
3.1. Materials
3.2. Synthesis and Characterization of Polymer-Coated Fe3O4 Particles
3.3. Adsorption Experiments
3.3.1. Batch Studies
3.3.2. Semi-Continuous System
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- World Health Organization. Chemical hazards in drinking-water. In Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum 2017; Available online: http://apps.who.int/iris/bitstream/10665/254637/1/9789241549950-eng.pdf (accessed on 4 May 2017).
- Aroua, M.K.; Zuki, F.M.; Sulaiman, N.M. Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration. J. Hazard. Mater. 2007, 147, 752–758. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. International Agency for Research on Cancer Monographs on the Evaluation of Carcinogenic Risks to Humans, List of Classifications. Available online: http://monographs.iarc.fr/ENG/Classification/latest_classif.php (accessed on 4 May 2017).
- Kalidhasan, S.; Sricharan, S.; Ganesh, M.; Rajesh, N. Liquid–liquid extraction of chromium(VI) with tricaprylmethylammonium chloride using isoamylalcohol as the diluent and its application to industrial effluents. J. Chem. Eng. Data 2010, 55, 5627–5633. [Google Scholar] [CrossRef]
- Dabrowski, A.; Hubicki, Z.; Podkoscielny, P.; Robens, E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 2004, 56, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Na, C. Binder-free carbon nanotube electrode for electrochemical removal of chromium. ACS Appl. Mater. Interfaces 2014, 6, 20309–20316. [Google Scholar] [CrossRef] [PubMed]
- Chang, F.; Tian, C.; Liu, S.; Ni, J. Discrepant hexavalent chromium tolerance and detoxification by two strains of trichodermaasperellum with high homology. Chem. Eng. J. 2016, 298, 75–81. [Google Scholar] [CrossRef]
- Bhattacharyya, K.G.; Gupta, S.S. Adsorption of chromium(VI) from water by clays. Ind. Eng. Chem. Res. 2006, 45, 7232–7240. [Google Scholar] [CrossRef]
- Khare, P.; Yadav, A.; Ramkumar, J.; Verma, N. Microchannel-embedded metal-carbon-polymer nanocomposite as a novel support for chitosan for efficient removal of hexavalent chromium from water under dynamic conditions. Chem. Eng. J. 2016, 293, 44–54. [Google Scholar] [CrossRef]
- Baig, U.; Rao, R.A.K.; Khan, A.A.; Sanagi, M.M.; Gondal, M.A. Removal of carcinogenic hexavalent chromium from aqueous solutions using newly synthesized and characterized polypyrrole-titanium(IV) phosphate nanocomposite. Chem. Eng. J. 2015, 280, 494–504. [Google Scholar] [CrossRef]
- Duranoglu, D.; Trochimczuk, A.W.; Beker, U. Kinetics and thermodynamics of hexavalent chromium adsorption onto activated carbon derived from acrylonitrile-divinylbenzene copolymer. Chem. Eng. J. 2012, 187, 193–202. [Google Scholar] [CrossRef]
- Paul, M.L.; Samuel, J.; Chandrasekaran, N.; Mukherjee, A. Comparative kinetics, equilibrium, thermodynamic and mechanistic studies on biosorption of hexavalent chromium by live and heat killed biomass of Acinetobacterjunii VITSUKMW2, an indigenous chromite mine isolate. Chem. Eng. J. 2012, 187, 104–113. [Google Scholar] [CrossRef]
- González, Y.; Rodríguez, I.L.; Guibal, E.; Calero de Hocesc, M.; Martín-Lara, M.A. Biosorption of hexavalent chromium from aqueous solution by sargassummuticum brown alga. Application of statistical design for process optimization. Chem. Eng. J. 2012, 183, 68–76. [Google Scholar]
- Moussavi, G.; Barikbin, B. Biosorption of chromium(VI) from industrial wastewater onto pistachio hull waste biomass. Chem. Eng. J. 2010, 162, 893–900. [Google Scholar] [CrossRef]
- Finocchio, E.; Lodi, A.; Solisio, C.; Converti, A. Chromium (VI) removal by methylated biomass of spirulinaplatensis: The effect of methylation process. Chem. Eng. J. 2010, 156, 264–269. [Google Scholar] [CrossRef]
- Wang, P.; Lo, I.M.C. Synthesis of mesoporous magnetic γ-Fe2O3 and its application to Cr(VI) removal from contaminated water. Water Res. 2009, 43, 3727–3734. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Lo, I.M.C.; Chen, G. Comparative study of various magnetic nanoparticles for Cr(VI) removal. Sep. Purif. Technol. 2007, 56, 249–256. [Google Scholar] [CrossRef]
- Chen, G.; Qiao, C.; Wang, Y.; Yao, J. Synthesis of magnetic gelatin and its adsorption property for Cr(VI). Ind. Eng. Chem. Res. 2014, 53, 15576–15581. [Google Scholar] [CrossRef]
- Muliwa, A.M.; Leswifi, T.Y.; Onyango, M.S.; Maity, A. Magnetic adsorption separation (MAS) process: An alternative method of extracting Cr(VI) from aqueous solution using polypyrrole coated Fe3O4 nanocomposites. Sep. Purif. Technol. 2016, 258, 250–258. [Google Scholar] [CrossRef]
- Petcharoen, K.; Sirivat, A. Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater. Sci. Eng. B 2012, 177, 421–427. [Google Scholar] [CrossRef]
- Nematollahzadeh, A.; Seraj, S.; Mirzayi, B. Catecholamine coated maghemite nanoparticles for the environmental remediation: Hexavalent chromium ions removal. Chem. Eng. J. 2015, 277, 21–29. [Google Scholar] [CrossRef]
- Fontanals, N.; Borrull, F.; Marce, R.M. Ionic liquids in solid-phase extraction. TrAC Trend. Anal. Chem. 2012, 41, 15–26. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Al-Bishri, H.M. Supported hydrophobic ionic liquid on nano-silica for adsorption of lead. Chem. Eng. J. 2011, 166, 157–167. [Google Scholar] [CrossRef]
- Al-bishri, H.M.; Abdel-Fattah, T.M.; Mahmoud, M.E. Immobilization of [Bmim+Tf2N−] hydrophobic ionic liquid on nano-silica-amine sorbent for implementation in solid phase extraction and removal of lead. J. Ind. Eng. Chem. 2012, 18, 1252–1257. [Google Scholar] [CrossRef]
- Bi, W.; Tian, M.; Row, K.H. Separation of phenolic acids from natural plant extracts using molecularly imprinted anion-exchange polymer confined ionic liquids. J. Chromatogr. A 2012, 1232, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Tavlarides, L.L. Adsorption of chromium(VI) from aqueous solutions using an imidazole functionalized adsorbent. Ind. Eng. Chem. Res. 2008, 47, 3401–3409. [Google Scholar] [CrossRef]
- Men, Y.; Kuzmicz, D.; Yuan, J. Poly(ionic liquid) colloidal particles. Curr. Opin. Colloid Interface Sci. 2014, 19, 76–83. [Google Scholar] [CrossRef]
- Yuan, J.; Mecerreyes, D.; Antonietti, M. Poly(ionic liquid)s: An update. Prog. Polym. Sci. 2013, 38, 1009–1036. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard. Mater. 2006, B137, 762–811. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, E.A.; Montanher, S.F.; Andrade, A.D.; Nóbrega, J.A.; Rollemberg, M.C. Equilibrium studies for the sorption of chromium and nickel from aqueous solutions using raw rice bran. Process Biochem. 2005, 40, 3485–3490. [Google Scholar] [CrossRef]
- Díaz-Alvarez, M.; Turiel, E.; Martin-Esteban, A. Selective sample preparation for the analysis of (fluoro) quinolones in baby food: Molecularly imprinted polymers versus anion-exchange resins. Anal. Bioanal. Chem. 2009, 39, 899–905. [Google Scholar] [CrossRef] [PubMed]
- Davenport, A.P. Receptor Binding Techniques; Humana Press: Cambridge, UK, 2005. [Google Scholar]
- Levenspiel, O. Chemical Reaction Engineering; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
Sorbent | Rate Constant min−1 (×10−3) | R2 | Reference |
---|---|---|---|
Fe3O4 | 6.56 ± 0.75 | 0.98 | - |
Fe3O4-MAA | 25.40 ± 5.50 | 0.93 | This work |
Fe3O4-MAA-IL | 25.30 ± 3.20 | 0.97 | - |
Fe3O4-IL | 27.80 ± 6.10 | 0.94 | - |
Activated carbon derived from acrylonitrile–divinylbenzene copolymer | 5.99 | 0.8369 | [11] |
Acinetobacter junii biomass | 18.00 | 0.991 | [12] |
Sorbent | Fe3O4 | EGDMA | MAA | IL |
---|---|---|---|---|
Fe3O4 | 4.3 | - | - | - |
Fe3O4-MAA | 4.3 | 4.0 | - | - |
Fe3O4-MAA-IL | 4.3 | 4.0 | 2.0 | 0.0 |
Fe3O4-IL | 4.3 | 4.0 | 0.0 | 2.0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, T.A.; Rodriguez, J.A.; Paez-Hernandez, M.E.; Guevara-Lara, A.; Barrado, E.; Hernandez, P. Chromium(VI) Removal from Aqueous Solution by Magnetite Coated by a Polymeric Ionic Liquid-Based Adsorbent. Materials 2017, 10, 502. https://doi.org/10.3390/ma10050502
Ferreira TA, Rodriguez JA, Paez-Hernandez ME, Guevara-Lara A, Barrado E, Hernandez P. Chromium(VI) Removal from Aqueous Solution by Magnetite Coated by a Polymeric Ionic Liquid-Based Adsorbent. Materials. 2017; 10(5):502. https://doi.org/10.3390/ma10050502
Chicago/Turabian StyleFerreira, Thania Alexandra, Jose Antonio Rodriguez, María Elena Paez-Hernandez, Alfredo Guevara-Lara, Enrique Barrado, and Prisciliano Hernandez. 2017. "Chromium(VI) Removal from Aqueous Solution by Magnetite Coated by a Polymeric Ionic Liquid-Based Adsorbent" Materials 10, no. 5: 502. https://doi.org/10.3390/ma10050502
APA StyleFerreira, T. A., Rodriguez, J. A., Paez-Hernandez, M. E., Guevara-Lara, A., Barrado, E., & Hernandez, P. (2017). Chromium(VI) Removal from Aqueous Solution by Magnetite Coated by a Polymeric Ionic Liquid-Based Adsorbent. Materials, 10(5), 502. https://doi.org/10.3390/ma10050502