The Property, Preparation and Application of Topological Insulators: A Review
Abstract
:1. Introduction
2. Overview of TI
2.1. Development of TI
2.1.1. Two-Dimensional TI
2.1.2. Three-Dimensional TI
2.1.3. New Generation of TI
2.2. The Main Properties and Characteristics of TI
2.2.1. Photon-Like Electron
2.2.2. Low Power Dissipation
2.2.3. Spin-Polarized Electrons
2.2.4. QSH
2.3. Classification of TI
2.3.1. Classification by Dimensions
2.3.2. Classification by Parity of Dirac Points
2.3.3. Classification by Symmetry
2.4. Compounds of TI
3. Preparation and Doping of TI
3.1. Preparation Methods of TI
3.1.1. Mechanical Exfoliation
3.1.2. Molecular-Beam Epitaxy
3.1.3. Chemical Vapor Deposition
3.1.4. Solvothermal Synthesis
3.1.5. Metal-Organic Chemical Vapor Deposition
3.1.6. Other Synthesis Methods
3.1.7. Comparison of Different Preparation Methods
3.2. Effect of Doping on TI
3.2.1. Non-Magnetic Impurities
3.2.2. Magnetic Impurities
4. Application of TIs
4.1. Photodetector
4.2. Magnetic Device
4.3. Field-Effect Transistor
4.4. Laser
4.5. Other Applications
5. Analysis and Future Prospects
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Moore, J. Topological insulators: The next generation. Nat. Phys. 2009, 5, 378–380. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, C.X.; Qi, X.L.; Dai, X.; Fang, Z.; Zhang, S.C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442. [Google Scholar] [CrossRef]
- Wang, G. The Symmetry Broken State of the 2D and 3D Topological Insulator. M.E Dissertation, Southeast University, Nanjing, China, 2013. [Google Scholar]
- Brumfiel, G. Topological insulators: Star material. Nature 2010, 466, 310–311. [Google Scholar] [CrossRef] [PubMed]
- Teweldebrhan, D.; Balandin, A.A. “Graphene-Like” exfoliation of atomically-thin films of Bi2Te3 and related materials: Applications in thermoelectrics and topological insulators. ECS Trans. 2010, 33, 103–117. [Google Scholar]
- Landwehr, G. The discovery of the quantum hall effect. Metrologia 1986, 26, 17–39. [Google Scholar] [CrossRef]
- Schwarzschild, B. Physics Nobel Prize goes to Tsui, Stormer and Laughlin for the fractional quantum Hall effect. Phys. Today 1998, 51, 17–19. [Google Scholar] [CrossRef]
- Liu, C. Preparation of Topological Insulator Nanostructures and Their Applications in Optoelectronic Devices. M.E Dissertation, Soochow University, Soochow, China, 2016. [Google Scholar]
- Maciejko, J.; Hughes, T.L.; Zhang, S.C. The quantum spin Hall effect. Annu. Rev. Conden. Matter Phys. 2011, 2, 31–53. [Google Scholar] [CrossRef]
- Beidenkopf, H. Spatial fluctuations of helical Dirac fermions on the surface of topological insulators. Nat. Phys. 2011, 7, 939–943. [Google Scholar] [CrossRef]
- Bonderson, P.; Nayak, C.; Qi, X.L. A time-reversal invariant topological phase at the surface of a 3D topological insulator. J. Stat. Mech. Theory Exp. 2013, 2013, 387–402. [Google Scholar] [CrossRef]
- Zhang, S.C.; Bernevig, B.A.; Hughes, T. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 2007, 314, 1757–1761. [Google Scholar]
- Büttner, B.; Liu, C.X.; Tkachov, G.; Novik, E.G.; Brüne, C.; Buhmann, H.; Hankiewicz, E.M.; Recher, P.; Trauzettel, B.; Zhang, S.C. Single valley Dirac fermions in zero-gap HgTe quantum wells. Nat. Phys. 2010, 7, 418–422. [Google Scholar] [CrossRef]
- Lin, Y.M.; Rabin, O.; Cronin, S.B.; Ying, J.Y.; Dresselhaus, M.S. Semimetal-semiconductor transition in Bi1−xSbx alloy nanowires and their thermoelectric properties. Appl. Phys. Lett. 2002, 81, 2403–2405. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, R.; Zhang, H.J.; Dai, X.; Fang, Z. First-principles studies of the three-dimensional strong topological insulators Bi2Te3, Bi2Se3 and Sb2Te3. New J. Phys. 2010, 12, 065013. [Google Scholar] [CrossRef]
- Augustine, S.; Mathai, E. Growth, morphology, and microindentation analysis of Bi2Se3, Bi1.8In0.2Se3, and Bi2Se2.8Te0.2 single crystals. Mater. Res. Bull. 2001, 36, 2251–2261. [Google Scholar] [CrossRef]
- Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y.S.; Cava, R.J.; et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 398–402. [Google Scholar] [CrossRef]
- Hsieh, D.; Xia, Y.; Qian, D.; Wray, L.; Meier, F.; Dil, J.H.; Osterwalder, J.; Patthey, L.; Fedorov, A.V.; Lin, H. Observation of time-reversal-protected single-Dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3. Phys. Rev. Lett. 2009, 103, 146401. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hsieh, T.H.; Wei, P.; Duan, W.; Moodera, J.; Fu, L. Spin-filtered edge states with an electrically tunable gap in a two-dimensional topological crystallin insulator. Nat. Mater. 2013, 13, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Man, B.; Zhang, Q. Topological crystalline insulator SnTe/Si vertical heterostructure photodetectors for high-performance near-infrared detection. ACS Appl. Mater. Interface 2017, 9, 14067–14077. [Google Scholar] [CrossRef] [PubMed]
- Volobuev, V.V.; Mandal, P.S.; Galicka, M.; Caha, O.; Sánchez-Barriga, J.; Di, S.D.; Varykhalov, A.; Khiar, A.; Picozzi, S.; Bauer, G. Giant Rashba splitting in Pb1−xSnxTe (111) topological crystalline insulator films controlled by Bi doping in the bulk. Adv. Mater. 2017, 29, 1604185. [Google Scholar] [CrossRef] [PubMed]
- Weng, H.M.; Dai, X.; Fang, Z. Transition-metal pentatelluride ZrTe5 and HfTe5: A paradigm for large-gap quantum spin Hall insulators. Phys. Rev. X 2014, 4, 339–345. [Google Scholar]
- Zhang, Y.; Wang, C.L.; Yu, L.; Liu, G.D.; Liang, A.J.; Huang, J.W.; Nie, S.M.; Sun, X.; Zhang, Y.X.; Shen, B.; et al. Electronic evidence of temperature-induced Lifshitz transition and topological nature in ZrTe5. Nat. Commun. 2017, 8, 15512. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Zhang, C.; Liu, Y.W.; Narayan, A.; Song, C.Y.; Shen, S.D.; Sui, X.; Xu, J.; Yu, H.C.; An, Z.H.; et al. Observation of quasi-two-dimensional Dirac fermions in ZrTe5. NPG Asia Mater. 2016, 8, e325. [Google Scholar] [CrossRef]
- Li, Q.; Kharzeev, D.E.; Zhang, C.; Huang, Y.; Pletikosic, I.; Fedorov, A.V.; Zhong, R.D.; Schneeloch, J.A.; Gu, G.D.; Valla, T. Chiral magnetic effect in ZrTe5. Nat. Phys. 2016, 12, 550–554. [Google Scholar] [CrossRef]
- Qiu, G.; Du, Y.C.; Charnas, A.; Zhou, H.; Jin, S.Y.; Luo, Z.; Zemlyanov, D.Y.; Xu, X.F.; Cheng, G.J.; Ye, P.D. Observation of optical and electrical in-plane anisotropy in high-mobility few-layer ZrTe5. Nano Lett. 2016, 16, 7364–7369. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.H.; Wu, J.F.; Ning, W.; Li, N.N.; Du, Y.P.; Chen, X.L.; Zhang, R.R.; Chi, Z.H.; Wang, X.F.; Zhu, X.D.; et al. Pressure-induced superconductivity in a three-dimensional topological material ZrTe5. Proc. Natl. Acad. Sci. USA 2016, 113, 2904–2909. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Jiang, Y.; Yang, J.; Dun, Z.L.; Zhou, H.D.; Jiang, Z.; Lu, P.; Pan, W. Quantum oscillations at integer and fractional Landau level indices in single-crystalline ZrTe5. Sci. Rep. 2016, 6, 35357. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Long, Y.J.; Zhao, L.X.; Nie, S.M.; Zhang, S.J.; Weng, Y.X.; Jin, M.L.; Li, W.M.; Liu, Q.Q.; Long, Y.W.; et al. Superconductivity in HfTe5 across weak to strong topological insulator transition induced via pressures. Sci. Rep. 2017, 7, 44367. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.C.; Li, C.K.; Liu, H.W.; Yan, J.Q.; Wang, J.F.; Liu, J.; Lin, Z.Q.; Li, Y.N.; Wang, Y.; Li, L.; et al. Chiral anomaly and ultrahigh mobility in crystalline HfTe5. Phys. Rev. B 2016, 93, 165127. [Google Scholar] [CrossRef]
- Burkov, A.A.; Balents, L. Weyl Semimetal in a Topological Insulator Multilayer. Phys. Rev. Lett. 2011, 107, 127205. [Google Scholar] [CrossRef] [PubMed]
- Halasz, G.B.; Balents, L. Time-reversal invariant realization of the Weyl semimetal phase. Phys. Rev. B 2012, 85, 035103. [Google Scholar] [CrossRef]
- Weng, H.M.; Fang, C.; Fang, Z.; Bernevig, B.A.; Dai, X. Weyl semimetal phase in non-centrosymmetric transition-metal monophosphides. Phys. Rev. X 2015, 5, 011029. [Google Scholar]
- Xu, S.Y.; Belopolski, I.; Alidoust, N.; Neupane, M.; Bian, G.; Zhang, C.L.; Sankar, R.; Chang, G.Q.; Yuan, Z.J.; Lee, C.C.; et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 2015, 349, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.C.; Zhao, L.X.; Long, Y.J.; Wang, P.P.; Chen, D.; Yang, Z.H.; Liang, H.; Xue, M.Q.; Weng, H.M.; Fang, Z.; et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 2015, 5, 031023. [Google Scholar] [CrossRef]
- Zhang, C.L.; Xu, S.Y.; Belopolski, I.; Yuan, Z.J.; Lin, Z.Q.; Tong, B.B.; Bian, G.; Alidoust, N.; Lee, C.C.; Huang, S.M.; et al. Signatures of the Adler-Bell-Jackiw chiral anomaly in a Weyl fermion semimetal. Nat. Commun. 2016, 7, 10735. [Google Scholar] [CrossRef] [PubMed]
- Shekhar, C.; Nayak, A.K.; Sun, Y.; Schmidt, M.; Nicklas, M.; Leermakers, I.; Zeitler, U.; Skourski, Y.; Wosnitza, J.; Liu, Z.K.; et al. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. Nat. Phys. 2015, 11, 645–650. [Google Scholar] [CrossRef]
- Soluyanov, A.A.; Gresch, D.; Wang, Z.J.; Wu, Q.S.; Troyer, M.; Dai, X.; Bernevig, B.A. Type-II Weyl semimetals. Nature 2015, 527, 495–498. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Liu, E.F.; Liu, H.M.; Pan, Y.M.; Zhang, L.Q.; Zeng, J.W.; Fu, Y.J.; Wang, M.; Xu, K.; Huang, Z.; et al. Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2. Nat. Commun. 2016, 7, 13142. [Google Scholar] [CrossRef] [PubMed]
- Deng, K.; Wan, G.L.; Deng, P.; Zhang, K.N.; Ding, S.J.; Wang, E.Y.; Yan, M.Z.; Huang, H.Q.; Zhang, H.Y.; Xu, Z.L.; et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nat. Phys. 2016, 12, 1105–1111. [Google Scholar] [CrossRef]
- Wu, Y.; Mou, D.X.; Jo, N.H.; Sun, K.W.; Huang, L.N.; Bud’ko, S.L.; Canfield, P.C.; Kaminski, A. Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe2. Phys. Rev. B 2016, 94, 121113. [Google Scholar] [CrossRef]
- Huang, L.; McCormick, T.M.; Ochi, M.; Zhao, Z.Y.; Suzuki, M.T.; Arita, R.; Wu, Y.; Mou, D.X.; Cao, H.B.; Yan, J.Q.; et al. Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. Nat. Mater. 2016, 15, 1155–1160. [Google Scholar] [CrossRef] [PubMed]
- Weng, H.M.; Liang, Y.Y.; Xu, Q.N.; Yu, R.; Fang, Z.; Dai, X.; Kawazoe, Y. Topological node-line semimetal in three-dimensional graphene networks. Phys. Rev. B 2015, 92, 045108. [Google Scholar] [CrossRef]
- Yu, R.; Weng, H.M.; Fang, Z.; Dai, X.; Hu, X. Topological Node-Line semimetal and Dirac semimetal state in antiperovskite Cu3PdN. Phys. Rev. Lett. 2015, 115, 036807. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.K.; Satpathy, S.; Jepsen, O. Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide. J. Phys. Condens. Matter 1997, 9, 461–470. [Google Scholar] [CrossRef]
- Tan, J.; Kalantarzadeh, K.; Wlodarski, W.; Bhargava, S.; Akolekar, D.; Holland, A.; Rosengarten, G. Thermoelectric Properties of Bismuth Telluride Thin Films Deposited by Radio Frequency Magnetron Sputtering. In Proceedings of the SPIE 5836, Smart Sensors, Actuators, and MEMS II, Sevilla, Spain, 9–11 May 2005; pp. 711–718. [Google Scholar]
- Hsieh, D.; Xia, Y.; Wray, L.; Qian, D.; Pal, A.; Dil, J.H.; Meier, F.; Osterwalder, J.; Bihlmayer, G.; Kane, C.L.; et al. First direct observation of Spin-textures in Topological Insulators: Spin-resolved ARPES as a probe of topological quantum spin Hall effect and Berry’s phase. Science 2009, 323, 919–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, X.L.; Zhang, S.C. The quantum spin Hall effect and topological insulators. Phys. Today 2010, 63, 33–38. [Google Scholar] [CrossRef]
- Qi, X.L.; Li, R.; Zang, J.; Zhang, S.C. Inducing a magnetic monopole with topological surface States. Science 2009, 323, 1184–1187. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, D.; Xia, Y.; Qian, D.; Wray, L.; Dil, J.H.; Meier, F.; Osterwalder, J.; Patthey, L.; Checkelsky, J.G.; Ong, N.P.; et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature 2009, 460, 1101–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cava, R.J.; Ji, H.; Fuccillo, M.K.; Gibson, Q.D.; Hor, Y.S. Crystal structure and chemistry of topological insulators. J. Mater. Chem. C 2013, 1, 3176–3189. [Google Scholar] [CrossRef]
- MatWeb. Bi2Se3. Available online: http://asia.matweb.com/search/SpecificMaterial.asp?bassnum=DSEM12 (accessed on 14 April 2017).
- MatWeb. Sb2Te3. Available online: http://asia.matweb.com/search/SpecificMaterial.asp?bassnum=DSEM06 (accessed on 14 April 2017).
- MatWeb. Bi2Te3. Available online: http://asia.matweb.com/search/SpecificMaterial.asp?bassnum=DSEM14 (accessed on 14 April 2017).
- Eschbach, M.; Młyńczak, E.; Kellner, J.; Kampmeier, J.; Lanius, M.; Neumann, E.; Weyrich, C.; Gehlmann, M.; Gospodarič, P.; Döring, S.; et al. Realization of a vertical topological p–n junction in epitaxial Sb2Te3/Bi2Te3 heterostructures. Nat. Commun. 2015, 6, 8816. [Google Scholar] [CrossRef] [PubMed]
- Yáñez-Limón, J.M.; González-Hernández, J.; Alvarado-Gil, J.J.; Delgadillo, I.I.; Vargas, H. Thermal and electrical properties of the Ge:Sb:Te system by photoacoustic and Hall measurements. Phys. Rev. B 1996, 52, 16321–16324. [Google Scholar] [CrossRef]
- Feutelais, Y.; Legendre, B.; Rodier, N.; Agafonov, V. A study of the phases in the bismuth—Tellurium system. Mater. Res. Bull. 1993, 28, 591–596. [Google Scholar] [CrossRef]
- ChemSpider. Property of Bi2Se3. Available online: http://www.chemspider.com/Chemical-Structure.145787.html?rid=3fc8a50b-333b-41f7-9e99-8990bb23c118 (accessed on 26 March 2017).
- William, M.H. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Li, H.; Gao, L.; Li, H.; Wang, G.; Wu, J.; Zhou, Z.; Wang, Z. Growth and band alignment of Bi2Se3 topological insulator on H-terminated Si(111) van der Waals surface. Appl. Phys. Lett. 2012, 102, 074106. [Google Scholar] [CrossRef]
- Shaik, M.; Motaleb, I.A. Effect of Growth Temperature on the Material Properties of PLD-Grown Bi2Te3 and Sb2Te3. In Proceedings of the 2013 IEEE International Conference on Electro/Information Technology (EIT), Rapid City, SD, USA, 9–11 May 2013; pp. 1–6. [Google Scholar]
- Hong, S.S.; Kundhikanjana, W.; Cha, J.J.; Lai, K.; Kong, D.; Meister, S.; Kelly, M.A.; Shen, Z.X.; Cui, Y. Ultrathin topological insulator Bi2Se3 nanoribbons exfoliated by atomic force microscopy. Nano Lett. 2010, 10, 3118–3122. [Google Scholar] [CrossRef] [PubMed]
- Goyal, V.; Teweldebrhan, D.; Balandin, A.A. Mechanically-exfoliated stacks of thin films of Bi2Te3 topological insulators with enhanced thermoelectric performance. Appl. Phys. Lett. 2010, 97, 657–679. [Google Scholar] [CrossRef]
- Krumrain, J.; Mussler, G.; Borisova, S.; Stoica, T.; Plucinski, L.; Schneider, C.M.; Grützmacher, D. MBE growth optimization of topological insulator Bi2Te3 films. J. Cryst. Growth 2011, 324, 115–118. [Google Scholar] [CrossRef]
- Kong, D.; Dang, W.; Cha, J.J.; Li, H.; Meister, S.; Peng, H.; Liu, Z.; Cui, Y. Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential. Nano Lett. 2010, 10, 2245–2250. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhu, X.G.; Sun, Y.Y.; Li, Y.Y.; Zhang, T.; Wen, J.; Chen, X.; He, K.; Wang, L.L.; Ma, X.C.; et al. Topological insulator thin films of Bi2Te3 with controlled electronic structure. Adv. Mater. 2011, 23, 2929–2932. [Google Scholar] [CrossRef] [PubMed]
- Bansal, N.; Cho, M.R.; Brahlek, M.; Koirala, N.; Horibe, Y.; Jing, C.; Wu, W.; Yun, D.P.; Oh, S. Transferring MBE-grown topological insulator films to arbitrary substrates and metal–insulator transition via Dirac gap. Nano Lett. 2014, 14, 1343–1348. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Liu, F.Y.; Man, B.Y.; Bi, D.; Xu, X.Y. Multi-layered nanostructure Bi2Se3 grown by chemical vapor deposition in selenium-rich atmosphere. Appl. Surf. Sci. 2014, 317, 257–261. [Google Scholar] [CrossRef]
- Sun, Z.; Man, B.; Yang, C.; Liu, M.; Jiang, S.; Zhang, C.; Zhang, J.; Liu, F.; Xu, Y. Selenium-assisted controlled growth of graphene–Bi2Se3 nanoplates hybrid Dirac materials by chemical vapor deposition. Appl. Surf. Sci. 2016, 365, 357–363. [Google Scholar] [CrossRef]
- Wang, Q.S.; Cai, K.M.; Li, J.; Huang, Y.; Wang, Z.X.; Xu, K.; Wang, F.; Zhan, X.Y.; Wang, F.M.; Wang, K.Y.; et al. Rational design of ultralarge Pb1−xSnxTe nanoplates for exploring crystalline symmetry-protected topological transport. Adv. Mater. 2016, 28, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.W.; Kim, G.H.; Kang, S.G.; Kang, M.-A.; An, K.-S.; Kim, H.; Lee, Y.K. Growth behavior of Bi2Te3 and Sb2Te3 thin films on graphene substrate grown by plasma-enhanced chemical vapor deposition. Phys. Status Solidi RRL 2017, 11, 1600369. [Google Scholar] [CrossRef]
- Fei, F.; Wei, Z.; Wang, Q.J.; Lu, P.; Wang, S.; Qin, Y.; Pan, D.; Zhao, B.; Wang, X.; Sun, J.; et al. Solvothermal synthesis of lateral heterojunction Sb2Te3/Bi2Te3 nanoplates. Nano Lett. 2015, 15, 5905–5911. [Google Scholar] [CrossRef] [PubMed]
- Mao, F.; Guo, J.; Zhang, S.; Yang, F.; Sun, Q.; Ma, J.; Li, Z. Solvothermal synthesis and electrochemical properties of S-doped Bi2Se3 hierarchical microstructure assembled by stacked nanosheets. RSC Adv. 2016, 6, 38228–38232. [Google Scholar] [CrossRef]
- Ali, Z.; Cao, C.; Li, J.; Wang, Y.; Tai, C.; Tanveer, M.; Tahir, M.; Idrees, F.; Butt, F.K. Effect of synthesis technique on electrochemical performance of bismuth selenide. J. Power Sources 2013, 229, 216–222. [Google Scholar] [CrossRef]
- Jin, R.; Liu, J.; Xu, Y.; Li, G.; Chen, G.; Yang, L. Hierarchical Bi2Se3−xSx microarchitectures assembled from ultrathin polycrystalline nanosheets: Solvothermal synthesis and good electrochemical performance. J. Mater. Chem. A 2013, 1, 10942–10950. [Google Scholar] [CrossRef]
- Xu, H.; Chen, G.; Jin, R.; Chen, D.; Wang, Y.; Pei, J.; Zhang, Y.; Yan, C.; Qiu, Z. Microwave-assisted synthesis of Bi2Se3 ultrathin nanosheets and its electrical conductivities. Crystengcomm 2014, 16, 3965–3970. [Google Scholar] [CrossRef]
- Alegria, L.D.; Petta, J.R. Controlled MOCVD growth of Bi2Se3 topological insulator nanoribbons. Nanotechnology 2012, 23, 435601. [Google Scholar] [CrossRef] [PubMed]
- Alegria, L.D.; Schroer, M.D.; Chatterjee, A.; Poirier, G.R.; Pretko, M.; Patel, S.K.; Petta, J.R. Structural and electrical characterization of Bi2Se3 nanostructures grown by metal-organic chemical vapor deposition. Nano Lett. 2012, 12, 4711–4714. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Venkatasubramanian, R.; Liu, C.; Pierce, J. Topological insulator Bi2Te3 films synthesized by metal organic chemical vapor deposition. Appl. Phys. Lett. 2012, 101, 162104. [Google Scholar] [CrossRef]
- Bendt, G.; Zastrow, S.; Nielsch, K.; Mandal, P.S.; Sánchezbarriga, J.; Rader, O.; Schulz, S. Deposition of topological insulator Sb2Te3 films by an MOCVD process. J. Mater. Chem. A 2014, 2, 8215–8222. [Google Scholar] [CrossRef]
- Shen, J.; Jung, Y.; Disa, A.S.; Walker, F.J.; Ahn, C.H.; Cha, J.J. Synthesis of SnTe nanoplates with {100} and {111} Surfaces. Nano Lett. 2014, 14, 4183–4188. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Chen, Y.; Lin, Y.; Wu, J.; Lee, Y.; Wu, B.; Chern, M.; Liang, C.; Chang, Y. Epitaxial growth of Bi2Te3 topological insulator thin films by temperature-gradient induced physical vapor deposition (PVD). J. Alloys Compd. 2016, 686, 989–997. [Google Scholar] [CrossRef]
- Le, P.H.; Wu, K.H.; Luo, C.W.; Leu, J. Growth and characterization of topological insulator Bi2Se3 thin films on SrTiO3 using pulsed laser deposition. Thin Solid Films 2013, 534, 659–665. [Google Scholar] [CrossRef]
- Teweldebrhan, D.; Goyal, V.; Balandin, A.A. From graphene to Bismuth Telluride: Mechanical exfoliation of quasi-2D crystals for applications in thermoelectrics and topological insulators. arXiv Preprint, 2010; arXiv:1003.1398. [Google Scholar]
- Plucinski, L.; Mussler, G.; Krumrain, J.; Herdt, A.; Suga, S.; Grutzmacher, D.; Schneider, C.M. Robust surface electronic properties of topological insulators: MBE-grown Bi2Te3 films. Appl. Phys. Lett. 2011, 98, 222503. [Google Scholar] [CrossRef]
- Liu, X.; Smith, D.J.; Fan, J.; Zhang, Y.H.; Cao, H.; Chen, Y.P.; Leiner, J.; Kirby, B.J.; Dobrowolska, M.; Furdyna, J.K. Structural properties of Bi2Te3 and Bi2Se3 topological insulators grown by molecular beam epitaxy on GaAs(001) substrates. Appl. Phys. Lett. 2011, 99, 171903. [Google Scholar] [CrossRef]
- Liu, X.; Smith, D.J.; Cao, H.; Chen, Y.P.; Fan, J.; Zhang, Y.H.; Pimpinella, R.E.; Dobrowolska, M.; Furdyna, J.K. Characterization of Bi2Te3 and Bi2Se3 topological insulators grown by MBE on (001) GaAs substrates. J. Vac. Sci. Technol. B 2012, 30, 02B103. [Google Scholar] [CrossRef]
- Aabdin, Z.; Peranio, N.; Winkler, M.; Bessas, D.; König, J.; Hermann, R.P.; Böttner, H.; Eibl, O. Sb2Te3 and Bi2Te3 thin films grown by room-temperature MBE. J. Electron. Mater. 2012, 41, 1493–1497. [Google Scholar] [CrossRef]
- Brom, J.E.; Weiss, L.; Choudhury, T.H.; Redwing, J.M. Hybrid physical–chemical vapor deposition of Bi2Se3 films. J. Cryst. Growth 2016, 452, 230–234. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, M.; Man, B.Y.; Jiang, S.Z.; Yang, C.; Chen, C.S.; Feng, D.J.; Bi, D.; Liu, F.Y.; Qiu, H.W.; et al. Facile fabrication of graphene-topological insulator Bi2Se3 hybrid Dirac materials via chemical vapor deposition in Se-rich conditions. Crystengcomm 2014, 16, 8941–8945. [Google Scholar] [CrossRef]
- Hor, Y.S.; Richardella, A.; Roushan, P.; Xia, Y.; Checkelsky, J.G.; Yazdani, A.; Hasan, M.Z.; Ong, N.P.; Cava, R.J. p-type Bi2Se3 for topological insulator and low temperature thermoelectric applications. Phys. Rev. B 2009, 79, 195208. [Google Scholar] [CrossRef]
- Qu, D.X.; Hor, Y.S.; Xiong, J.; Cava, R.J.; Ong, N.P. Quantum oscillations and Hall anomaly of surface states in the topological insulator Bi2Te3. Science 2010, 329, 821–824. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Taskin, A.A.; Sasaki, S.; Segawa, K.; Ando, Y. Observations of two-dimensional quantum oscillations and ambipolar transport in the topological insulator Bi2Se3 achieved by Cd doping. Phys. Rev. B 2011, 84, 2989–2996. [Google Scholar] [CrossRef]
- Kong, D.; Cha, J.J.; Lai, K.; Peng, H.; Analytis, J.G.; Meister, S.; Chen, Y.; Zhang, H.J.; Fisher, I.R.; Shen, Z.X.; et al. Rapid surface oxidation as a source of surface degradation factor for Bi2Te3. ACS Nano 2011, 5, 4698–4703. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Liu, Z.K.; Analytis, J.G.; Igarashi, K.; Mo, S.K.; Lu, D.H.; Moore, R.G.; Fisher, I.R.; Sasagawa, T.; Shen, Z.X.; et al. Controlling the carriers of topological insulators by bulk and surface doping. Semicond. Sci. Technol. 2012, 27, 124002. [Google Scholar] [CrossRef]
- Fang, L.; Stoumpos, C.C.; Jia, Y.; Glatz, A.; Chung, D.Y.; Claus, H.; Welp, U.; Kwok, W.K.; Kanatzidis, M.G. Dirac fermions and superconductivity in homologous structures (AgxPb1−xSe)5(Bi2Se3)3m,m = 1,2. Phys. Rev. B 2013, 90, 2721–2734. [Google Scholar] [CrossRef]
- Li, L. Preparation and Electromagnetic Properties of Doped and Compostied Topological Insulator Bi2Se3. M.E Dissertation, Southwest Jiaotong University, Chengdu, China, 2013. [Google Scholar]
- Li, J.; Liua, Y.; White, S.C.; Wahl, P.; Xie, X.M.; Jiang, M.H.; Lin, C.T. Single Crystal Growth and Transport Properties of Cu-Doped Topological Insulator Bi2Se3. Phys. Procedia 2012, 36, 638–643. [Google Scholar] [CrossRef]
- Hor, Y.S.; Williams, A.J.; Checkelsky, J.G.; Roushan, P.; Seo, J.; Xu, Q.; Zandbergen, H.W.; Yazdani, A.; Ong, N.P.; Cava, R.J. Superconductivity in CuxBi2Se3 and its implications for pairing in the undoped topological insulator. Phys. Rev. Lett. 2010, 104, 057001. [Google Scholar] [CrossRef] [PubMed]
- Wray, L.A.; Xu, S.Y.; Xia, Y.; Hor, Y.S.; Qian, D.; Fedorov, A.V.; Lin, H.; Bansil, A.; Cava, R.J.; Hasan, M.Z. Observation of topological order in a superconducting doped topological insulator. Nat. Phys. 2010, 6, 855–859. [Google Scholar] [CrossRef]
- Hor, Y.S.; Checkelsky, J.G.; Qu, D.; Ong, N.P.; Cava, R.J. Superconductivity and non-metallicity induced by doping the topological insulators Bi2Se3 and Bi2Te3. J. Phys. Chem. Solids 2011, 72, 572–576. [Google Scholar] [CrossRef]
- Horák, J.; Lošťák, P.; Montaner, A. Point defects in Ga-doped Bi2Se3 single crystals. Phys. Status Solidi B 2010, 119, K17–K21. [Google Scholar] [CrossRef]
- Zhong, R.; Schneeloch, J.; Li, Q.; Ku, W.; Tranquada, J.; Gu, G. Indium Substitution Effect on the Topological Crystalline Insulator Family (Pb1−xSnx)1−yInyTe: Topological and Superconducting Properties. Crystals 2017, 7, 55. [Google Scholar] [CrossRef]
- Du, G.; Du, Z.Y.; Fang, D.L.; Yang, H.; Zhong, R.D.; Schneeloch, J.; Gu, G.D.; Wen, H.H. Fully gapped superconductivity in In-doped topological crystalline insulator Pb0.5Sn0.5Te. Phys. Rev. B 2015, 92, 020512. [Google Scholar] [CrossRef]
- Chen, Y.L.; Analytis, J.G.; Chu, J.H.; Liu, Z.K.; Mo, S.K.; Qi, X.L.; Zhang, H.J.; Lu, D.H.; Dai, X.; Fang, Z.; et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 2009, 325, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, S.K.; Pletikosić, I.; Liang, T.; Gyenis, A.; Lapidus, S.H.; Tian, Y.; Zhao, H.; Burch, K.S.; Lin, J.; Wang, W.; et al. Sn-doped Bi1.1Sb0.9Te2S bulk crystal topological insulator with excellent properties. Nat. Commun. 2016, 7, 11456. [Google Scholar] [CrossRef] [PubMed]
- Checkelsky, J.G.; Hor, Y.S.; Cava, R.J.; Ong, N.P. Bulk band gap and surface state conduction observed in voltage-tuned crystals of the topological insulator Bi2Se3. Phys. Rev. Lett. 2011, 106, 196801. [Google Scholar] [CrossRef] [PubMed]
- Pu, X.Y.; Zhao, K.; Liu, Y.; Wei, Z.T.; Jin, R.; Yang, X.S.; Zhao, Y. Structural and transport properties of iridium-doped Bi2Se3 topological insulator crystals. J. Alloys Compd. 2017, 694, 272–275. [Google Scholar] [CrossRef]
- Sasaki, S.; Ren, Z.; Taskin, A.A.; Segawa, K.; Fu, L.; Ando, Y. Odd-parity pairing and topological superconductivity in a strongly spin-orbit coupled semiconductor. Phys. Rev. Lett. 2012, 109, 217004. [Google Scholar] [CrossRef] [PubMed]
- Maurya, V.K.; Shruti, S.; Neha, P.; Srivastava, P.; Patnaik, S. Superconductivity in In Doped Topological Crystalline Insulator SnTe. AIP Conf. Proc. 2014, 1591, 1589–1590. [Google Scholar]
- Maurya, V.K.; Jha, R.; Awana, V.P.S.; Patnaik, S. Effect of pressure on superconductivity in the indium-doped topological crystalline insulator SnTe. J. Phys. Condens. Matter 2015, 27, 242201. [Google Scholar] [CrossRef] [PubMed]
- Zhong, R.D.; Schneeloch, J.A.; Shi, X.Y.; Xu, Z.J.; Zhang, C.; Tranquada, J.M.; Li, Q.; Gu, G.D. Optimizing the superconducting transition temperature and upper critical field of Sn1−xInxTe. Phys. Rev. B 2013, 88, 1241–1247. [Google Scholar] [CrossRef]
- Si, W.; Zhang, C.; Wu, L.; Ozaki, T.; Gu, G.; Li, Q. Superconducting thin films of (100) and (111) oriented indium doped topological crystalline insulator SnTe. Appl. Phys. Lett. 2015, 107, 092601. [Google Scholar] [CrossRef]
- He, L.P.; Zhang, Z.; Pan, J.; Hong, X.C.; Zhou, S.Y.; Li, S.Y. Full superconducting gap in the doped topological crystalline insulator, Sn0.6In0.4Te. Phys. Rev. B 2013, 88, 014523. [Google Scholar] [CrossRef]
- Nakayama, K.; Kimizuka, H.; Tanaka, Y.; Sato, T.; Souma, S.; Takahashi, T.; Sasaki, S.; Segawa, K.; Ando, Y. Observation of two-dimensional bulk electronic states in the superconducting topological insulator heterostructure Cux(PbSe)5(Bi2Te3)6: Implications for unconventional superconductivity. Phys. Rev. B 2015, 609, 209–224. [Google Scholar]
- Han, C.Q.; Li, H.; Chen, W.J.; Zhu, F.; Yao, M.Y.; Li, Z.J.; Wang, M.; Gao, B.F.; Guan, D.D.; Liu, C.; et al. Electronic structure of a superconducting topological insulator Sr-doped Bi2Se3. Appl. Phys. Lett. 2015, 107, 171602. [Google Scholar] [CrossRef]
- Du, G.; Li, Y.F.; Schneeloch, J.; Zhong, R.D.; Gu, G.D.; Yang, H.; Lin, H.; Wen, H.H. Superconductivity with two-fold symmetry in topological superconductor SrxBi2Se3. Sci. China Phys. Mech. 2016, 60, 037411. [Google Scholar] [CrossRef]
- Smylie, M.P.; Claus, H.; Welp, U.; Kwok, W.K.; Qiu, Y.; Hor, Y.S.; Snezhko, A. Evidence of nodes in the order parameter of the superconducting doped topological insulator NbxBi2Se3 via penetration depth measurements. Phys. Rev. B 2016, 94, 180510. [Google Scholar] [CrossRef]
- Mizuguchi, Y.; Miura, O. High-pressure synthesis and superconductivity of Ag-doped topological crystalline insulator SnTe (Sn1−xAgxTe with x = 0–0.5). J. Phys. Soc. Jpn. 2016, 85, 053702. [Google Scholar] [CrossRef]
- Wang, Z.; Taskin, A.A.; Frölich, T.; Braden, M.; Ando, Y. Superconductivity in Tl0.6Bi2Te3 derived from a topological insulator. Chem. Mater. 2016, 28, 779–784. [Google Scholar] [CrossRef]
- Sushkov, A.B.; Jenkins, G.S.; Schmadel, D.C.; Butch, N.P.; Paglione, J.; Drew, H.D. Far infrared cyclotron resonance and Faraday effect in Bi2Se3. Phys. Rev. B 2010, 82, 4079–4085. [Google Scholar] [CrossRef]
- Tse, W.K.; Macdonald, A.H. Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators. Phys. Rev. Lett. 2010, 105, 057401. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Zhou, D.; Zhang, M.; Yang, L.; Yang, X.; Zhao, Y. Observation of nano-scaled defects in Fe doped Bi2Se3 topological insulator crystal. Mater. Lett. 2013, 99, 118–121. [Google Scholar] [CrossRef]
- Kim, J.; Jhi, S.H. Magnetic phase transition in Fe-doped topological insulator Bi2Se3. Phys. Rev. B 2015, 92, 104405. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, K.S.; Wang, J.F.; Kulbachinskii, V.A.; Ogawa, K.; Sasaki, M.; Ohnishi, A.; Kitaura, M.; Wu, Y.Y.; Li, L.; et al. Topological phase transitions driven by magnetic phase transitions in Fe(x)Bi2Te3 (0 ≤ x ≤ 0.1) single crystals. Phys. Rev. Lett. 2013, 110, 136601. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Richardella, A.; Rench, D.W.; Xu, S.Y.; Kandala, A.; Flanagan, T.C.; Beidenkopf, H.; Yeats, A.L.; Buckley, B.B.; Klimov, P.V.; et al. Interplay between ferromagnetism, surface states, and quantum corrections in a magnetically doped topological insulator. Phys. Rev. B 2012, 86, 205127. [Google Scholar] [CrossRef]
- Hor, Y.S.; Roushan, P.; Beidenkopf, H.; Seo, J.; Qu, D.; Checkelsky, J.G.; Wray, L.A.; Hsieh, D.; Xia, Y.; Xu, S.Y.; et al. Development of ferromagnetism in the doped topological insulator Bi2−xMnxTe3. Phys. Rev. B 2010, 81, 2498–2502. [Google Scholar] [CrossRef]
- Niu, C.; Dai, Y.; Guo, M.; Wei, W.; Ma, Y.; Huang, B. Mn induced ferromagnetism and modulated topological surface states in Bi2Te3. Appl. Phys. Lett. 2011, 98, 252502. [Google Scholar] [CrossRef]
- Chen, Y.L.; Chu, J.H.; Analytis, J.G.; Liu, Z.K.; Igarashi, K.; Kuo, H.H.; Qi, X.L.; Mo, S.K.; Moore, R.G.; Lu, D.H.; et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science 2010, 329, 659–692. [Google Scholar] [CrossRef] [PubMed]
- Mogi, M.; Yoshimi, R.; Tsukazaki, A.; Yasuda, K.; Kozuka, Y.; Takahashi, K.S.; Kawasaki, M.; Tokura, Y. Magnetic modulation doping in topological insulators toward higher-temperature quantum anomalous Hall effect. Appl. Phys. Lett. 2015, 107, 182401. [Google Scholar] [CrossRef]
- Fan, Y.; Kou, X.; Upadhyaya, P.; Shao, Q.; Pan, L.; Lang, M.; Che, X.; Tang, J.; Montazeri, M.; Murata, K.; et al. Electric-field control of spin–orbit torque in a magnetically doped topological insulator. Nat. Nanotechnol. 2016, 11, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Furchi, M.; Urich, A.; Pospischil, A.; Lilley, G.; Unterrainer, K.; Detz, H.; Klang, P.; Andrews, A.M.; Schrenk, W.; Strasser, G.; et al. Microcavity-integrated graphene photodetector. Nano Lett. 2011, 12, 2773–2777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.Y.; Liu, T.; Meng, B.; Li, X.; Liang, G.; Hu, X.; Wang, Q.J. Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 2013, 4, 1811. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Liao, Z.M.; Ke, X.; Van, T.G.; Wang, Q.; Sun, D.; Yao, W.; Zhou, S.; Zhang, L.; Wu, H.C.; et al. Topological surface state enhanced photothermoelectric effect in Bi2Se3 nanoribbons. Nano Lett. 2014, 14, 4389–4394. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, J.; Zhang, S.C. Topological insulators for high performance terahertz to infrared applications. Phys. Rev. B 2011, 82, 4196–4205. [Google Scholar] [CrossRef]
- Yao, J.; Shao, J.; Wang, Y.; Zhao, Z.; Yang, G. Ultra-broadband and high response of the Bi2Te3-Si heterojunction and its application as a photodetector at room temperature in harsh working environments. Nanoscale 2015, 7, 12535–12541. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Luo, L.B.; Zhang, T.F.; Liu, Y.H.; Yu, Y.Q.; Lu, R.; Qiu, H.L.; Li, Z.J.; Huang, J.C.A. Optoelectronic characteristics of a near infrared light photodetector based on a topological insulator Sb2Te3 film. J. Mater. Chem. C 2015, 3, 9154–9160. [Google Scholar] [CrossRef]
- Yao, J.; Zheng, Z.; Yang, G. Layered-material WS2/topological insulator Bi2Te3 heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550 nm. J. Mater. Chem. C 2016, 4, 7831–7840. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Chang, L.; Lee, S.T.; Jie, J. High-responsivity, high-detectivity, ultrafast topological insulator Bi2Se3/silicon heterostructure broadband photodetectors. ACS Nano 2016, 10, 5113–5122. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Zang, Y.; Sun, H.; Zheng, X.; Liu, Y.; Gong, Y.; Fang, L.; Cheng, X.A.; He, K. Broadband high-responsivity photodetectors based on large-scale topological crystalline insulator SnTe ultrathin film grown by molecular beam epitaxy. Adv. Opt. Mater. 2016, 5, 1600727. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, H.; Sun, Z.; Ding, K.; Mao, J.; Shao, Z.; Jie, J. Topological insulator Bi2Se3 nanowire/Si heterostructure photodetectors with ultrahigh responsivity and broadband response. J. Mater. Chem. C 2016, 4, 5648–5655. [Google Scholar] [CrossRef]
- An, X.; Liu, F.; Jung, Y.J.; Kar, S. Tunable grapheme-silicon heterojunctions for ultrasensitive photodetection. Nano Lett. 2017, 13, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Mueller, T.; Xia, F.; Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4, 297–301. [Google Scholar] [CrossRef]
- Lai, S.K.; Tang, L.; Hui, Y.Y.; Chi, M.L.; Shu, P.L. A deep ultraviolet to near-infrared photoresponse from glucose-derived graphene oxide. J. Mater. Chem. C 2014, 2, 6971–6977. [Google Scholar] [CrossRef]
- Zhang, K.; Fang, X.; Wang, Y.; Wan, Y.; Song, Q.; Zhai, W.; Li, Y.; Ran, G.; Ye, Y.; Dai, L. Ultrasensitive near-infrared photodetectors based on graphene-MoTe2-graphene vertical van der Waals heterostructure. ACS Appl. Mater. Interfaces 2017, 9, 5392–5398. [Google Scholar] [CrossRef] [PubMed]
- Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; Arquer, F.P.G.D.; Gatti, F.; Koppens, F.H.L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Qiao, H.; Yuan, J.; Xu, Z.; Chen, C.; Lin, S.; Wang, Y.; Song, J.; Liu, Y.; Khan, Q.; Hui, Y.H.; et al. Broadband photodetectors based on graphene-Bi2Te3 heterostructure. ACS Nano 2015, 9, 1886–1894. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Chang, L.T.; Kou, X.; Murata, K.; Choi, E.S.; Lang, M.; Fan, Y.; Jiang, Y.; Montazeri, M.; Jiang, W.; et al. Electrical detection of spin-polarized surface states conduction in (Bi0.53Sb0.47)2Te3 topological insulator. Nano Lett. 2014, 14, 5423–5429. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Miotkowski, I.; Hong, S.; Chen, Y.P. Electrical injection and detection of spin-polarized currents in topological insulator Bi2Te2Se. Sci. Rep. 2015, 5, 14293. [Google Scholar] [CrossRef] [PubMed]
- Ando, Y.; Hamasaki, T.; Kurokawa, T.; Ichiba, K.; Yang, F.; Novak, M.; Sasaki, S.; Segawa, K.; Ando, Y.; Shiraishi, M. Electrical detection of the spin polarization due to charge flow in the surface state of the topological insulator Bi1.5Sb0.5Te1.7Se1.3. Nano Lett. 2014, 14, 6226–6230. [Google Scholar] [CrossRef] [PubMed]
- Goudarzi, H.; Khezerlou, M.; Alav, A. Tunneling of Dirac fermions in a magnetic-induced gapped topological insulator-based (F/I/F) junction. Indian J. Phys. 2015, 89, 55–60. [Google Scholar] [CrossRef]
- Cong, S.H.; Jalil, M.B.A. Effect of surface hybridization on RKKY coupling in ferromagnet/topological insulator/ferromagnet trilayer system. AIP Adv. 2017, 7, 055926. [Google Scholar]
- Kandala, A.; Richardella, A.; Rench, D.W.; Zhang, D.M.; Flanagan, T.C.; Samarth, N. Growth and characterization of hybrid insulating ferromagnet-topological insulator heterostructure devices. Appl. Phys. Lett. 2013, 103, 202409. [Google Scholar] [CrossRef]
- Semenov, Y.G.; Duan, X.; Kim, K.W. Electrically controlled magnetization in ferromagnet-topological insulator heterostructures. Phys. Rev. B 2012, 86, 161406. [Google Scholar] [CrossRef]
- Reza, A.K.; Fong, X.; Azim, Z.A.; Roy, K. Modeling and evaluation of topological insulator/ferromagnet heterostructure-based memory. IEEE Trans. Electron Devices 2016, 63, 1359–1367. [Google Scholar] [CrossRef]
- Götte, M.; Paananen, T.; Reiss, G.; Dahm, T. Tunneling magnetoresistance devices based on topological insulators: Ferromagnet/insulator/topological-insulator junctions employing Bi2Se3. Phys. Rev. Appl. 2014, 2, 054010. [Google Scholar] [CrossRef]
- Taguchi, K.; Yokoyama, T.; Tanaka, Y. Giant magnetoresistance in the junction of two ferromagnets on the surface of diffusive topological insulators. Phys. Rev. B 2013, 89, 475–506. [Google Scholar] [CrossRef]
- Zuo, Z.W.; Kang, D.W.; Wang, Z.W.; Li, L. Quantum critical points in tunneling junction of topological superconductor and topological insulator. Phys. Lett. A 2016, 380, 2993–2998. [Google Scholar] [CrossRef]
- Chudnovskiy, A.L.; Kagalovsky, V. Thermal and electrical quantum Hall effects in ferromagnet/topological insulator/ferromagnet junction. Phys. Rev. B 2014, 91, 195105. [Google Scholar] [CrossRef]
- Li, H.; Yang, X. Tunneling conductance in topological insulator ferromagnet/p-wave superconductor junctions. Solid State Commun. 2012, 152, 1655–1659. [Google Scholar] [CrossRef]
- Suwanvarangkoon, A.; Tang, I.M.; Hoonsawat, R.; Soodchomshom, B. Tunneling conductance on surface of topological insulator ferromagnet/insulator/(s- or d-wave) superconductor junction: Effect of magnetically-induced relativistic mass. Physica E 2011, 43, 1867–1873. [Google Scholar] [CrossRef]
- Soodchomshom, B. Magnetic gap effect on the tunneling conductance in a topological insulator ferromagnet/superconductor junction. Phys. Lett. A 2010, 374, 3561–3566. [Google Scholar] [CrossRef]
- Yang, Y.; Wei, K.W.; Bai, C. Magnetoresistance through a ferromagnet/superconductor/ferromagnet junction on the surface of a topological insulator. Appl. Phys. Express 2014, 7, 023001. [Google Scholar] [CrossRef]
- Pesin, D.; Macdonald, A.H. Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater. 2012, 11, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Register, L.F.; Banerjee, S.K. Topological insulator Bi2Se3 thin films as an alternative channel material in metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 2012, 112, 3045–3067. [Google Scholar] [CrossRef]
- Vandenberghe, W.G.; Fischetti, M.V. Realizing a Topological-Insulator Field-Effect Transistor Using Iodostannanane. In Proceedings of the 2014 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2014. [Google Scholar]
- Zhu, H.; Zhao, E.; Richter, C.A.; Li, Q. Topological Insulator BI2SE3 Nanowire Field Effect Transistors. ECS Trans. 2014, 64, 51–59. [Google Scholar] [CrossRef]
- Sun, J.; Singh, D.J. Using gapped topological surface states of Bi2Se3 films in a field effect transistor. J. Appl. Phys. 2017, 121, 1–6. [Google Scholar] [CrossRef]
- Banerjee, S.K.; Register, L.F., II; Macdonald, A.; Sahu, B.R.; Jadaun, P.; Chang, J. Topological insulator-based field-effect transistor. Patent No. 8,629,427, 14 January 2014. [Google Scholar]
- Liu, H.; Ye, P.D. Atomic-layer-deposited Al2O3 on Bi2Te3 for topological insulator field-effect transistors. Appl. Phys. Lett. 2011, 99, 052108. [Google Scholar] [CrossRef]
- Xuan, Y.; Wu, Y.Q.; Shen, T.; Qi, M.; Capano, M.A.; Cooper, J.A.; Ye, P.D. Atomic-layer-deposited nanostructures for graphene-based nanoelectronics. Appl. Phys. Lett. 2008, 92, 013101. [Google Scholar] [CrossRef]
- Son, J.; Banerjee, K.; Brahlek, M.; Koirala, N.; Lee, S.K.; Ahn, J.H.; Oh, S.; Yang, H. Conductance modulation in topological insulator Bi2Se3 thin films with ionic liquid gating. Appl. Phys. Lett. 2013, 103, 213114. [Google Scholar] [CrossRef]
- Vali, M.; Dideban, D.; Moezi, N. A scheme for a topological insulator field effect transistor. Physica E 2015, 69, 360–363. [Google Scholar] [CrossRef]
- Movva, H.C.P.; Rai, A.; Kang, S.; Kim, K.; Fallahazad, B.; Taniguchi, T.; Watanabe, K.; Tutuc, E.; Banerjee, S.K. High-mobility holes in dual-gated WSe2 field-effect transistors. ACS Nano 2015, 9, 10402–10410. [Google Scholar] [CrossRef] [PubMed]
- Vandenberghe, W.G.; Fischetti, M.V. Modeling Topological-Insulator Field-Effect Transistors Using the Boltzmann Equation. In Proceedings of the 2016 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Nuremberg, Germany, 6–8 September 2016; pp. 73–76. [Google Scholar]
- Akhavan, N.D.; Jolley, G.; Umana-Membreno, G.A.; Antoszewski, J.; Faraone, L. Thin film three-dimensional topological insulator metal-oxide-semiconductor field-effect-transistors: A candidate for sub-10 nm devices. J. Appl. Phys. 2014, 116, 084508. [Google Scholar] [CrossRef]
- Vali, M.; Dideban, D.; Moezi, N. Quantum well resonant tunneling FET based on topological insulator. Superlattices Microstruct. 2016, 100, 1256–1262. [Google Scholar] [CrossRef]
- Li, H.; Zhu, H.; Yuan, H.; You, L.; Richter, C.A.; Kopanski, J.J.; Zhao, E.; Li, Q. SnTe field effect transistors and the anomalous electrical response of structural phase transition. Appl. Phys. Lett. 2014, 105, 013503. [Google Scholar] [CrossRef]
- Liu, Y.; Chong, C.; FanChiang, C.; Huang, J.; Han, H.C.; Li, Z.; Qiu, H.; Li, Y.C.; Liu, C. Ultrathin (Bi1−xSbx)2Se3 field effect transistor with large ON/OFF ratio. ACS Appl. Mater. Interfaces 2017, 9, 12859–12864. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, Y.; Chiarella, T.; De Roest, D.; Blanquart, T.; De Keersgieter, A.; Kenis, K.; Peter, A.; Ong, P.; Van Besien, E.; Tao, Z.; et al. Electrical characteristics of p-Type bulk Si fin field-effect transistor using solid-source doping with 1-nm phosphosilicate glass. IEEE Electron Device Lett. 2016, 37, 1084–1087. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, C.; Liu, L.; Wang, J.; Xu, J. Investigation of Line Tunnel Field Effect Transistor with Ge/Si heterojunction. In Proceedings of the 2015 IEEE 11th International Conference on ASIC (ASICON), Chengdu, China, 3–6 November 2015; pp. 1–4. [Google Scholar]
- Sun, J.; Iwasaki, T.; Muruganathan, M.; Mizuta, H. Lateral plasma etching enhanced on/off ratio in graphene nanoribbon field-effect transistor. Appl. Phys. Lett. 2015, 106, 033509. [Google Scholar] [CrossRef]
- Lin, M.-W.; Ling, C.; Zhang, Y.; Yoon, H.J.; Cheng, M.M.-C.; Agapito, L.A.; Kioussis, N.; Widjaja, N.; Zhou, Z. Room-temperature high on/off ratio in suspended graphene nanoribbon field-effect transistors. Nanotechnology 2011, 22, 265201–265207. [Google Scholar] [CrossRef] [PubMed]
- Thiyagarajan, K.; Saravanakumar, B.; Mohan, R.; Kim, S.-J. Self-induced gate dielectric for graphene field-effect transistor. ACS Appl. Mater. Interfaces 2013, 5, 6443–6446. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Koo, J.; Jhon, Y.M.; Lee, J.H. A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator. Opt. Express 2014, 22, 6165–6173. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.; Lin, R.; Chen, H.; Zhang, H.; Liu, A.; Yang, H.; Ruan, S. Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser. IEEE Photonics Technol. Lett. 2015, 27, 264–267. [Google Scholar]
- Gao, L.; Zhu, T.; Huang, W.; Luo, Z. Stable, ultrafast pulse mode-locked by topological insulator Bi2Se3 nanosheets interacting with photonic crystal fiber: From anomalous dispersion to normal dispersion. IEEE Photonics J. 2015, 7, 3300108. [Google Scholar] [CrossRef]
- Liu, M.; Luo, A.-P.; Zheng, X.-W.; Zhao, N.; Liu, H.; Luo, Z.-C.; Xu, W.-C.; Chen, Y.; Zhao, C.-J.; Zhang, H. Microfiber-based highly nonlinear topological insulator photonic device for the formation of versatile multi-soliton patterns in a fiber laser. J. Lightwave Technol. 2015, 33, 2056–2061. [Google Scholar]
- Sotor, J.; Sobon, G.; Boguslawski, J.; Tarka, J.; Abramski, K.M. Sb2Te3 Topological Insulator Based Saturable Absorber for Er-Doped Mode-Locked Fiber Lasers. In Proceedings of the SPIE LASE. International Society for Optics and Photonics, San Francisco, CA, USA, 7 February 2015; pp. 93441Z–93441Z-6. [Google Scholar]
- Grelu, P.; Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photonics 2012, 6, 84–92. [Google Scholar] [CrossRef]
- Sotor, J.; Sobon, G.; Abramski, K.M. Sub-130 fs mode-locked Er-doped fiber laser based on topological insulator. Opt. Express 2014, 22, 13244–13249. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Yao, Y.; Xiao, J.-J.; Wang, R.-L.; Zhang, J.-Y. Topological insulator-assisted dual-wavelength fiber laser delivering versatile pulse patterns. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 8–15. [Google Scholar] [CrossRef]
- Guo, B.; Yao, Y.; Tian, J.-J.; Zhao, Y.-F.; Liu, S.; Li, M.; Quan, M.-R. Observation of Bright-Dark Soliton Pair in a Fiber Laser with Topological Insulator. IEEE Photonics Technol. Lett. 2015, 27, 701–704. [Google Scholar] [CrossRef]
- Li, K.; Song, Y.; Yu, Z.; Tian, J. A 359fs Er-Doped Fiber Laser Based on Topological Insulator: Bi2Se3. In Proceedings of the 2015 Conference on Lasers and Electro-Optics Pacific Rim, Busan, Korea, 24–28 August 2015. [Google Scholar]
- Sotor, J.; Sobon, G.; Grodecki, K.; Abramski, K.M. Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator. Appl. Phys. Lett. 2014, 104, 251112. [Google Scholar] [CrossRef]
- Liu, W.; Pang, L.; Han, H.; Tian, W.; Yan, P.; Chen, H.; Lei, M.; Wei, Z. 70 fs hybrid mode-locked Erbium-doped fiber laser with topological insulator. Sci. Rep. 2015, 6, 19997. [Google Scholar]
- Boguslawski, J.; Sobon, G.; Zybala, R.; Sotor, J. Dissipative soliton generation in Er-doped fiber laser mode-locked by Sb2Te3 topological insulator. Opt. Lett. 2015, 40, 2786–2789. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, M.; Boguslawski, J.; Stachowiak, D.; Tarka, J.; Zybala, R.; Mars, K.; Mikula, A.; Sobon, G.J.; Sotor, J.Z.; Abramski, K.M. All-Normal Dispersion Yb-Doped Fiber Laser Mode-Locked by Sb2Te3 Topological Insulator. In Proceedings of the SPIE Photonics Europe. International Society for Optics and Photonics, Brussels, Belgium, 3 April 2016; pp. 98930T–98930T-7. [Google Scholar]
- Guo, B.; Yao, Y.; Yang, Y.-F.; Yuan, Y.-J.; Wang, R.-L.; Wang, S.-G.; Ren, Z.-H.; Yan, B. Topological insulator: Bi2Se3/polyvinyl alcohol film-assisted multi-wavelength ultrafast erbium-doped fiber laser. J. Appl. Phys. 2015, 117, 1712–1714. [Google Scholar] [CrossRef]
- Luo, A.; Liu, H.; Zhao, N.; Zheng, X.; Liu, M.; Tang, R.; Luo, Z.; Xu, W. Observation of three bound states from a topological insulator mode-locked soliton fiber laser. IEEE Photonics J. 2014, 6, 1501508. [Google Scholar]
- Liu, H.; Zheng, X.W.; Liu, M.; Zhao, N.; Luo, A.P.; Luo, Z.C.; Xu, W.C.; Zhang, H.; Zhao, C.J.; Wen, S.C. Femtosecond pulse generation from a topological insulator mode-locked fiber laser. Opt. Express 2014, 22, 6868–6873. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Yao, Y.; Yang, Y.-F. Tunable Multi-Wavelength Mode-Locked Fiber Laser with Topological Insulator: Bi2Se3/PVA Solution. In Proceedings of the Optoelectronic Devices and Integration 2015, Wuhan, China, 16–19 June 2015. OW2C.4. [Google Scholar]
- Wang, Q.; Chen, Y.; Jiang, G.; Miao, L.; Zhao, C.; Fu, X.; Wen, S.; Zhang, H. Drop-casted self-assembled topological insulator membrane as an effective saturable absorber for ultrafast laser photonics. IEEE Photonics J. 2015, 7, 1500911. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, S.; Li, X.; Han, M.; Han, H.; Yan, D.; Shang, C.; Feng, Y. Formation of Noise-Like Square-Wave Pulses in a Microfiber Based Topological Insulator Fiber Laser. In Proceedings of the SPIE/COS Photonics Asia. International Society for Optics and Photonics, Beijing, China, 12 October 2016; pp. 100161U–100161U-6. [Google Scholar]
- Liu, M.; Zhao, N.; Liu, H.; Zheng, X.W.; Luo, A.P.; Luo, Z.C.; Xu, W.C.; Zhao, C.J.; Zhang, H.; Wen, S.C. Dual-wavelength harmonically mode-locked fiber laser with topological insulator saturable absorber. IEEE Photonics Technol. Lett. 2014, 26, 983–986. [Google Scholar]
- Duan, L.N.; Wang, Y.G.; Xu, C.W.; Li, L.; Wang, Y.S. Passively harmonic mode-locked fiber laser with a high signal-to-noise ratio via Evanescent-light deposition of Bismuth Telluride (Bi2Te3) topological insulator based saturable absorber. IEEE Photonics J. 2015, 7, 1500807. [Google Scholar] [CrossRef]
- Lee, J.; Chi, C.; Koo, J.; Lee, J.H. Dissipative Soliton Yb-Doped Fiber Laser Using A Bulk-Structured Bi2Te3 Topological Insulator. In Proceedings of the 11th Conference on 2015 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), Busan, Korea, 24–28 August 2015; pp. 1–2. [Google Scholar]
- Yan, P.; Lin, R.; Han, Z.; Wang, Z.; Han, C.; Shuangchen, R. Multi-pulses dynamic patterns in a topological insulator mode-locked ytterbium-doped fiber laser. Opt. Commun. 2015, 335, 65–72. [Google Scholar]
- Yan, P.; Lin, R.; Ruan, S.; Liu, A.; Chen, H. A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film. Opt. Express 2015, 23, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Koo, J.; Jhon, Y.M.; Lee, J.H. Femtosecond harmonic mode-locking of a fiber laser based on a bulk-structured Bi2Te3 topological insulator. Opt. Express 2015, 23, 6359–6369. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhang, H.; Qi, X.; Chen, Y.; Wang, Z.; Wen, S.; Tang, D. Ultra-short pulse generation by a topological insulator based saturable absorber. Appl. Phys. Lett. 2012, 101, 211106. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, M.; Liu, H.; Zheng, X.; Luo, A.; Zhao, C.; Zhang, H.; Wen, S.; Xu, W. 2GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber. Opt. Lett. 2013, 38, 5212–5215. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Lee, J.; Koo, J.; Park, J.; Song, Y.-W.; Lee, K.; Lee, S.; Lee, J.H. A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator. Opt. Express 2014, 22, 7865–7874. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.H.; Lin, S.F.; Chi, Y.C.; Wu, C.L.; Cheng, C.H.; Tseng, W.H.; He, J.H.; Wu, C.I.; Lee, C.K.; Lin, G.R. Using n- and p-Type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers. ACS Photonics 2015, 2, 481–490. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Y.; Miao, L.; Jiang, G.; Chen, S.; Liu, J.; Fu, X.; Zhao, C.; Zhang, H. Wide spectral and wavelength-tunable dissipative soliton fiber laser with topological insulator nano-sheets self-assembly films sandwiched by PMMA polymer. Opt. Express 2015, 23, 7681–7693. [Google Scholar] [CrossRef] [PubMed]
- Li, J.P. Vector passive harmonic mode-locking fiber laser based on topological insulator Bi2Se3 interacting with fiber taper. J. Opt. Soc. Korea 2016, 20, 135–139. [Google Scholar] [CrossRef]
- Zhao, C.; Zou, Y.; Chen, Y.; Wang, Z.; Lu, S.; Zhang, H.; Wen, S.; Tang, D. Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker. Opt. Express 2012, 20, 27888–27895. [Google Scholar] [CrossRef] [PubMed]
- Semaan, G.; Meng, Y.; Salhi, M.; Niang, A.; Guesmi, K.; Luo, Z.-C.; Sanchez, F. High Power Passive Mode-Locked L-Band Fiber Laser Based on Microfiber Topological Insulator Saturable Absorber. In Proceedings of the Laser Sources and Applications III, Brussels, Belgium, 4–5 April 2016; pp. 98930R–98930R-7. [Google Scholar]
- Dou, Z.; Song, Y.; Tian, J.; Liu, J.; Yu, Z.; Fang, X. Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi2Se3. Opt. Express 2014, 22, 24055–24061. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Cai, Z.R.; Hu, S.; Luo, A.P.; Zhao, C.J.; Zhang, H.; Xu, W.C.; Luo, Z.C. Dissipative rogue waves induced by long-range chaotic multi-pulse interactions in a fiber laser with a topological insulator-deposited microfiber photonic device. Opt. Lett. 2015, 40, 4767–4770. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; He, X.; Lin, W.; Wei, R.; Zhang, F.; Du, X.; Dong, G.; Qiu, J. Ultrafast saturable absorption in topological insulator Bi2SeTe2 nanosheets. Opt. Express 2015, 23, 13376–13383. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Wu, K.; Kong, L.; Yang, N.; Wang, Y.; Chen, R.; Hu, W.; Xu, J.; Tang, Y. Mode-locked thulium fiber laser with MoS2. Laser Phys. Lett. 2015, 12, 065104. [Google Scholar] [CrossRef]
- Wu, K.; Zhang, X.; Wang, J.; Chen, J. 463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber. Opt. Lett. 2015, 40, 1374–1377. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Zhang, X.; Wang, J.; Liu, Z.; Cong, Z.; Rao, H.; Wang, Q.; Fang, J. Passively mode-locked Nd3+: YVO4 laser using a molybdenum disulfide as saturable absorber. Opt. Mater. Express 2016, 6, 1358–1366. [Google Scholar] [CrossRef]
- Guo, T.; Yan, P. Fiber-integrated tungsten disulfide saturable absorber (mirror) for pulsed fiber lasers. Opt. Eng. 2016, 55, 081318. [Google Scholar]
- Jung, M.; Lee, J.; Park, J.; Koo, J.; Jhon, Y.M.; Lee, J.H. Mode-locked, 1.94-μm, all-fiberized laser using WS2-based evanescent field interaction. Opt. Express 2015, 23, 19996–20006. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Wang, Y.; Zhang, B.; Zhao, R.; Yang, K.; He, J.; Hu, Q.; Jia, Z.; Tao, X. Femtosecond solid-state laser based on a few-layered black phosphorus saturable absorber. Opt. Lett. 2016, 41, 1945–1948. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Luo, H.; Zhai, B.; Lu, R.; Guo, Z.; Zhang, H.; Liu, Y. Black phosphorus: A two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers. Sci. Rep. 2016, 6, 30361. [Google Scholar] [CrossRef] [PubMed]
- Canbaz, F.; Kakenov, N.; Kocabas, C.; Demirbas, U.; Sennaroglu, A. Generation of sub-20-fs pulses from a graphene mode-locked laser. Opt. Express 2017, 25, 2834–2839. [Google Scholar] [CrossRef]
- Liu, G.X.; Feng, D.J.; Zhang, M.S.; Jiang, S.Z.; Zhang, C. Mode-locked erbium-doped all fiber laser using few-layer graphene as a saturable absorber. Opt. Laser Technol. 2015, 72, 70–73. [Google Scholar] [CrossRef]
- Wang, B.; Yu, H.; Zhang, H.; Zhao, C.; Wen, S.; Zhang, H.; Wang, J. Topological insulator simultaneously Q-switched dual-wavelength Nd: Lu2O3 laser. IEEE Photonics J. 2014, 6, 1501007. [Google Scholar] [CrossRef]
- Sun, Y.; Lee, C.; Wang, Y.; Xia, H.; Wang, X.; You, Z.; Tu, C.; Xu, J. Passively Q-Switched Wavelength-Tunable Bulk Laser Using Topological Insulator at 1 μm. IEEE Photonics Technol. Lett. 2016, 28, 2764–2767. [Google Scholar] [CrossRef]
- Koo, J.; Lee, J.; Lee, J.H. Integrated fiber-optic device based on a combination of a piezoelectric transducer and a bulk-structured Bi2Te3 topological insulator for Q-Switched mode-locking of a fiber laser. J. Lightwave Technol. 2017, 35, 2175–2182. [Google Scholar] [CrossRef]
- Tang, P.; Wu, M.; Wang, Q.; Miao, L.; Huang, B.; Liu, J.; Zhao, C.; Wen, S. 2.8 μm pulsed Er3+: ZBLAN fiber laser modulated by topological insulator. IEEE Photonics Technol. Lett. 2016, 28, 1573–1576. [Google Scholar] [CrossRef]
- Huang, B.; Tang, P.; Yi, J.; Jiang, G.; Liu, J.; Zou, Y.; Zhao, C.; Wen, S. Resonantly pumped Er: YAG laser Q-switched by topological insulator nanosheets at 1617 nm. Opt. Mater. 2016. in Press, corrected proof. [Google Scholar] [CrossRef]
- Gao, L.; Huang, W.; Zhang, J.D.; Zhu, T.; Zhang, H.; Zhao, C.J.; Zhang, W.; Zhang, H. Q-switched mode-locked erbium-doped fiber laser based on topological insulator Bi2Se3 deposited fiber taper. Appl. Opt. 2014, 53, 5117–5122. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Gross, S.; Zhang, H.; Guo, Z.; Withford, M.J.; Fuerbach, A. Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm: ZBLAN waveguide lasers. Ann. Phys. 2016, 528, 543–550. [Google Scholar] [CrossRef]
- Haris, H.; Harun, S.W.; Muhammad, A.R.; Anyi, C.L.; Tan, S.J.; Ahmad, F.; Nor, R.M.; Zulkepely, N.R.; Arof, H. Passively Q-switched Erbium-doped and Ytterbium-doped fibre lasers with topological insulator bismuth selenide (Bi2Se3) as saturable absorber. Opt. Laser Technol. 2017, 88, 121–127. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, C.; Huang, Y.; Wu, D.; Wu, J.; Xu, H.; Cai, Z.; Lin, Z.; Sun, L.; Weng, J. Topological-insulator passively Q-switched double-clad fiber laser at 2 μm wavelength. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 1–8. [Google Scholar]
- Xu, B.; Wang, Y.; Peng, J.; Luo, Z.; Xu, H.; Cai, Z.; Weng, J. Topological insulator Bi2Se3 based Q-switched Nd: LiYF4 nanosecond laser at 1313 nm. Opt. Express 2015, 23, 7674–7680. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhao, C.; Huang, H.; Chen, S.; Tang, P.; Wang, Z.; Lu, S.; Zhang, H.; Wen, S.; Tang, D. Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an erbium-doped fiber laser. J. Lightwave Technol. 2013, 31, 2857–2863. [Google Scholar] [CrossRef]
- Luo, Z.; Huang, Y.; Weng, J.; Cheng, H.; Lin, Z.; Xu, B.; Cai, Z.; Xu, H. 1.06 μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber. Opt. Express 2013, 21, 29516–29522. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, H.; Wang, Y.; Zhao, C.; Wang, B.; Wen, S.; Zhang, H.; Wang, J. Topological insulator as an optical modulator for pulsed solid-state lasers. Laser Photonics Rev. 2013, 7, L77–L83. [Google Scholar] [CrossRef]
- Cheng, Y.; Peng, J.; Bin, X.; Xu, H.; Cai, Z.; Weng, J. Passive Q-switching of Pr: LiYF4 orange laser at 604 nm using topological insulators Bi2Se3 as saturable absorber. Opt. Laser Technol. 2017, 88, 275–279. [Google Scholar] [CrossRef]
- Liu, J.H.; Tian, J.R.; Hu, M.T.; Xu, R.Q.; Dou, Z.Y.; Yu, Z.H.; Song, Y.R. 1.12-W Q-switched Yb: KGW laser based on transmission-type Bi2Se3 saturable absorber. Chin. Phys. B 2015, 24, 211–214. [Google Scholar]
- Yu, Z.; Song, Y.; Tian, J.; Dou, Z.; Guoyu, H.; Li, K.; Li, H.; Zhang, X. High-repetition-rate Q-switched fiber laser with high quality topological insulator Bi2Se3 film. Opt. Express 2014, 22, 11508–11515. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.L.; Sun, Y.J.; He, J.L.; Wang, Y.; Zhu, Z.J.; You, Z.Y.; Li, J.F.; Chou, M.M.C.; Lee, C.K.; Tu, C.Y. Ultrasensitive nonlinear absorption response of large-size topological insulator and application in low-threshold bulk pulsed lasers. Sci. Rep. 2015, 5, 14856. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chen, Y.; Wu, M.; Li, Y.; Zhao, C.; Wen, S. Stable Q-switched erbium-doped fiber laser based on topological insulator covered microfiber. IEEE Photonics Technol. Lett. 2014, 26, 987–990. [Google Scholar] [CrossRef]
- Wu, M.; Chen, Y.; Zhang, H.; Wen, S. Nanosecond Q-switched erbium-doped fiber laser with wide pulse-repetition-rate range based on topological insulator. IEEE J. Quantum Electron. 2014, 50, 393–396. [Google Scholar]
- Chen, Y.; Zhao, C.; Chen, S.; Du, J.; Tang, P.; Jiang, G.; Zhang, H.; Wen, S.; Tang, D. Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 315–322. [Google Scholar] [CrossRef]
- Lin, Y.; Lee, P.; Xu, J.; Wu, C.; Chou, C.; Tu, C.; Chou, M.M.C.; Lee, C. High-pulse-energy topological insulator Bi2Te3-based passive Q-switched solid-state laser. IEEE Photonics J. 2016, 8, 1502710. [Google Scholar] [CrossRef]
- Li, P.; Zhang, G.; Zhang, H.; Zhao, C.; Chi, J.; Zhao, Z.; Yang, C.; Hu, H.; Yao, Y. Q-switched mode-locked Nd:YVO4 laser by topological insulator Bi2Te3 saturable absorber. IEEE Photonics Technol. Lett. 2014, 26, 1912–1915. [Google Scholar] [CrossRef]
- Koo, J.; Lee, J.; Chi, C.; Lee, J.H. Passively Q-switched 1.56 μm all-fiberized laser based on evanescent field interaction with bulk-structured bismuth telluride topological insulator. J. Opt. Soc. Am. B 2014, 31, 2157–2162. [Google Scholar] [CrossRef]
- Lee, J.; Koo, J.; Chi, C.; Lee, J.H. All-fiberized, passively Q-switched 1.06 μm laser using a bulk-structured Bi2Te3 topological insulator. J. Opt. 2014, 16, 085203. [Google Scholar] [CrossRef]
- Li, J.; Luo, H.; Wang, L.; Zhao, C.; Zhang, H.; Li, H.; Liu, Y. 3 μm mid-infrared pulse generation using topological insulator as the saturable absorber. Opt. Lett. 2015, 40, 3659–3662. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Lin, J.; Zhou, Y.; Gu, C.; Xu, L.; Wang, A.; Zhan, Q. Topological insulators Based Passively Q-Switched Fiber Laser with Cylindrical-Vector Beam Emission. In Proceedings of the SPIE Optical Engineering+ Applications. International Society for Optics and Photonics, San Diego, CA, USA, 28 August 2016; pp. 99500H–99500H-6. [Google Scholar]
- Tang, P.; Zhang, X.; Zhao, C.; Wang, Y.; Zhang, H.; Shen, D.; Wen, S.; Tang, D.; Fan, D. Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er: YAG ceramic laser. IEEE Photonics J. 2013, 5, 1500707. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, X.; Wu, K.; Wang, H.; Wang, J.; Chen, J. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Opt. Express 2015, 23, 26723–26737. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yu, H.; Zhang, H.; Wang, A.; Zhao, M.; Chen, Y.; Mei, L.; Wang, J. Broadband few-layer MoS2 saturable absorbers. Adv. Mater. 2014, 26, 3538–3544. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Luo, H.; Zhang, H.; Li, C.; Xie, J.; Li, J.; Liu, Y. Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber. Laser Phys. Lett. 2016, 13, 105108. [Google Scholar] [CrossRef]
- Luo, Z.; Wu, D.; Xu, B.; Xu, H.; Cai, Z.; Peng, J.; Weng, J.; Xu, S.; Zhu, C.; Wang, F. Two-dimensional material-based saturable absorbers: Towards compact visible-wavelength all-fiber pulsed lasers. Nanoscale 2016, 8, 1066–1072. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Liu, H.; Tan, Y.; Vázquez de Aldana, J.R.; Chen, F. Passively Q-switched waveguide lasers based on two-dimensional transition metal diselenide. Opt. Express 2016, 24, 10385–10390. [Google Scholar] [CrossRef] [PubMed]
- Kelleher, E.J.R.; Torrisi, F.; Hu, G.; Howe, R.C.T.; Woodward, R.I.; Hasan, T.; Runcorn, T.H. Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers. Opt. Express 2015, 23, 20051–20061. [Google Scholar]
- Tang, Y.; Yu, X.; Li, X.; Yan, Z.; Wang, Q.J. High-power thulium fiber laser Q switched with single-layer graphene. Opt. Lett. 2014, 39, 614–617. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, J.; Wu, Y.; He, J.; Hao, X. Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser. Opt. Express 2011, 19, 9950–9955. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wu, S.; Yang, Q.-H.; Wang, P. Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser. Opt. Lett. 2011, 36, 4008–4010. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Xie, W.; Li, H.; Wang, Y.; Cai, D.; Wang, D.; Wang, L.; Liu, Y.; Li, Q.; Wang, T. Surrounding sensitive electronic properties of Bi2Te3 nanoplates-potential sensing applications of topological insulators. Sci. Rep. 2014, 4, 4639. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Hong, S.; Miotkowski, I.; Datta, S.; Chen, Y.P. Observation of current-induced, long-lived persistent spin polarization in a topological insulator: A rechargeable spin battery. Sci. Adv. 2017, 3, e1602531. [Google Scholar] [CrossRef] [PubMed]
- Fujita, T.; Jalil, M.B.; Tan, S.G. Topological insulator cell for memory and magnetic sensor applications. Appl. Phys. Express 2011, 4, 544–548. [Google Scholar] [CrossRef]
- Paudel, H.P.; Leuenberger, M.N. Three-dimensional topological insulator quantum dot for optically controlled quantum memory and quantum computing. Phys. Rev. B 2013, 88, 4049–4056. [Google Scholar] [CrossRef]
- Wang, Y.H.; Yu, H. Design Exploration of Ultra-Low Power Non-Volatile Memory Based on Topological Insulator. In Proceedings of the 2012 IEEE/ACM International Symposium on Nanoscale Architectures, New York, NY, USA, 4–6 July 2012; pp. 30–35. [Google Scholar]
- Yuan, Z. The Application of Novel Interfacial Materials and Structure in Organic-Inorganic Solar Cells. M.E Dissertation, Soochow University, Soochow, China, 2015. [Google Scholar]
Types of Properties | Items | Bi2Se3 [52] | Sb2Te3 [53] | Bi2Te3 [54] |
---|---|---|---|---|
Physical Properties | Density | 7.51 g/cc | 6.44 g/cc | 7.73 g/cc |
a Lattice Constant | 4.14 Å | 4.25 Å | 4.38 Å | |
c Lattice Constant | 28.7 Å | 30.3 Å | 30.45 Å | |
Molecular | 654.84 g/mol | 626.32 g/mol | 800.76 g/mol | |
Formula Units/Cell (Z) | 3 | |||
Mechanical Properties | Knoop Microhardness | 167 N/mm2 | - | 155 N/mm2 |
Electrical Properties | Band Gap | 0.35 eV | 0.30 eV | 0.21 eV |
Electron Mobility | 600 cm2/V·s | 275 cm2/V·s | 1140 cm2/V·s | |
Hole Mobility | - | 360 cm2/V·s | 680 cm2/V·s | |
Carrier Type (Undoped) [55] | n | p | p | |
Thermal Properties | Thermal Conductivity | 2.40 W/m·K | 1.65 W/m·K [56] | 3.00 W/m·K |
Melting Point | 706 °C | 622 °C | 585 °C | |
Descriptive Properties | Color | Black | Gray | Gray |
Crystal Structure | Hexagonal-Rhombohedral Tetradymite Structure-R(-3)M [57] | |||
Solubility | insoluble in organic solvents and water; soluble in strong acids [58] | Insoluble in H2O [59] | Insoluble in H2O; soluble in ethanol [59] | |
Number of Dirac Electron | 1 | |||
Groups of Elements | The V and VI main groups | |||
Type of Bond | Covalent bond (main), ion bond, Van der Waals forces | |||
Optimum Growth Temperature | 550 °C [60] | 200 °C [61] | 400 °C [61] |
Methods | Structure | Advantage | Disadvantage | Ref. |
---|---|---|---|---|
Mechanical Exfoliation | Layer (min 1 QL) [62] | 1. Simple process 2. High crystal quality 3. Low cost | 1. Difficult to control accuracy 2. Poor reproducibility 3. Uneven thickness | [63,84] |
Molecular-Beam Epitaxy (MBE) | Film (min 1 nm) [65] | 1. Clean growth environment, low growth temperature, slow growth rate (about 1 μm/h) 2. Good crystal integrity, accurate composition and uniform thickness 3. Easy to dope | 1. Expensive equipment and high maintenance costs 2. High Vacuum requirements | [64,85,86,87,88] |
Chemical Vapor Deposition (CVD) | Nanowire Nanoribbon (LT) Nanoplate (HT) | 1. Simple equipment 2. High flexibility 3. A large scale of TI can be prepared on complex shapes of substrates | 1. Low deposition rate 2. Need chemical safetyprotection | [89,90] |
Solvothermal Synthesis | Nanowire Nanorod (min 2~3 μm) [72] | 1. Simple process, easy to operate 2. Low cost 3. High crystal quality 4. Easy to dope (such as S atoms) | 1. Uneven solution temperature 2. Difficult to concentrate the distribution of the reaction product particle size 3. Low yield and purity | [74,75,76] |
Metal-organic Chemical Vapor Deposition (MOCVD) | Semiconductor, Thin film (min 10 μm) [77] | 1. Low temperature & normal pressure or low pressure (1.33~13.3 kPa) 2. High purity, less thermal defects and intrinsic defects 3. The film thickness, composition and doping amount can be precisely controlled 4. Large scale of film, high uniformity, good repeatability, industrial production | 1. Expensive equipment 2. Toxic, harmful and flammable source material 3. Cannot prepare thin films of different materials at the same time | [77,79,80] |
Element | Chemical Formula | Doping Amount (x) | Transition Temperature (K) | Methods | Ref. |
---|---|---|---|---|---|
In | Inx(Pb1−ySny)1−xTe | >0.1 (y = 0.35~1.0) | 4.7 | TSFZ | [103] |
Inx(Pb0.5Sn0.5)0.7Te | 0.3 | 4.7 | FZ | [104] | |
InxSn1−xTe | 0.045 | 0.37 | VTM | [109] | |
InxSn1−xTe | 0.5 | 4.7 | MBM | [110] | |
InxSn1−xTe | 0.5 | 2.8 (P = 2.5 GPa) | MBM | [111] | |
InxSn1−xTe | 0.45 | 4.5 | TSFZ | [112] | |
InxSn1−xTe | 0.45 | 3.8-BaF2 (100) 3.6-BaF2 (111) | PLD | [113] | |
InxSn1−xTe | 0.4 | 4.1 | MBM | [114] | |
Cu | CuxBi2Se3 | 0.12~0.15 | 3.8 | MGM | [99] |
CuxBi2Se3 | 0.12~0.15 | 3.5~3.6 | MGM | [98] | |
Cux(PbSe)5(Bi2Se3)6 | 1.47 | 2.9 | MBM | [115] | |
Sr | SrxBi2Se3 | 0.05, 0.08, 0.12 | ~2.5 | MGM | [116] |
SrxBi2Se3 | - | 2.8 | MGM | [117] | |
Nb | NbxBi2Se3 | 0.25 | 1.8 | MGM | [118] |
Ag | AgxSn1−xTe | 0.15~0.25 (optimal x = 0.2) | 2.4 | STR | [119] |
(AgxPb1−xSe)5(Bi2Se3)3 | 0.2, 0.22 | 1.7 | STR | [96] | |
TI | TIxBi2Se3 | 0.6 | 2.28 | MGM | [120] |
Pd | PdxBi2Te3 | 0.15, 0.3, 0.5, 1 | 5.5 | MBM | [101] |
Materials | Band (nm) | R (A·W−1) | tr/td | D* (cm·Hz1/2·W−1) | PM | Structure | Substrate | Ref. |
---|---|---|---|---|---|---|---|---|
Bi2Te3–Si heterostructure | 370–118,000 | 1 | <100 ms/ <100 ms | 2.50 × 1011 | PLD | Film | Si | [136] |
Sb2Te3 | 980 | 21.7 | 238.7 s/ 203.5 s | 1.22 × 1011 | MBE | Film | Sapphire | [137] |
WS2–Bi2Te3 heterostructure | 370–1550 | 30.7 | 20 ms/ 20 ms | 2.30 × 1011 | PLD | Film | Si | [138] |
Bi2Se3–Si heterostructure | ~300–1100 | 24.28 | 2.5 μs/ 5.5 μs | 4.39 × 1012 | PVD | Film | Si (100) | [139] |
SnTe | 405–3800 | 3.75 | 0.31 s/ 0.85 s | - | MBE | Film | Bi2Te3/STO | [140] |
Bi2Se3 (NWs)–Si heterostructure | 380–1310 | ~1000 | 45 ms/ 47 ms | - | VLS | NW | SiO2/Si | [141] |
SnTe/Si heterostructure | 300–1100 | 2.36 | 2.2 μs/ 3.8 μs | 1.54 × 1014 | PVD | Film | SiO2/Si | [20] |
graphene/Si heterojunctions | 400–900 | 0.435 | 1.2 ms/ 3 ms | 1.4 × 108 | CVD | ML | Cu | [142] |
graphene | 532–10,000 | 8.61 | ~100 s/ 100 s | - | MEM | ML | SiO2/Si | [133] |
metal-graphene-metal (MGM) | 300–6000 | 0.0061 | - | - | - | ML/BL | Si | [143] |
Graphene oxide Vertical junction | 290–1610 | 0.0236 | 130 ms/ 152 ms | 3.31 × 107 | HTM | Film | Si | [144] |
GMG heterostructure | 473–1064 | 0.205 | 24 μs/ 46 μs | - | LBLT | LBL | SiO2/Si | [145] |
Graphene/PbS QDs | ~500–1500 | 107 | 10 ms/ 100 ms | 7 × 103 | MEM | ML/BL | SiO2/Si | [146] |
Graphene/Bi2Te3 heterojunctions | ~400–1500 | 35 | 8.7 ms/ 14.8 ms | - | CVD | NP | SiO2/Si | [147] |
Materials | Ion/off | IDS Max (μA/μm) | Reference |
---|---|---|---|
Bi2Se3-Film | 104 | 1.1 × 103 | [165] |
Stannanane-iodine | 104 | 102 | [166] |
Bi2Se3-Nanowire | 108 | 10 | [167] |
TI-FMTJ | 104 | - | [173] |
TI-Ribbon (2D) | 102 | 103 | [175] |
TI-Film | - | 6 × 103 | [176] |
TI-FMTJ(double) | 104 | - | [177] |
SnTe-Film | 106 | 0.6 | [178] |
(Bi1−xSbx)2Se3-Film | 250 | - | [179] |
WSe2-hBN | 107 | 103 | [174] |
Si-Fin-PSG | - | <102 | [180] |
Ge/Si Heterojunction | 107 | <103 | [181] |
Graphene-LPE | 105 | - | [182] |
Graphene-Nanoribbon | 104 | <102 | [183] |
Graphene-ZnO microwire | 55 | <10 | [184] |
Materials | Pulse Duration (fs) | ΔT (%) | Repetition Rate (MHz) | Isat (MW/cm2) | S/N (dB) | Wavelength (nm) | Ref. |
---|---|---|---|---|---|---|---|
Sb2Te3 | 125 | 6 | 22.2 | 31 | 65 | 1558 | [189] |
Sb2Te3 | 128 | 6 | 22.32 | 31 | 65 | 1565 | [191] |
Sb2Te3 | 270 | 6 | 34.58 | 31 | 70 | 1560 | [195] |
Sb2Te3 | 70 | - | 95.4 | - | 65 | 1542 | [196] |
Sb2Te3 | 170 | 13 | 25.38 | - | 68 | 1558 | [197] |
Sb2Te3 | 380 | - | 17.07 | - | 67 | 1039.4 | [198] |
Bi2Se3/PVA | - | 3.4 | 9.75 | 31.5 | 45 | 1565.16 & 1565.66 | [192] |
8.805 | 75 | 1566.6 & 1567.2 | |||||
433.8 | 45 | 1562.78 & 1563.35 | |||||
Bi2Se3/PVA | - | 3.8 | 1.086 | 25 | 62 | 1566 | [193] |
Bi2Se3/PVA | 359 | 4.6 | 46.4 | - | 58 | 1557–1660 | [194] |
Bi2Se3/PVA | 22,000 | 3.8 | 8.83 | 25 | 55 | ~1568 | [199] |
Bi2Se3/PVA | 500 | 2.4 | 26 | - | 58 | 1562 | [200] |
Bi2Se3/PVA | 660 | 3.9 | 12.5 | 12 | 55 | 1557.5 | [201] |
Bi2Se3/PVA | - | 3.8 | 8.95 | 30 | 50 | ~1527–1532 | [202] |
Bi2Te3 | 600 | 15.7 | 15.11 | - | - | 1547 | [185] |
Bi2Te3 | 448 | 20.56 | 17.76 | 17.46 | 76 | 1565.9 | [203] |
Bi2Te3 | 985,000 | - | 11.4 | - | 35 | 1560 | [204] |
Bi2Te3 | 1300 | 16.3 | 388 239 | - | - | 1557.4 1559.4 | [205] |
Bi2Te3 | 1320 | 4.8 | 232–390 | - | 60 | 1564 | [206] |
Bi2Te3 | 230,000 | 1.8 | 1.44 | - | 77 | 1060 | [207] |
Bi2Te3 | - | 16.2 | 1.1 | 24.6 | 64 | 1064 | [208] |
Bi2Te3 | 320 | 6.2 | 2950 | 28 | - | 1562.4 | [209] |
Bi2Te3 | 630–700 | 3.75 | 14.07–773.85 | - | 46.3–63 | 1555.9 | [210] |
Bi2Te3 | 1210 | 95.3 | 1.21 | 480 | - | 1554–1564 | [211] |
Bi2Te3 | 2490 | 1.7 | 2040 | - | - | 1558.5 | [212] |
Bi2Te3 | 795 | 20.6 | 27.9 | - | 76 | 1935 | [213] |
Bi2Te3 (n-type) Bi2Te3 (p-type) | 400/392 495/385 | 3.6/5.7 3.1/5.4 | 80 | 21/24 25/29 | - | 800 1570 | [214] |
Bi2Te3/PMMA | 4720 | 10.39 | 10.71 | 6.48 | 72.3 | 1548.2–1570.1 | [215] |
Bi2Se3 | 960,000 | 19.1 | 2.5 | 14.9 | 60 | 1064.47 | [186] |
Bi2Se3 | 908 245 | 5 | 202.7 7.4 | - | 80 | 1554.65 1563 | [187] |
Bi2Se3 | - | 5.57 | - | - | - | 1529.96 | [188] |
Bi2Se3 | 824 | 2.3 | 13 | - | 60 | 1560 | [216] |
Bi2Se3 | 1570 | 98 | 1.21 | 490 | - | 1557–1565 | [217] |
Bi2Se3 | 2760 | 4.3 | 640.9 | - | 35 | 1610 | [218] |
Bi2Se3 | 46,000 | 5.2 | 44.6 | 580 | 58 | 1031.7 | [219] |
Bi2Se3 | - | 2.11 | 5.03 | - | - | 1531.4 | [220] |
Bi2SeTe2 | 16.4 × 109 | 61.9 | 8.7 | 4460 | - | 800 | [221] |
MoS2 | 843,000 | 13.6 | 9.67 | 23.1 | 55 | 1905 | [222] |
MoS2 | 510 | 2.7 | 463 | 137 | - | 1556.3 | [223] |
MoS2 | 12,700 | 7 | 88.3 | - | - | 1064 | [224] |
WS2 | 395 | 7.8 | 19.57 | 189 | 64 | 1560 | [225] |
WS2 | 1300 | 10.9 | 34.8 | 3.8 | 72 | 1941 | [226] |
WTe2 | 273 | 10.95 | 63.3 | - | 62 | 1053 | [227] |
WTe2 | 8600 | 41.2 | 13.987 | 4.56 | 60 | 2970 | [228] |
Graphene | 19 | - | 107 | - | 55 | 850 | [229] |
Graphene | 58,800 | 66.5 | 7.29 | - | 48 | 1568.1 | [230] |
Materials | ΔT (%) | Isat (MW/cm2) | Ep max (nJ) | Pout max (mW) | Wavelength (nm) | Repetition Rate (kHz) | Pulse Duration (μs) | Ref. |
---|---|---|---|---|---|---|---|---|
Bi2Se3 (Nd: Lu2O3) | - | 4300 | 834.2 | 556 | 1077–1081 | 44.3–94.7 | 0.72–1.81 | [231] |
Bi2Se3 | 2.5 | 750 | - | 2 | 1562 | 12.3–53.7 | 1.6–17.7 | [236] |
Bi2Se3 (EDFL) | 39.8 | 90.2 | 89 | 16.5 | 1560.58–1560.33 | 23–47 | 5–13 | [238] |
Bi2Se3 (YDFL) | 6.2 | 1.15 | 1050.4 | 14.9–62.5 | 2.1–7.56 | |||
Bi2Se3 | 3.7 | 41 | 313 | 8.4 | 1980 | 8.4–26.8 | 4.18–19 | [239] |
Bi2Se3 (Nd:LiYF4) | - | - | 1230 | 198 | 1313.04 | 36.5–161.3 | 0.433–0.628 | [240] |
Bi2Se3 | 41.2 | 101.8 | 16 | 150 | 1545–1565.1 | 4.508–12.88 | 13.4–36 | [241] |
Bi2Se3 | 3.8 | 53 | 17.9 | 1.1 | 1067 | 8.3–29.1 | 1.95–8.3 | [242] |
Bi2Se3 | 30 | 4300 | 58.5 | 32 | 1063 | ~125–547 | 0.666–1.33 | [243] |
Bi2Se3 | 3.8 | 53 | 200 | 26 | 604 | 94.2–130 | 0.802–1.05 | [244] |
Bi2Se3 | 5 | - | 4700 | 820 | 1042 | 73–174 | 1.5–5 | [245] |
Bi2Se3/PVA | 4.3 | 11 | 23.7 | 22.35 | 1565 | 459–940 | 1.9–8 | [246] |
Bi2Te3 | - | - | 278.8 | 3.6 | 1567.1 | 3.312–12.74 | 12.74–44 | [203] |
Bi2Te3 | 14.29 | 0.01662 | 1090 | 161 | 1027.9–1040.3 | 53.79–147.7 | 0.416–1.55 | [232] |
Bi2Te3 | 5.8 | - | - | 1.875 | 1559.4 | 8.74–21.24 | 4.88–8.46 | [233] |
Bi2Te3 (Nd:YVO4) | - | 1.1 | 600 | 37.5 | 1064 | ~15–70 | 0.097 | [247] |
- | 46 | 1342 | 27.5–78 | 0.093 | ||||
Bi2Te3 | 30 | - | 4 | 0.044 | 1568 | 2.6–12 | 9.5–50 | [248] |
Bi2Te3 | - | - | 7.5 | 1.35 | 1543.3 | 12.6–177.7 | 0.217–1.2 | [249] |
Bi2Te3 | 22 | 57 | 1525 | 20 | 1510.9–1589.1 | 2.15–12.8 | 13–50 | [250] |
Bi2Te3 | 14.7 | 0.0046 | 2440 2800 | 111 326 | 1060 & 1340 | 37.9–45.5 75.5–116.6 | 0.63–1.36 0.673–1.92 | [251] |
Bi2Te3 | 17.5 | - | - | 247 | 1064 | 100–151.5 | 2–4.75 | [252] |
Bi2Te3 | 10.8 | - | 12.7 | 0.55 | 1560 | 7.5–42.8 | 2.81–9.36 | [253] |
Bi2Te3 | 2.5 | - | 38.3 | 2.95 | 1056 | 35–77 | 1–1.3 | [254] |
Bi2Te3 | 51.3 | 2.12 | 3990 | 327.4 | 2979.9 | 46.2–81.96 | 1.37–4.83 | [255] |
Bi2Te3 | - | - | - | 139.5 | 1557.5 | 31.54–49.4 | 3.71–5.15 | [256] |
Bi2Te3 | - | - | 5300 | 210 | 1645 | 14.7–40.7 | 6.3–15.7 | [257] |
Bi2Te3/PMMA | 40.5 | - | 9300 | 856 | 2791.2 | 44–92 | 1.3–4.3 | [234] |
Bi2Te3/PMMA | 8.8 | 0.64 | 18,300 | 134 | 1617 | 2.17–11.6 | 7.9–2.3 | [235] |
MoS2 | 2.15 | 129.4 | 184.7 | 0.77 | 1560 | 7.76–41.45 | 9.92–13.53 | [258] |
MoS2 | 27 | 2450 | 1000 | 50 | 2030 | 33.6–48.1 | 1.76 | [259] |
WS2 | 29.4 | 1.24 | 370 | 318.5 | 2865.7 | 131.6 | 1.73 | [260] |
WS2 | 7 | - | 28.7 | 8.7 | 635 | 232.7–512.8 | 0.207–0.65 | [261] |
MoSe2 | 11.4 | 6 | 35.9 | 115.1 | 1064 | 995–3334 | 0.05–0.086 | [262] |
MoSe2 | 4.7 | 3.4 | 42 | 0.79 | 1924 | 14–21.8 | 5.5–16 | [263] |
Graphene | - | - | 18,000 | 5200 | 2005 | 73-280 | 0.32–1 | [264] |
Graphene | - | 0.926 | 3200 | 2300 | 1063 | 704 | 0.105 | [265] |
Graphene | 20 | - | 46 | 12 | 1064 | 140–257 | 0.07–0.275 | [266] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, W.; Yu, W.; Shi, J.; Wang, Y. The Property, Preparation and Application of Topological Insulators: A Review. Materials 2017, 10, 814. https://doi.org/10.3390/ma10070814
Tian W, Yu W, Shi J, Wang Y. The Property, Preparation and Application of Topological Insulators: A Review. Materials. 2017; 10(7):814. https://doi.org/10.3390/ma10070814
Chicago/Turabian StyleTian, Wenchao, Wenbo Yu, Jing Shi, and Yongkun Wang. 2017. "The Property, Preparation and Application of Topological Insulators: A Review" Materials 10, no. 7: 814. https://doi.org/10.3390/ma10070814
APA StyleTian, W., Yu, W., Shi, J., & Wang, Y. (2017). The Property, Preparation and Application of Topological Insulators: A Review. Materials, 10(7), 814. https://doi.org/10.3390/ma10070814