In Vivo Damage of the Head-Neck Junction in Hard-on-Hard Total Hip Replacements: Effect of Femoral Head Size, Metal Combination, and 12/14 Taper Design
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- -
- the fretting-corrosion phenomenon is likely to be mechanically driven in ceramic/Ti-alloy combinations;
- -
- the chemical phenomena seem to play a more relevant role when a component of the junction is made of Co-alloy;
- -
- when the fretting-corrosion phenomenon is mechanically driven, DRF, that can roughly predict the loading condition at the HNJ, becomes a predictive variable of the damage, together with implantation time;
- -
- independently of the design and material combination, no correlation between HNJ damage and ion concentrations in serum was found. This conclusion does not rule out the possibility that a high ion concentration in serum may be found in patients with a not well-functioning HNJ, such as in cases of massive fretting-wear, extremely severe corrosion, or mechanical failure of a junction component.
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hozack, W.J.; Mesa, J.J.; Rothman, R.H. Head—Neck modularity for total hip arthroplasty. J. Arthroplast. 1996, 11, 397–399. [Google Scholar] [CrossRef]
- Cameron, H. Modularity in primary total hip arthroplasty. J. Arthroplast. 1996, 11, 332–334. [Google Scholar] [CrossRef]
- Collier, J.P.; Surprenant, V.A.; Jensen, R.E.; Mayor, M.B.; Surprenant, H.P. Corrosion between the components of modular femoral hip prostheses. J. Bone Jt. Surg. Br. 1992, 74, 511–517. [Google Scholar]
- Woolson, S.T.; Pottorff, G.T. Disassembly of a modular femoral prosthesis after dislocation of the femoral component. A case report. J. Bone Jt. Surg. Am. 1990, 72, 624–625. [Google Scholar] [CrossRef]
- Pellicci, P.M.; Haas, S.B.; York, N. Disassembly of a Modular Femoral Component during Closed Reduction of the Dislocated Femoral Component A CASE REPORT*. J Bone Jt. Surg Am. 1990, 72, 619–620. [Google Scholar] [CrossRef]
- Star, M.J.; Colwell, C.W.; Donaldson, W.F.; Walker, R.H. Dissociation of modular hip arthroplasty components after dislocation. A report of three cases at differing dissociation levels. Clin. Orthop. Relat. Res. 1992, 278, 111–115. [Google Scholar]
- Barrack, R.L.; Burke, D.W.; Cook, S.D.; Skinner, H.B.; Harris, W.H. Complications related to modularity of total hip components. J. Bone Jt. Surg. Br. 1993, 75, 688–692. [Google Scholar]
- Gilbert, J.L.; Buckley, C.A.; Jacobs, J.J.; Bertin, K.C.; Zernich, M.R. Intergranular corrosion-fatigue failure of cobalt-alloy femoral stems. A failure analysis of two implants. J. Bone Jt. Surg. Am. 1994, 76, 110–115. [Google Scholar] [CrossRef]
- Trigkilidas, D.; Anand, A.; Ibe, R.; Syed, T.; Floyd, A. A fracture through the neck of a Charnley Elite-Plus femoral component: A case report. Internet J. Orthop. Surg. 2009, 16. [Google Scholar]
- Talmo, C.T.; Sharp, K.G.; Malinowska, M.; Bono, J.V.; Ward, D.M.; LaReau, J. Spontaneous modular femoral head dissociation complicating total hip arthroplasty. Orthopedics 2014, 37, e592–e595. [Google Scholar] [CrossRef] [PubMed]
- Parker, S.J.; Khan, W.; Mellor, S. Late Nontraumatic Dissociation of the Femoral Head and Trunnion in a Total Hip Arthroplasty. Case Rep. Orthop. 2015, 2015, 738671. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, J.; Rimnac, C.; Garvin, K.; Klein, R.; Salvati, E. An Analysis of the Head-Neck Taper Interface in Retrieved Hip Prostheses. Clin. Orthop. Relat. Res. 1994, 300, 162–167. [Google Scholar] [CrossRef]
- Fricker, D.C.; Shivanatii, R. Fretting corrosion studies of universal femoral head prostheses and cone taper spigots. Biomaterials 1990, 11, 495–500. [Google Scholar] [CrossRef]
- Gilbert, J.L.; Buckley, C.A.; Jacobs, J.J. In vivo corrosion of modular hip prosthesis components in mixed and similar metal combinations. The effect of crevice, stress, motion, and alloy coupling. J. Biomed. Mater. Res. 1993, 27, 1533–1544. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.A.; Flemming, C.A. C.; Kawalec, J.S.; Placko, H.E.; Vassaux, C.; Merritt, K.; Payer, J.H.; Kraay, M.J. Fretting corrosion accelerates crevice corrosion of modular hip tapers. J. Appl. Biomater. 1995, 6, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Shareef, N.; Levine, D. Effect of manufacturing tolerances on the micromotion at the Morse taper interface in modular hip implants using the finite element technique. Biomaterials 1996, 17, 623–630. [Google Scholar] [CrossRef]
- Urban, R.M.; Jacobs, J.J.; Gilbert, J.L.; Galante, J.O. Migration of corrosion products from modular hip prostheses. Particle microanalysis and histopathological findings. J. Bone Jt. Surg. Am. 1994, 76, 1345–1359. [Google Scholar] [CrossRef]
- Merritt, K.; Rodrigo, J.J. Immune response to synthetic materials. Sensitization of patients receiving orthopaedic implants. Clin. Orthop. Relat. Res. 1996, 71–79. [Google Scholar] [CrossRef]
- Wooley, P.H.; Nasser, S.; Fitzgerald, R.H. The immune response to implant materials in humans. Clin. Orthop. Relat. Res. 1996, 326, 63–70. [Google Scholar] [CrossRef]
- Black, J. Does corrosion matter? J. Bone Jt. Surg. Br. 1988, 70, 517–520. [Google Scholar]
- Jacobs, J.J.; Urban, R.M.; Gilbert, J.L.; Skipor, A.K.; Black, J.; Jasty, M.; Galante, J.O. Local and distant products from modularity. Clin. Orthop. Relat. Res. 1995, 94–105. [Google Scholar] [CrossRef]
- Lee, S.H.; Brennan, F.R.; Jacobs, J.J.; Urban, R.M.; Ragasa, D.R.; Glant, T.T. Human monocyte/macrophage response to cobalt-chromium corrosion products and titanium particles in patients with total joint replacements. J. Orthop. Res. 1997, 15, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Svensson, O.; Mathiesen, E.B.; Reinholt, F.P.; Blomgren, G. Formation of a fulminant soft-tissue pseudotumor after uncemented hip arthroplasty. A case report. J. Bone Jt. Surg. Am. 1988, 70, 1238–1242. [Google Scholar] [CrossRef]
- Radhi, J.M.; Ibrahiem, K.; Al-Tweigeri, T. Soft tissue malignant lymphoma at sites of previous surgery. J. Clin. Pathol. 1998, 51, 629–632. [Google Scholar] [CrossRef] [PubMed]
- Garellick, G.; Kärrholm, J.; Lindahl, H.; Malchau, H.; Rogmark, C.; Rolfson, O. Swedish Hip Arthroplasty Register Annual Report 2014; Göran Garellick: Göteborg, Sweden, 2014; ISBN 978-91-980507-6-9. [Google Scholar]
- National Joint Replacement Registry. Annual Report 2016; Australian Orthopaedic Association: Adelaide, Australia, 2016; ISSN 1445-3657.
- Burroughs, B.R.; Hallstrom, B.; Golladay, G.J.; Hoeffel, D.; Harris, W.H. Range of motion and stability in total hip arthroplasty with 28-, 32-, 38-, and 44-mm femoral head sizes: An in vitro study. J. Arthroplast. 2005, 20, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Mont, M.A.; Seyler, T.M.; Ragland, P.S.; Starr, R.; Erhart, J.; Bhave, A. Gait Analysis of Patients with Resurfacing Hip Arthroplasty Compared with Hip Osteoarthritis and Standard Total Hip Arthroplasty. J. Arthroplast. 2007, 22, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Lavigne, M.; Therrien, M.; Nantel, J.; Roy, A.; Prince, F.; Vendittoli, P.A. The John Charnley award: The functional outcome of hip resurfacing and large-head THA is the same: A randomized, double-blind study. Clin. Orthop. Relat. Res. 2010, 468, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Fowble, V.A.; Schmalzried, T.P. A Comparison of Total Hip Resurfacing and Total Hip Arthroplasty. Bull. NYU Hosp. Jt. Dis. 2009, 67, 108–112. [Google Scholar] [PubMed]
- Zagra, L.; Anasetti, F.; Bianchi, L.; Licari, V.; Giacometti Ceroni, R. No difference in gait recovery after THA with different head diameters: A prospective randomized study. Clin. Orthop. Relat. Res. 2013, 471, 3830–3837. [Google Scholar] [CrossRef] [PubMed]
- Fricka, K.B.; Ho, H.; Peace, W.J.; Engh, C.A. Metal-on-Metal local tissue reaction is associated with corrosion of the head taper junction. J. Arthroplast. 2012, 27, 26.e1–31.e1. [Google Scholar] [CrossRef] [PubMed]
- Meyer, H.; Mueller, T.; Goldau, G.; Chamaon, K.; Ruetschi, M.; Lohmann, C.H. Corrosion at the Cone/Taper Interface Leads to Failure of Large-diameter Metal-on-metal Total Hip Arthroplasties. Clin. Orthop. Relat. Res. 2012, 470, 3101–3108. [Google Scholar] [CrossRef] [PubMed]
- Cook, R.B.; Bolland, B.J.R.F.; Wharton, J.A.; Tilley, S.; Latham, J.M.; Wood, R.J.K. Pseudotumour formation due to tribocorrosion at the taper interface of large diameter metal on polymer modular total hip replacements. J. Arthroplast. 2013, 28, 1430–1436. [Google Scholar] [CrossRef] [PubMed]
- John Cooper, H.; Della Valle, C.J.; Berger, R.A.; Tetreault, M.; Paprosky, W.G.; Sporer, S.M.; Jacobs, J.J. Corrosion at the Head-Neck Taper as a Cause for Adverse Local Tissue Reactions After Total Hip Arthroplasty. J. Bone Jt. Surg.-Am. Vol. 2012, 94, 1655–1661. [Google Scholar] [CrossRef]
- Lindgren, J.U.; Brismar, B.H.; Wikstrom, A.C. Adverse reaction to metal release from a modular metal-on-polyethylene hip prosthesis. Bone Jt. J. 2011, 93-B, 1427–1430. [Google Scholar] [CrossRef] [PubMed]
- Langton, D.J.; Jameson, S.S.; Joyce, T.J.; Gandhi, J.N.; Sidaginamale, R.; Mereddy, P.; Lord, J.; Nargol, A.V.F. Accelerating failure rate of the ASR total hip replacement. Bone Jt. J. 2011, 93-B, 1011–1016. [Google Scholar] [CrossRef] [PubMed]
- Pastides, P.S.; Dodd, M.; Sarraf, K.M.; Willis-Owen, C.A. Trunnionosis: A pain in the neck. World J. Orthop. 2013, 4, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, J.R.; Gilbert, J.L. In vitro corrosion testing of modular hip tapers. J. Biomed. Mater. Res. B. Appl. Biomater. 2003, 64, 78–93. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, J.R.; Gilbert, J.L.; Jacobs, J.J.; Bauer, T.W.; Paprosky, W.; Leurgans, S. A multicenter retrieval study of the taper interfaces of modular hip prostheses. Clin. Orthop. Relat. Res. 2002, 149–161. [Google Scholar] [CrossRef]
- Higgs, G.B.; MacDonald, D.W.; Gilbert, J.L.; Rimnac, C.M.; Kurtz, S.M.; Chen, A.F.; Klein, G.R.; Hamlin, B.R.; Lee, G.C.; Mont, M.A.; et al. Does Taper Size Have an Effect on Taper Damage in Retrieved Metal-on-Polyethylene Total Hip Devices? J. Arthroplast. 2016, 31, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Nassif, N.A.; Nawabi, D.H.; Stoner, K.; Elpers, M.; Wright, T.; Padgett, D.E. Taper design affects failure of large-head metal-on-metal total hip replacements. Clin. Orthop. Relat. Res. 2014, 472, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Brockett, C.L.; Williams, S.; Jin, Z.M.; Isaac, G.; Fisher, J. A comparison of friction in 28 mm conventional and 55 mm resurfacing metal-on-metal hip replacements. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2007, 221, 391–398. [Google Scholar] [CrossRef]
- Fisher, J. Bioengineering reasons for the failure of metal-on-metal hip prostheses. J. Bone Jt. Surg. [Br.] 2011, 9393, 1001–1004. [Google Scholar] [CrossRef] [PubMed]
- Toni, A.; Baleani, M.; Bordini, B.; Stea, S.; Pilla, F.; Sudanese, A. “Trunionitis”: A Cause for Concern? Semin. Arthroplast. 2012, 23, 248–250. [Google Scholar] [CrossRef]
- Dyrkacz, R.M.R.; Brandt, J.M.; Ojo, O.A.; Turgeon, T.R.; Wyss, U.P. The influence of head size on corrosion and fretting behaviour at the head-neck interface of artificial hip joints. J. Arthroplast. 2013, 28, 1036–1040. [Google Scholar] [CrossRef] [PubMed]
- Triantafyllopoulos, G.K.; Elpers, M.E.; Burket, J.C.; Esposito, C.I.; Padgett, D.E.; Wright, T.M. Otto Aufranc Award: Large Heads Do Not Increase Damage at the Head-neck Taper of Metal-on-polyethylene Total Hip Arthroplasties. Clin. Orthop. Relat. Res. 2016, 474, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, G.; Bergmann, G.; Deuretzabacher, G.; Deuretzabacher, G.; Heller, M.; Heller, M.; Graichen, F.; Graichen, F.; Rohlmann, A.; Rohlmann, A.; et al. Hip forces and gait patterns from rountine activities. J. Biomech. 2001, 34, 859–871. [Google Scholar] [CrossRef]
- Heller, M.O.; Bergmann, G.; Deuretzbacher, G.; Dürselen, L.; Pohl, M.; Claes, L.; Haas, N.P.; Duda, G.N. Musculo-skeletal loading conditions at the hip during walking and stair climbing. J. Biomech. 2001, 34, 883–893. [Google Scholar] [CrossRef]
- Bergmann, G.; Graichen, F.; Rohlmann, A.; Linke, H. Hip joint forces during load carrying. Clin. Orthop. Relat. Res. 1997, 335, 190–201. [Google Scholar]
- Bergmann, G.; Graichen, F.; Rohlmann, A. Hip joint loading during walking and running, measured in two patients. J. Biomech. 1993, 26, 969–990. [Google Scholar] [CrossRef]
- Donaldson, F.E.; Coburn, J.C.; Siegel, K.L. Total hip arthroplasty head-neck contact mechanics: A stochastic investigation of key parameters. J. Biomech. 2014, 47, 1634–1641. [Google Scholar] [CrossRef] [PubMed]
- Farhoudi, H.; Oskouei, R.H.; Jones, C.F.; Taylor, M. A novel analytical approach for determining the frictional moments and torques acting on modular femoral components in total hip replacements. J. Biomech. 2015, 48, 976–983. [Google Scholar] [CrossRef] [PubMed]
- Brockett, C.; Williams, S.; Jin, Z.; Isaac, G.; Fisher, J. Friction of total hip replacements with different bearings and loading conditions. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 81B, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Jauch, S.Y.; Coles, L.G.; Ng, L.V.; Miles, A.W.; Gill, H.S. Low torque levels can initiate a removal of the passivation layer and cause fretting in modular hip stems. Med. Eng. Phys. 2014, 36, 1140–1146. [Google Scholar] [CrossRef] [PubMed]
- Kao, Y.Y.J.; Koch, C.N.; Wright, T.M.; Padgett, D.E. Flexural Rigidity, Taper Angle, and Contact Length Affect Fretting of the Femoral Stem Trunnion in Total Hip Arthroplasty. J. Arthroplast. 2016, 31, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Porter, D.A.; Urban, R.M.; Jacobs, J.J.; Gilbert, J.L.; Rodriguez, J.A.; Cooper, H.J. Modern Trunnions Are More Flexible: A Mechanical Analysis of THA Taper Designs. Clin. Orthop. Relat. Res. 2014, 472, 3963–3970. [Google Scholar] [CrossRef] [PubMed]
- Niinomi, M. Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A 1998, 243, 231–236. [Google Scholar] [CrossRef]
- Moharrami, N.; Langton, D.J.; Sayginer, O.; Bull, S.J. Why does titanium alloy wear cobalt chrome alloy despite lower bulk hardness: A nanoindentation study? Thin Solid Films 2013, 549, 79–86. [Google Scholar] [CrossRef]
- Catalani, S.; Stea, S.; Beraudi, A.; Gilberti, M.E.; Bordini, B.; Toni, A.; Apostoli, P. Vanadium release in whole blood, serum and urine of patients implanted with a titanium alloy hip prosthesis. Clin. Toxicol. 2013, 51, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Beraudi, A.; Catalani, S.; Montesi, M.; Stea, S.; Sudanese, A.; Apostoli, P.; Toni, A. Detection of cobalt in synovial fluid from metal-on-metal hip prosthesis: Correlation with the ion haematic level. Biomarkers 2013, 18, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, T.; Yamashita, K.; Kamimura, R. A Stepwise AIC Method for variable selection in linear regression. Commun. Stat. Theory Methods 2007, 36, 2395–2403. [Google Scholar] [CrossRef]
- Farhoudi, H.; Oskouei, R.H.; Zanoosi, A.A.P.; Jones, C.F.; Taylor, M. An analytical calculation of frictional and bending moments at the head-neck interface of hip joint implants during different physiological activities. Materials 2016, 9, 982. [Google Scholar] [CrossRef]
- Bergmann, G.; Bender, A.; Dymke, J.; Duda, G.; Damm, P. Standardized loads acting in hip implants. PLoS ONE 2016, 11, e0155612. [Google Scholar] [CrossRef] [PubMed]
- Turley, G.A.; Ahmed, S.M.Y.; Williams, M.A.; Griffin, D.R. Establishing a range of motion boundary for total hip arthroplasty. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2011, 225, 769–782. [Google Scholar] [CrossRef] [PubMed]
- Nelson, C.C.; Wagner, G.R.; Caban-Martinez, A.J.; Buxton, O.M.; Kenwood, C.T.; Sabbath, E.L.; Hashimoto, D.M.; Hopcia, K.; Allen, J.; Sorensen, G. Physical activity and body mass index: The contribution of age and workplace characteristics. Am. J. Prev. Med. 2014, 46, S42–S51. [Google Scholar] [CrossRef] [PubMed]
- Mroczkowski, M.L.; Hertzler, J.S.; Humphrey, S.M.; Johnson, T.; Blanchard, C.R. Effect of impact assembly on the fretting corrosion of modular hip tapers. J. Orthop. Res. 2006, 24, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Pennock, A.T.; Schmidt, A.H.; Bourgeault, C.A. Morse-type tapers: Factors that may influence taper strength during total hip arthroplasty. J. Arthroplast. 2002, 17, 773–778. [Google Scholar] [CrossRef] [PubMed]
- Lavernia, C.J.; Baerga, L.; Barrack, R.L.; Tozakoglou, E.; Cook, S.D.; Lata, L.; Rossi, M.D. The effects of blood and fat on Morse taper disassembly forces. Am. J. Orthop. (Belle Mead NJ) 2009, 30, 187–190. [Google Scholar]
- Karimi, S.; Nickchi, T.; Alfantazi, A. Effects of bovine serum albumin on the corrosion behaviour of AISI 316L, Co-28Cr-6Mo, and Ti-6Al-4V alloys in phosphate buffered saline solutions. Corros. Sci. 2011, 53, 3262–3272. [Google Scholar] [CrossRef]
- Kocagoz, S.B.; Underwood, R.J.; Macdonald, D.W.; Gilbert, J.L.; Kurtz, S.M. Ceramic heads decrease metal release caused by head-taper fretting and corrosion. Clin. Orthop. Relat. Res. 2016, 474, 985–994. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.M.; Kocagöz, S.B.; Hanzlik, J.A.; Underwood, R.J.; Gilbert, J.L.; MacDonald, D.W.; Lee, G.-C.; Mont, M.A.; Kraay, M.J.; Klein, G.R.; et al. Do Ceramic Femoral Heads Reduce Taper Fretting Corrosion in Hip Arthroplasty? A Retrieval Study. Clin. Orthop. Relat. Res. 2013, 471, 3270–3282. [Google Scholar] [CrossRef] [PubMed]
- Levine, B.R.; Hsu, A.R.; Skipor, A.K.; Hallab, N.J.; Paprosky, W.G.; Galante, J.O.; Jacobs, J.J. Ten-Year Outcome of Serum Metal Ion Levels After Primary Total Hip Arthroplasty. J. Bone Jt. Surg. 2013, 95, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, J.; Buckley, C.; Jacobs, J.; Gilbert, J. Corrosion Testing of Modular Hip Implants. In Modularity of Orthopedic Implants, STP 1301; Marlowe, D.E., Parr, J.E., Mayor, M.B., Eds.; ASTM International: West Conshohocken, PA, USA, 1997; pp. 157–176. ISBN 0-8031-2415-5. [Google Scholar]
- Hallab, N.J.; Messina, C.; Skipor, A.; Jacobs, J.J. Differences in the fretting corrosion of metal-metal and ceramic-metal modular junctions of total hip replacements. J. Orthop. Res. 2004, 22, 250–259. [Google Scholar] [CrossRef]
- Hodgson, A.W.E.; Kurz, S.; Virtanen, S.; Fervel, V.; Olsson, C.O.A.; Mischler, S. Passive and transpassive behaviour of CoCrMo in simulated biological solutions. Electrochim. Acta 2004, 49, 2167–2178. [Google Scholar] [CrossRef]
- Hartmann, A.; Hannemann, F.; Lützner, J.; Seidler, A.; Drexler, H.; Günther, K.P.; Schmitt, J. Metal Ion Concentrations in Body Fluids after Implantation of Hip Replacements with Metal-on-Metal Bearing—Systematic Review of Clinical and Epidemiological Studies. PLoS ONE 2013, 8, e70359. [Google Scholar] [CrossRef] [PubMed]
- Vendittoli, P.-A.; Mottard, S.; Roy, A.G.; Dupont, C.; Lavigne, M. Chromium and cobalt ion release following the Durom high carbon content, forged metal-on-metal surface replacement of the hip. J. Bone Jt. Surg. Br. Vol. 2007, 89-B, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Matthies, A.; Underwood, R.; Cann, P.; Ilo, K.; Nawaz, Z.; Skinner, J.; Hart, A.J. Retrieval analysis of 240 metal-on-metal hip components, comparing modular total hip replacement with hip resurfacing. Bone Jt. J. 2011, 93-B, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Delaunay, C.; Petit, I.; Learmonth, I.D.; Oger, P.; Vendittoli, P.A. Metal-on-metal bearings total hip arthroplasty: The cobalt and chromium ions release concern. Orthop. Traumatol. Surg. Res. 2010, 96, 894–904. [Google Scholar] [CrossRef] [PubMed]
- Garbuz, D.S.; Tanzer, M.; Greidanus, N.V.; Masri, B.A.; Duncan, C.P. The john charnley award: Metal-on-metal hip resurfacing versus large-diameter head metal-on-metal total hip arthroplasty: A randomized clinical trial. Clin. Orthop. Relat. Res. 2010, 468, 318–325. [Google Scholar] [CrossRef] [PubMed]
Bearing Couple | Ceramic on Ceramic | Metal on Metal | Mann-Whitney U (p Value) |
---|---|---|---|
12/14 Male Taper Material | Titanium Alloy | Titanium Alloy | |
Clinical Information (Mean ± SD) | |||
Age at implantation (year) | 55.5 ± 12.9 | 54.2 ± 13.1 | 0.52 |
Height (cm) | 169 ± 11 | 167 ± 11 | 0.32 |
Weight (kg) | 80 ± 19 | 75 ± 19 | 0.20 |
BMI (kg/m2) | 27 ± 5 | 26 ± 5 | 0.22 |
Implantation time (year) | 5.6 ± 4.6 | 5.8 ± 3.2 | 0.32 |
Reason for Implant Revision (Number of Retrieved Implants) | |||
Aseptic loosening | 33 | 46 | |
Infection | 16 | 11 | |
Periprosthetic femoral fracture | 6 | 5 | |
Adverse local tissue reaction | / | 21 | |
Pain | 2 | 3 | |
Recurrent dislocation | 4 | 1 | |
Total number of retrieved implants | 61 | 87 | |
Heads including an adapter sleeve | / | 40 * |
Bearing Couple | Ceramic on Ceramic | Metal on Metal | Mann-Whitney U (p Value) |
---|---|---|---|
12/14 Male Taper Material | Titanium Alloy | Titanium Alloy | |
12/14 Head-Neck Junction Characteristics (Mean ± SD) | |||
Contact length (mm) | 11.6 ± 1.7 | 12.0 ± 1.6 | 0.15 |
Taper flexural rigidity (Nm2) | 164 ± 13 | 164 ± 12 | 0.94 |
Damage risk factor (m−2) | 2.0 ± 1.1 | 2.4 ± 1.3 | 0.04 |
Damage score | 1.7 ± 0.5 | 2.4 ± 0.9 | <0.001 |
Head-Adapter Sleeve Junction (Mean ± SD) | |||
Contact length (mm) | / | 17.1 ± 1.9 | <0.001 * |
Taper flexural rigidity (Nm2) | / | 1335 ± 319 | <0.001 * |
Damage risk factor (m−2) | / | 0.2 ± 0.1 | <0.001 * |
Damage score | / | 1.2 ± 0.4 | <0.001 * |
Group | Ceramic on Ceramic Titanium Alloy | Metal on Metal Titanium Alloy | ||
---|---|---|---|---|
Coefficient | p-Value | Coefficient | p-Value | |
Intercept | 0.75 | 0.03 * | 1.34 | 0.14 * |
DRF | 0.23 | <0.001 | 0.22 | <0.001 |
Implantation time | 0.08 | <0.001 | 0.09 | <0.001 |
Age at implantation | <0.01 | 0.96 | <0.01 | 0.79 |
Parameter | BMI | Implantation Time | DRF | |
---|---|---|---|---|
Age at implantation | PCC * | 0.09 | −0.06 | 0.07 |
p value | 0.29 | 0.45 | 0.56 | |
BMI | PCC * | −0.12 | 0.31 | |
p value | 0.14 | <0.001 | ||
Implantation time | PCC * | −0.05 | ||
p value | 0.53 |
Bearing Couple | Ceramic on Ceramic | Metal on Metal |
---|---|---|
12/14 Male Taper Material | Titanium Alloy (N = 13) | Titanium Alloy (N = 30) |
Ion Concentration in Serum (Mean ± SD) | ||
Co (μg/L) | NA | 25.0 ± 34.7 |
Cr (μg/L) | NA | 17.5 ± 26.1 |
Ti (μg/L) | 2.6 ± 0.8 | NA |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baleani, M.; Erani, P.; Bordini, B.; Zuccheri, F.; Mąkosa, M.K.; De Pasquale, D.; Beraudi, A.; Stea, S. In Vivo Damage of the Head-Neck Junction in Hard-on-Hard Total Hip Replacements: Effect of Femoral Head Size, Metal Combination, and 12/14 Taper Design. Materials 2017, 10, 733. https://doi.org/10.3390/ma10070733
Baleani M, Erani P, Bordini B, Zuccheri F, Mąkosa MK, De Pasquale D, Beraudi A, Stea S. In Vivo Damage of the Head-Neck Junction in Hard-on-Hard Total Hip Replacements: Effect of Femoral Head Size, Metal Combination, and 12/14 Taper Design. Materials. 2017; 10(7):733. https://doi.org/10.3390/ma10070733
Chicago/Turabian StyleBaleani, Massimiliano, Paolo Erani, Barbara Bordini, Federica Zuccheri, Mateusz Kordian Mąkosa, Dalila De Pasquale, Alina Beraudi, and Susanna Stea. 2017. "In Vivo Damage of the Head-Neck Junction in Hard-on-Hard Total Hip Replacements: Effect of Femoral Head Size, Metal Combination, and 12/14 Taper Design" Materials 10, no. 7: 733. https://doi.org/10.3390/ma10070733
APA StyleBaleani, M., Erani, P., Bordini, B., Zuccheri, F., Mąkosa, M. K., De Pasquale, D., Beraudi, A., & Stea, S. (2017). In Vivo Damage of the Head-Neck Junction in Hard-on-Hard Total Hip Replacements: Effect of Femoral Head Size, Metal Combination, and 12/14 Taper Design. Materials, 10(7), 733. https://doi.org/10.3390/ma10070733