The Influence of Lath, Block and Prior Austenite Grain (PAG) Size on the Tensile, Creep and Fatigue Properties of Novel Maraging Steel
Abstract
:1. Introduction
2. Material and Methods
3. Results
3.1. The Martensitic Microstructure
3.1.1. Methodology
3.1.2. Microstructure
3.2. Mechanical Properties
3.2.1. Strength Results
3.2.2. Elongation to Failure
3.2.3. Creep Testing
3.2.4. Fatigue Testing
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
References
- Sun, L.; Simm, T.H.; Martin, T.L.; Ooi, S.W.; McAdam, S.; Galvin, D.; Perkins, K.M.; Bhadeshia, H.K.D.H. A novel ultra-high strength maraging steel with balanced ductility and creep resistance achieved by nanoscale β-NiAl and Laves phase precipitates. Unpublished work. 2017. [Google Scholar]
- Petch, N.J. The Cleavage Strength of Polycrystals. J. Iron Steel Inst. 1953, 174, 25–28. [Google Scholar]
- Hall, E.O. The deformation and ageing of mild steel III Discussion of results. Proc. Phys. Soc. Lond. 1951, 64, 747–753. [Google Scholar] [CrossRef]
- Dingley, D.J.; McLean, D. Components of the flow stress of iron. Acta Metall. 1967, 15, 885–901. [Google Scholar] [CrossRef]
- Petch, N.J. Fracture: Proceedings of an International Conference on the Atomic Mechanisms of Fracture; Technology Press of Massachusetts Institute of Technology: Cambridge, MA, USA, 1959. [Google Scholar]
- Sun, X.; Li, Z.; Yong, Q.; Yang, Z.; Dong, H.; Weng, Y. Third generation high strength low alloy steels with improved toughness. Sci. China Technol. Sci. 2012, 55, 1797–1805. [Google Scholar] [CrossRef]
- Wilshire, B. Some grain size effects in creep and fracture. Scr. Metall. 1970, 4, 361–366. [Google Scholar] [CrossRef]
- Garofalo, F.; Domis, W.F.; von Gemmingen, F. Effect of Grain Size on the Creep Behavior of an Austenitic Iron-Base Alloy. Trans. Metall. Soc. AIME 1964, 230, 1460–1467. [Google Scholar]
- Haddou, H.; Risbet, M.; Marichal, G.; Feaugas, X. The effects of grain size on the cyclic deformation behaviour of polycrystalline nickel. Mater. Sci. Eng. A 2004, 379, 102–111. [Google Scholar] [CrossRef]
- Tuffnel, G.W.; Pasquine, D.L.; Olson, J.H. An investigation of fatigue behavior of 18% nickel maraging steel. ASM Trans. Q 1966, 59, 769–783. [Google Scholar]
- Kitahara, H.; Ueji, R.; Tsuji, N.; Minamino, Y. Crystallographic features of lath martensite in low-carbon steel. Acta Mater. 2006, 54, 1279–1288. [Google Scholar] [CrossRef]
- Morito, S.; Adachi, Y.; Ohba, T. Morphology and Crystallography of Sub-Blocks in Ultra-Low Carbon Lath Martensite Steel. Mater. Trans. 2009, 50, 1919–1923. [Google Scholar] [CrossRef]
- Morito, S.; Yoshida, H.; Maki, T.; Huang, X. Effect of block size on the strength of lath martensite in low carbon steels. Mater. Sci. Eng. A 2006, 438, 237–240. [Google Scholar] [CrossRef]
- Cracknell, A.; Petch, N.J. Frictional forces on dislocation arrays at the lower yield point in iron. Acta Metall. 1955, 3, 186–189. [Google Scholar] [CrossRef]
- Nishiyama, Z. X-ray investigation on the mechanism of transformation from face-centred to body-centred cubic lattice. Sci. Rep. Tohoku Imp. Univ. 1934, 23, 637. [Google Scholar]
- Kurdjumov, G.; Sachs, G. Over the mechanisms of steel hardening. Z. Phys. 1930, 64, 325–343. [Google Scholar]
- Greninger, A.B.; Troiano, A.R. The mechanisms of martensite formation. Trans. AIME 1949, 185, 590–598. [Google Scholar]
- Suikkanen, P.P.; Cayron, C.; DeArdo, A.J.; Karjalainen, L.P. Crystallographic Analysis of Martensite in 0.2C-2.0Mn-1.5Si-0.6Cr Steel Using EBSD. J. Mater. Sci. Technol. 2011, 27, 920–930. [Google Scholar] [CrossRef]
- Kundu, S.; Bhadeshia, H.K.D.H. Crystallographic texture and intervening transformations. Scr. Mater. 2007, 57, 869–872. [Google Scholar] [CrossRef]
- Kundu, S. Transformation Strain and Crystallographic Texture in Steels. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2007. [Google Scholar]
- Cayron, C. ARPGE: A computer program to automatically reconstruct the parent grains from electron backscatter diffraction data. J. Appl. Crystallogr. 2007, 40, 1183–1188. [Google Scholar] [CrossRef] [PubMed]
- Davies, P.S. An Investigation of Microstructure and Texture Evolution in the Near-Alpha Titanium Alloy Timetal 834. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 2009; pp. 141–150. [Google Scholar]
- Yardley, V.A.; Payton, E.J. Austenite-martensite/bainite orientation relationship: Characterisation parameters and their application. Mater. Sci. Technol. 2014, 30, 1125–1130. [Google Scholar] [CrossRef]
- Abson, D.J.; Jonas, J.J. The Hall–Petch Relation and High-Temperature Subgrains. Met. Sci. J. 1970, 4, 24–28. [Google Scholar] [CrossRef]
- Morito, S.; Huang, X.; Furuhara, T.; Maki, T.; Hansen, N. The morphology and crystallography of lath martensite in alloy steels. Acta Mater. 2006, 54, 5323–5331. [Google Scholar] [CrossRef]
- Sun, L. The Effects of Strain Path Reversal on Austenite Grain Subdivision, Recrystallisation and Phase Transformations in Microalloyed Steel. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 2012. [Google Scholar]
- Bhadeshia, R.W.K.; Honeycombe, H.K.D.H. Steels: Microstructure and Properties, 3rd ed.; Butterworth-Heinemann Elsevier Ltd.: Oxford, UK, 2006. [Google Scholar]
- Natori, M.; Futamura, Y.; Tsuchiyama, T.; Takaki, S. Difference in recrystallization behavior between lath martensite and deformed ferrite in ultralow carbon steel. Scr. Mater. 2005, 53, 603–608. [Google Scholar] [CrossRef]
- Virtanen, E.; van Tyne, C.J.; Levy, B.S.; Brada, G. The tempering parameter for evaluating softening of hot and warm forging die steels. J. Mater. Process. Technol. 2013, 213, 1364–1369. [Google Scholar] [CrossRef]
- Gladman, T. The Physical Metallurgy of Microalloyed Steel; The Institute of Materials: London, UK, 1997. [Google Scholar]
- Morrison, W.B. The effect of grain size on the stress-strain relationship in low-carbon steel. Trans. ASM 1966, 59, 824–846. [Google Scholar]
- Armstrong, R.; Codd, I.; Douthwaite, R.M.; Petch, N.J. The plastic deformation of polycrystalline aggregates. Philos. Mag. 1962, 7, 45–58. [Google Scholar] [CrossRef]
- Liu, K.; Shan, Y.; Yang, Z.; Liang, J.; Lu, L.; Yang, K. Effect of Heat Treatment on Prior Grain Size and Mechanical Property of a Maraging Stainless Steel. J. Mater. Sci. Technol. 2006, 22, 769–774. [Google Scholar]
- Langford, G.; Cohen, M. Calculation of cell-size strengthening of wire-drawn iron. Matall. Mater. Trans. 1970, 1, 1478–1480. [Google Scholar] [CrossRef]
- Leslie, W.C. Iron and its dilute substitutional solid solutions. Metall. Trans. 1972, 3, 5–26. [Google Scholar] [CrossRef]
- Barrow, A.T.W. Steel for Elevated Temperature Applications. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2009. [Google Scholar]
- Gasko, M.; Rosenberg, G. Correlation Between Hardness and Tensile Properties in Ultra-High Strength Dual Phase Steels–Short Communication. Mater. Eng. 2011, 18, 155–159. [Google Scholar]
- Allen, H.R.; Rees, N.P.; Hopkins, W.P.; Tipler, B.E. Tensile and impact properties of high-purity iron-carbon-manganese alloys of low carbon content. J. Iron Steel Inst. 1953, 174, 108. [Google Scholar]
- Honeycombe, R.W.K. The Plastic Deformation of Metals; Edward Arnold: Maidenhead, Berkshire, England, UK, 1984. [Google Scholar]
- Contreras, M.A.; Rodríguez, C.; Belzunce, F.J.; Betegón, C. Use of the small punch test to determine the ductile-to-brittle transition temperature of structural steels. Fatigue Fract. Eng. Mater. Struct. 2008, 31, 727–737. [Google Scholar] [CrossRef]
- Shahinian, R.; Lane, P.; Shahinian, J. Influence of grain size on high temperature properties of monel. Trans. ASM 1953, 45, 177–199. [Google Scholar]
- Maruyama, K.; Yamamoto, R.; Nakakuki, H.; Fujitsuna, N. Effects of lamellar spacing, volume fraction and grain size on creep strength of fully lamellar TiAl alloys. Mater. Sci. Eng. A 1997, 239, 419–428. [Google Scholar] [CrossRef]
- Ruano, O.A.; Miller, A.K.; Sherby, O.D. The Influence of Pipe Diffusion on the Creep of Fine-grained Materials. Mater. Sci. Eng. 1981, 51, 9–16. [Google Scholar] [CrossRef]
- Stroh, A.N. CXI. Brittle Fracture and Yielding. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1955, 46, 968–972. [Google Scholar] [CrossRef]
- Cottrell, A.H. Dislocations and Plastic Flow in Crystals; Clarendon Press: London, UK, 1964. [Google Scholar]
- Rack, H.J. Age Hardening of Shock Loaded RMI 38644. Scr. Mater. 1978, 12, 1007–1010. [Google Scholar] [CrossRef]
- Hornbogen, E.; Staniek, G. Grain-size dependence of the mechanical properties of an age-hardening Fe-1% Cu-alloy. J. Mater. Sci. 1974, 9, 879–886. [Google Scholar] [CrossRef]
- Mecking, H.; Kocks, U.F. Kinetics of flow and strain-hardening. Acta Metall. 1981, 29, 1865–1875. [Google Scholar] [CrossRef]
- Taylor, G.I. The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical. Proc. R. Soc. A Math. Phys. Eng. Sci. 1934, 145, 362–387. [Google Scholar] [CrossRef]
Element | Fe | Ni | Cr | Co | Mo | W | Al |
---|---|---|---|---|---|---|---|
Weight % | 68.11 | 6.99 | 9.90 | 8.02 | 2.75 | 2.43 | 1.80 |
Heat-Treatment | Bar Size | 1° | Laths: 2° | 5° | 10° | Blocks: 15° | PAGs |
---|---|---|---|---|---|---|---|
HT3 | 19 | 1.15 | 2.2 | 4.9 | 7 | 7.5 | 29.1 |
HT5 | 19 | 1.11 | 2.4 | 4.7 | 6.4 | 6.9 | 35.2 |
HT3 | 50 | 1.38 | 2.9 | 5.7 | 9.8 | 10.6 | 75.8 |
HT5 | 50 | 1.51 | 2.9 | 5.4 | 8.6 | 9.4 | 79.6 |
Heat-Treatment | Bar Size | 5–10° | 10–20° | 20–50° | 50°+ |
---|---|---|---|---|---|
HT3 | 19 | 4.3 | 3.8 | 6.5 | 23.2 |
HT5 | 19 | 4.3 | 3.8 | 5.9 | 26.3 |
HT3 | 50 | 4.4 | 2.3 | 1.7 | 17.5 |
HT5 | 50 | 4.2 | 2.8 | 1.6 | 20.9 |
Sample | 19 mm | 50 mm |
---|---|---|
HT3 | 641.3 ± 5.9 | 480.4 ± 4.5 |
HT5 | 705.7 ± 6.9 | 489.9 ± 13.2 |
Heat Treatment | Bar Size | Ratio of Applied Stress to Yield Stress of HT3 19 mm | Cycles to Failure | Comparison of Bar Size (% Change) |
---|---|---|---|---|
HT3 | 50 mm | 0.77 | 13,088 | |
HT3 | 50 mm | 0.75 | 21,454 | |
HT3 | 19 mm | 0.77 | 19,446 | 49% |
HT3 | 19 mm | 0.75 | 45,097 | 110% |
Average | 80% | |||
HT5 | 50 mm | 0.77 | 22,241 | |
HT5 | 50 mm | 0.75 | 50,312 | |
HT5 | 50 mm | 0.77 | 37,287 | |
HT5 | 19 mm | 0.77 | 27,659 | 24% |
HT5 | 19 mm | 0.75 | 74,636 | 48% |
HT5 | 19 mm | 0.77 | 100,000 1 | 168% |
Average | 80% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simm, T.; Sun, L.; McAdam, S.; Hill, P.; Rawson, M.; Perkins, K. The Influence of Lath, Block and Prior Austenite Grain (PAG) Size on the Tensile, Creep and Fatigue Properties of Novel Maraging Steel. Materials 2017, 10, 730. https://doi.org/10.3390/ma10070730
Simm T, Sun L, McAdam S, Hill P, Rawson M, Perkins K. The Influence of Lath, Block and Prior Austenite Grain (PAG) Size on the Tensile, Creep and Fatigue Properties of Novel Maraging Steel. Materials. 2017; 10(7):730. https://doi.org/10.3390/ma10070730
Chicago/Turabian StyleSimm, Thomas, Lin Sun, Steven McAdam, Paul Hill, Martin Rawson, and Karen Perkins. 2017. "The Influence of Lath, Block and Prior Austenite Grain (PAG) Size on the Tensile, Creep and Fatigue Properties of Novel Maraging Steel" Materials 10, no. 7: 730. https://doi.org/10.3390/ma10070730
APA StyleSimm, T., Sun, L., McAdam, S., Hill, P., Rawson, M., & Perkins, K. (2017). The Influence of Lath, Block and Prior Austenite Grain (PAG) Size on the Tensile, Creep and Fatigue Properties of Novel Maraging Steel. Materials, 10(7), 730. https://doi.org/10.3390/ma10070730