Size Effect on Mechanical Properties and Texture of Pure Copper Foil by Cold Rolling
Abstract
:1. Introduction
2. Materials and Methods
- The resolution of testing force: 1/500,000 FS (Full scale).
- Maximum data acquisition frequency: 2500 Hz.
- Repetitive precision of beam position testing: <2 μm.
- Automated extensometer: (automate griped and automate opened) resolution: 0.1 μm, absolute accuracy: ±1 μm.
3. Results
3.1. Tensile Behavior
3.2. Microstructure Evolution
3.3. Calculation of Dislocation Density
3.4. Texture Evolution
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Deng, Y.J.; Peng, L.F.; Lai, X.M.; Fu, M.W.; Lin, Z.Q. Constitutive modeling of size effect on deformation behaviors of amorphous polymers in micro-scaled deformation. Int. J. Plast. 2017, 89, 197–222. [Google Scholar] [CrossRef]
- Choi, Y.; Suresh, S. Size effects on the mechanical properties of thin polycrystalline metal films on substrates. Acta Mater. 2002, 50, 1881–1893. [Google Scholar] [CrossRef]
- Greer, J.R.; Oliver, W.C.; Nix, W.D. Size dependence of mechanical properties of gold at the micron. Acta Mater. 2005, 53, 1821–1830. [Google Scholar] [CrossRef]
- Soler, R.; Wheeler, J.M.; Chang, H.J.; Segurado, J.; Michler, J.; Llorca, J.; Molina-Aldareguia, J.M. Understanding size effects on the strength of single crystals through high-temperature micropillar compression. Acta Mater. 2014, 81, 50–57. [Google Scholar] [CrossRef]
- Wang, C.C.; Ding, J.; Cheng, Y.Q.; Wan, J.C.; Tian, L.; Sun, J.; Shan, Z.W.; Li, J.; Ma, E. Sample size matters for Al88Fe7Gd5 metallic glass: Smaller is stronger. Acta Mater. 2012, 60, 5370–5379. [Google Scholar] [CrossRef]
- Ozdemir, N.; Karaman, I.; Mara, N.A.; Chumlyakov, Y.I.; Karaca, H.E. Size effects in the superelastic response of Ni54Fe19Ga27 shape memory alloy pillars with a two stage martensitic transformation. Acta Mater. 2012, 60, 5670–5685. [Google Scholar] [CrossRef]
- Hoffmann, H.; Hong, S. Tensile Test of very thin Sheet Metal and Determination of Flow Stress Considering the Scaling Effect. CIRP Ann. Manuf. Technol. 2006, 55, 263–266. [Google Scholar] [CrossRef]
- Hirakata, H.; Fukuhara, N.; Ajioka, S.; Yonezu, A.; Sakihara, M.; Minoshima, K. The effect of thickness on the steady-state creep properties of freestanding aluminum nano-films. Acta Mater. 2012, 60, 4438–4447. [Google Scholar] [CrossRef]
- Okamoto, N.L.; Kashioka, D.; Hirato, T.; Inui, H. Specimen- and grain-size dependence of compression deformation behavior in nanocrystalline copper. Int. J. Plast. 2014, 56, 173–183. [Google Scholar] [CrossRef]
- Dai, C.Y.; Zhang, B.; Xu, J.; Zhang, G.P. On size effects on fatigue properties of metal foils at micrometer scales. Mater. Sci. Eng. A 2013, 575, 217–222. [Google Scholar] [CrossRef]
- Chen, X.X.; Ngan, A.H.W. Specimen size and grain size effects on tensile strength of Ag microwires. Scr. Mater. 2011, 64, 717–720. [Google Scholar] [CrossRef]
- Anand, D.; Kumar, D.R. Effect of Thickness and Grain Size on Flow Stress of Very Thin Brass Sheets. Procedia Mater. Sci. 2014, 6, 154–160. [Google Scholar] [CrossRef]
- Wang, C.W.C.; Guo, B.; Shan, D.; Huang, G. Size effect on flow stress in uniaxial compression of pure nickel. Mater. Lett. 2013, 106, 294–296. [Google Scholar] [CrossRef]
- Aifantis, E.C. Strain gradient interpretation of size effects. Int. J. Fract. 1999, 95. [Google Scholar] [CrossRef]
- Needleman, A.; Van der Giessen, E. Discrete dislocation plasticity. Key Eng. Mater. 2003, 223–236, 13–24. [Google Scholar] [CrossRef]
- Xu, Z.T.; Peng, L.F.; Fu, M.W.; Lai, X.M. Size effect affected formability of sheet metals in micro/meso scale plastic deformation: Experiment and modeling. Int. J. Plast. 2015, 68, 34–54. [Google Scholar] [CrossRef]
- Fan, H.; Aubry, S.; Arsenlis, A.; El-Awady, J.A. Grain size effects on dislocation and twinning mediated plasticity in magnesium. Scr. Mater. 2016, 112, 50–53. [Google Scholar] [CrossRef]
- Yuan, R.; Beyerlein, I.J.; Zhou, C. Emergence of grain-size effects in nanocrystalline metals from statistical activation of discrete dislocation sources. Acta Mater. 2015, 90, 169–181. [Google Scholar] [CrossRef]
- Smith, A.D.N. XLVIII. The effect of small amounts of cold-work on Young′s Moulus of copper. Lond. Edinb. Dublin Philosoph. Mag. J. Sci. 2010, 44, 453–466. [Google Scholar] [CrossRef]
- Blaisse, B.S.; Sanders, W.H.E. A model for the elastical modulus defect at low temperatures. Physica 1964, 30, 957–964. [Google Scholar] [CrossRef]
- Nowick, A.S. Internal Friction and Dynamic Modulus of Cold-Worked Metals. J. Appl. Phys. 1954, 25, 1129–1134. [Google Scholar] [CrossRef]
- Kê, T.I. Experimental Evidence of the Viscous Behavior of Grain Boundaries in Metals. Phys. Rev. 1947, 71, 533–546. [Google Scholar] [CrossRef]
- Hordon, M.J.; Lement, B.S.; Averbach, B.L. Influence of plastic deformation on expansivity and elastic modulus of aluminum. Acta Metall. 1958, 6, 446–453. [Google Scholar] [CrossRef]
- Lederer, M.; Gröger, V.; Khatibi, G.; Weiss, B. Size dependency of mechanical properties of high purity aluminium foils. Mater. Sci. Eng. A 2010, 527, 590–599. [Google Scholar] [CrossRef]
- Li, W.; Shen, Y.; Xie, C. High thermal stability of submicron grained Cu processed by asymmetrical rolling. Mater. Des. 2016, 105, 404–410. [Google Scholar] [CrossRef]
- Gu, C.F.; Toth, L.S.; Zhang, Y.D.; Hoffman, M. Unexpected brass-type texture in rolling of ultrafine-grained copper. Scr. Mater. 2014, 92, 51–54. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Islamgaliev, R.K.; Alexandrov, I.V. Bulk nanostructured materials from severe plastic deformaiton. Prog. Mater. Sci. 2000, 45, 103–189. [Google Scholar] [CrossRef]
- Kocks, U.F. Laws for Work-Hardening and Low-Temperature Creep. J. Eng. Mater. Technol. 1976, 98, 76–85. [Google Scholar] [CrossRef]
- Mecking, H. Description of Hardening Curves of Fcc Single-and Polycrystals; Argonne National Lab.: Cincinnati, OH, USA, 1975. [Google Scholar]
- Lu, L.; You, Z.S.; Lu, K. Work hardening of polycrystalline Cu with nanoscale twins. Scr. Mater. 2012, 66, 837–842. [Google Scholar] [CrossRef]
- Kocks, U.; Mecking, H. Physics and phenomenology of strain hardening: The FCC case. Prog. Mater. Sci. 2003, 48, 171–273. [Google Scholar] [CrossRef]
- Yu, Q.B.; Liu, X.H.; Tang, D.L. Extreme Extensibility of Copper Foil under Compound Forming Conditions. Sci. Rep. 2013, 3. [Google Scholar] [CrossRef] [PubMed]
- Islamgaliev, R.K.; Kuzel, R.; Obraztsova, E.D.; Valiev, R.Z. TEM, XRD and Raman scattering of germanium processed by severe deformation. Mater. Sci. Eng. A 1998, 249, 152–157. [Google Scholar] [CrossRef]
- Williamson, G.; Hall, W. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953, 1, 22–31. [Google Scholar] [CrossRef]
- Gay, P.; Hirsch, P.; Kelly, A. The estimation of dislocation densities in metals from X-ray data. Acta Metall. 1953, 1, 315–319. [Google Scholar] [CrossRef]
- Williamson, G.; Smallman, R., III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philosoph. Mag. 1956, 1, 34–46. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Liao, X.Z.; Jin, Z.; Valiev, R.Z.; Zhu, Y.T. Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing. Acta Mater. 2004, 52, 4589–4599. [Google Scholar] [CrossRef]
- Smallman, R.; Westmacott, K. Stacking faults in face-centred cubic metals and alloys. Philosoph. Mag. 1957, 2, 669–683. [Google Scholar] [CrossRef]
- Polkowski, W.; Jo´z´wik, P.; Polański, M.; Bojar, Z. Microstructure and texture evolution of copper processed by differential. Mater. Sci. Eng. A 2013, 564, 289–297. [Google Scholar] [CrossRef]
- Song, M.; Liu, X.H.; Tang, D.L. Texture Evolution of Commercially Pure Copper during Ultra-Thin Strip Rolling. Adv. Mater. Res. 2014, 941–944, 1532–1536. [Google Scholar] [CrossRef]
- Lu, L. Superplastic Extensibility of Nanocrystalline Copper at Room Temperature. Science 2000, 287, 1463–1466. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Liu, X.; Sun, Y.; Song, M.; Gao, Y. Extreme extensibility and size effects of high-carbon martensitic steel subjected to micro-rolling. Sci. Sin. Technol. 2015, 45, 1187–1194. [Google Scholar]
- Chan, W.L.; Fu, M.W.; Lu, J. The size effect on micro deformation behaviour in micro-scale plastic deformation. Mater. Des. 2011, 32, 198–206. [Google Scholar] [CrossRef]
- Nielsen, P.S.; Paldan, N.A.; Calaon, M.; Bay, N. Scale effects in metal–forming friction and lubrication. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 2011, 225, 924–931. [Google Scholar] [CrossRef]
- Tiesler, N.; Engel, U.; Geiger, M. Forming of microparts—effects of miniaturization on friction. In Advanced Technology of Plasticity, Proceedings of the 6th International Conference on Technology of Plasticity; Springer: Nuremberg, Germany, 1999; Volume 2, pp. 889–894. [Google Scholar]
- Jiang, J.; Ding, Y.; Zuo, F.; Shan, A. Mechanical properties and microstructures of ultrafine-grained pure aluminum by asymmetric rolling. Scr. Mater. 2009, 60, 905–908. [Google Scholar] [CrossRef]
- Yu, H.L.; Lu, C.; Tieu, A.K.; Li, H.J.; Godbole, A.; Zhang, S.H. Special Rolling Techniques for Improvement of Mechanical Properties of Ultrafine-Grained Metal Sheets: A Review. Adv. Eng. Mater. 2016, 18, 754–769. [Google Scholar] [CrossRef]
- Lu, J.Z.; Wu, L.J.; Sun, G.F.; Luo, K.Y.; Zhang, Y.K.; Cai, J.; Cui, C.Y.; Luo, X.M. Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts. Acta Mater. 2017, 127, 252–266. [Google Scholar] [CrossRef]
- Yang, D.K.; Cizek, P.; Hodgson, P.D.; Wen, C.E. Microstructure evolution and nanograin formation during shear localization in cold-rolled titanium. Acta Mater. 2010, 58, 4536–4548. [Google Scholar] [CrossRef]
- Meyers, M.A. Mechanical Behavior of Materials (2nd Ed.). In Aircraft Engineering and Aerospace Technology; Cambridge University Press: Cambridge, UK, 2009; Volume 81. [Google Scholar]
- Zhou, X.; Zhou, H.; Li, X.; Chen, C. Size effects on tensile and compressive strengths in metallic glass nanowires. J. Mech. Phys. Solids 2015, 84, 130–144. [Google Scholar] [CrossRef]
- Tichy, J.A. A surface layer model for thin film lubrication. Tribol. Trans. 1995, 38, 577–582. [Google Scholar] [CrossRef]
- Peng, L.; Lai, X.; Lee, H.J.; Song, J.H.; Ni, J. Analysis of micro/mesoscale sheet forming process with uniform size dependent material constitutive model. Mater. Sci. Eng. A 2009, 526, 93–99. [Google Scholar] [CrossRef]
- Zheng, Q.; Shimizu, T.; Yang, M. Scale effect on springback behavior of pure titanium foils in microbending at elevated temperature. J. Mater. Process. Technol. 2016, 230, 233–243. [Google Scholar] [CrossRef]
Cu + Ag | Bi | Sb | As | Fe | Pb | S |
---|---|---|---|---|---|---|
≥99.90 | 0.001 | 0.002 | 0.002 | 0.005 | 0.005 | 0.005 |
Sample (μm) | 300 | 200 | 76 | 50 | 25 |
---|---|---|---|---|---|
Surface Roughness (μm) | 0.046 ± 0.006 | 0.052 ± 0.007 | 0.061 ± 0.007 | 0.065 ± 0.009 | 0.072 ± 0.01 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, M.; Liu, X.; Liu, L. Size Effect on Mechanical Properties and Texture of Pure Copper Foil by Cold Rolling. Materials 2017, 10, 538. https://doi.org/10.3390/ma10050538
Song M, Liu X, Liu L. Size Effect on Mechanical Properties and Texture of Pure Copper Foil by Cold Rolling. Materials. 2017; 10(5):538. https://doi.org/10.3390/ma10050538
Chicago/Turabian StyleSong, Meng, Xianghua Liu, and Lizhong Liu. 2017. "Size Effect on Mechanical Properties and Texture of Pure Copper Foil by Cold Rolling" Materials 10, no. 5: 538. https://doi.org/10.3390/ma10050538
APA StyleSong, M., Liu, X., & Liu, L. (2017). Size Effect on Mechanical Properties and Texture of Pure Copper Foil by Cold Rolling. Materials, 10(5), 538. https://doi.org/10.3390/ma10050538